
THERMAL POSTBUCKLING OF HEATED UNIFORM COLUMNS

CONSIDERING GREEN NONLINEARITY: A NOVEL LINEAR FINITE

ELEMENT FORMULATION

Abstract

Thermal postbuckling behavior of uniform, heated columns is presented, by using a novel

linear Finite Element (FE) formulation. In this investigation, the general Green axial nonlinear

strain- displacement relation is used, instead of the popularly used simpler von-Karman

nonlinearity, which is a subset of Green nonlinearity. In the earlier complex nonlinear FE

formulations, time consuming iterative or step-by-step methods are used to obtain the solution

for thermal postbuckling. In the novel FE formulation, normally used FES , for performing

linear buckling analysis, is proposed to obtain thermal postbuckling loads. The nodal degrees

of freedom are deflection and its first derivative with respect to the axial coordinate. The

geometric nonlinearity is incorporated through the tensile loads induced, with axially re-

strained ends of the column, due to large deflections. The effectiveness of the novel FE

formulation is demonstrated, from the numerical results obtained, in terms of the ratio of

thermal postbuckling to buckling loads, for specified reference deflection and slenderness

ratios, of the columns with different boundary conditions. The numerical results reveal some

interesting phenomena of thermal postbuckling behavior of columns.

Keywords: Thermal Loads; Thermal Buckling; Thermal Postbuckling; Novel Finite Element

Formulation; Linear Eigenvalue Problem

Introduction

The importance of predicting the thermal postbuckling

behavior of the structural members has been recognized,

where these can withstand additional temperature beyond

the buckling temperature, when deflections are large. Sev-

eral structural systems, which are subjected to high tem-

peratures in their service conditions, are assemblages of

these structural members, like the columns, plates and

shells. The temperature rise ∆T, which is above the stress

free temperature Tsf , produces a mechanical equivalent of

compressive loads (or thermal loads) that cause thermal

buckling, and subsequently thermal postbuckling with

large deflections. A proper understanding of this phe-

nomenon of thermal postbuckling and its prediction is
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necessary, to achieve competitive and usable structural

systems, in many fields of engineering.

A novel linear Finite Element (FE) formulation, is

proposed in this paper, to investigate thermal postbuckling

behavior of heated structural members. In this study, for a

better and easy understanding of the novel FE formulation,

the simplest compressive load carrying structural member

(column), with respect to formulation, is chosen as a

demonstration problem, to predict its thermal postbuck-

ling behavior. However, the proposed novel FE formula-

tion can be applied for other structural members, where

the thermal buckling loads can be evaluated, by using the

linear eigenvalue extraction algorithms.

The complex geometric nonlinear thermal postbuck-

ling behavior of columns and other structural members,

with some complicating effects, has been studied by many

researchers, either theoretically (continuum mechanics) or

numerically (FE) method) [1-7]. In these studies, the

popular and simplified von-Karman geometric nonlinear

axial strain-displacement relation(s), which is applicable

for moderately large deflections, which are of the order of

the characteristic dimension, namely, radius of gyration of

the cross-section r of the column or thickness t for other

structural members. In the von-Karman nonlinear theory,

the nonlinearity of deflection only is considered in thermal

postbuckling analysis, where the nonlinearity involved in

axial displacement is neglected. This assumption, though

simplifies the formulation, but puts a constraint on the

magnitude of the deflections, which have to be moderately

large.

The proposed novel FE formulation is based on Green

nonlinear strain-displacement relation [8] that considers

both the nonlinearities involved in the axial displacement

and deflection, from which thermal postbuckling phe-

nomenon can be analyzed, without any restriction on the

magnitude of deflection. It is rather difficult, if not impos-

sible, to use the continuum mechanics formulations, to

predict thermal postbuckling behavior of the columns.

Alternatively, use of the earlier matrix structural analysis,

which is called later as the FE method [9, 10], provides a

reliable and accurate solution for thermal postbuckling

analysis of columns, by using von-Karman nonlinearity,

which is a subset of Green nonlinearity.

In this investigation, as has been already mentioned, a

novel linear FE formulation, is proposed to predict thermal

postbuckling behavior of uniform columns, by using the

linear element stiffness and geometric stiffness matrices.

The proposed FE formulation of columns, can be used,

with some minimal changes, to other structural members

like circular and rectangular plates, as the corresponding

linear element stiffness and geometric stiffness matrices

are readily available [9, 10]. The compressive mechanical

equivalent of thermal load Pt is evaluated by following the

procedure given in Ref. [11]. If the two ends of column

are restrained to move axially, and is subjected to a uni-

form  temperature rise (∆T), from stress free temperature

( Tsf ) , the magnitude of this load Pt is given by ‘E A α

∆T’, where E is Young’s modulus, and a is coefficient of

linear thermal expansion of the material of the column and

A is its area of cross-section. Since, the present work

considers thermal postbuckling behavior, the subscript ‘t’

used to represent ‘thermal’, is omitted in all symbols used

in this paper, from now onwards. For example, the thermal

buckling and postbuckling loads are denoted by Pb and

Ppb instead of Pbt
 and Ppbt

 . Thermal postbuckling load

carrying capacity is generally represented, as the ratio

Ppb

Pb
 ,  for a specified central lateral deflection ratio 

b

r
 , 

where b is the reference deflection, which is generally

taken at the mid- length of column (x = 
L

2
) ,  where x is

axial coordinate and L is length of column.

In the following sections, the proposed novel FE for-

mulation is presented, where the usual linear element

elastic stiffness and geometric stiffness matrices, which

are of order 4 by 4 [9,10], instead of using higher order (8

by 8) nonlinear element stiffness, and geometric stiffness

matrices [12]. Another important feature of the proposed

FE method is that the iterative or step-by-step procedure

is required in earlier FE formulations [13, 14], is not

required to obtain the solution. As a consequence, the

proposed FE formulation reduces the computational time

by orders of magnitude, since a linear eigenvalue problem

only has to be solved. The boundary conditions on deflec-

tion, taken at two ends of the column, are hinged-hinged

(h-h), clamped-hinged (c-h) and clamped-clamped (c-c).

Green Nonlinear Axial Strain-Displacement Relation

In the novel FE formulation, Green nonlinear axial

strain-displacement relation, for one-dimensional prob-

lems, like columns, are given [8] by

ε
x
  =  

du

dx
  +  

1

2
 




du

dx




2

  +  
1

2
 




dw

dx




2

(1)
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where εx is axial strain, u is axial displacement and w is

deflection and x is axial coordinate. It is to be noted that

the nonlinear strain-displacement relation given in Eq.(1),

is general and does not have any limitation on magnitude

of deflection.

Earlier researchers, to quote a few, presented their

formulations [1-7], by neglecting the nonlinear term cor-

responding to u 



 =  



du

dx




2



 , when compared to non-

linear term in w 



 =  



dw

dx




2



 , based on their magnitudes.

This imposes a restriction that the deflections are moder-

ately large, while studying thermal postbuckling of col-

umns, and implies that the axial displacement u is order of

magnitude smaller than deflection w depending on the

value of slenderness ratio of column, SR ( = 
L

r
).With this

restriction, Eq.(1), is rewritten as

ε
x
  =  

du

dx
  +  

1
2

 


dw

dx




2

(2)

Equation (2)  is  popular ly known as von-Karman non-

linear axial strain-displacement relation. This equation

simplifies thermal postbuckling formulation of the heated

columns, when compared to the same, based on Green

nonlinear axial strain-displacement relation.

It  is to be noted that the use of von-Karman nonlinear-

ity is adequate for many engineering applications, and

consideration of Green nonlinearity is general, which is

applicable, even when deflections are large, and reveals

some interesting phenomena related to thermal postbuck-

ling of columns. The linear novel FE formulation pro-

posed here is an effort to show how the general Green

nonlinear formulation can be taken care of easily, to

predict thermal postbuckling behavior of columns.

Evaluation of Induced Tensile Loads Tu and Tw

The necessary input required to take care of Green

geometric nonlinearity, in the proposed FE formulation, is

constant tensile load T which is algebraic sum of two parts

that are given by constant tensile loads Tu and Tw ,  which

are induced in the column, due to large deflections, when

two ends of column are restrained to move axially. Evalu-

ation of these tensile loads Tu and Tw   is presented here

by following the procedure given in Ref.[15].

Consider a column, wherein one end of column is free

to move axially, and having a constraint on axial immov-

ability at the other end. If an axial tensile load Ta , where

subscript ‘a’ corresponds to either u or w, applied at free

end. By following the procedure, given in Ref.[11], the

outward axial displacement uo, a ,  at this free end of

column is given, by

u
o, a

  =  
T

a
L

E A
(3)

If the column undergoes large deflections, then the

inward axial displacement ui, a ,  at free end of column

[15], is given by

u
i, a

  =  
1

2
  ∫  

o

 l

 (u′ )
2
  dx (4)

By following Dym [8], the relation, with a small ap-

proximation, between the derivatives u  and  w is given,

by

u ′  ≅  − 
1

2
 ( w ′ )

2
(5)

where ( ) ′  represents first derivative with respect to x, and

Eq.(4) can be written, as

u
i, a

  =  
1

8
  ∫  

o

 l

 (w ′)
4
  dx (6)

To satisfy the axially immovable condition at both

ends of column, magnitudes of these two axial displace-

ments uo, a and ui, a have to be equal, which gives the

magnitude of Tu ,  as

T
u
  =  

E A

8 L
  ∫  

o

 l

 (w ′)
4
  dx (7)

Integral in Eq.(7) is evaluated numerically, by using

w ′ Degree of Freedom (DOF) at the nodes of discretized

column, as explained in novel FE formulation, which is

presented in the next section.

The aforementioned procedure is followed, to evaluate

constant tensile load Tw induced in the column, due to

nonlinearity in deflection w that exists in Green nonlinear

axial strain-displacement relation, as
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T
w

  =  
E A

2 L
  ∫  

o

 L

 (w ′)
2
  dx (8)

Integral in Eq.(8) is also evaluated as in the case of Tw. 

Incidentally, the constant tensile load Tw given in

Eq.(8), is due to von-Karman nonlinearity. The constant

tensile loads induced in the column, due to large deflec-

tions, are written in non-dimensional form as

λλλλtu
 = 




Tu L2

E I




  and λλλλtw

 = 




Tw L2

E I




 . It is to be noted that all

non-dimensional quantities, parameter and equations are

written in bold type, from now onwards. Though it is not

explicitly seen in Eqs.(7) and (8), λλλλtu
 parameter is directly

proportional to mid-length deflection ratio 




b

r




4

 and in-

versely proportional to SR
2
, where b is mid-length deflec-

tion and SR is the slenderness ratio 
L

r
 column, and λλλλtw

 is

directly proportional to 




b

r




2

 , and is independent of SR.

The total constant axial tensile load parameter

λλλλ t = 




TL
2

E I




 , which is induced in the column, by consider-

ing general Green nonlinear strain-displacement relation,

is obtained as, λλλλt = λλλλtu
 + λλλλtw

 , which is a measure of the

total geometric nonlinearity of column that is used to

evaluate the expression for the ratio of thermal postbuck-

ling to buckling load parameter  
λpb

λb

 , for a specified value

of mid-length lateral deflection ratio 
b

r
 and SR. If

b

r
 → 0 , the value of the total tensile load parameter

λλλλt → 0 , and as a result, the geometric nonlinearity in-

volved in thermal postbuckling problem does not exist. In

such a situation, thermal postbuckling load, Ppb , or in

non-dimensional form λλλλpb = 




Ppb L2

E I




 of the column, be-

comes thermal buckling load Pb , or  in non-dimensional

form λλλλb = 




Pb L2

E I




 . By following the logical steps of

Ref.[13], the ratio 
λpb

λb

 is written in a simple form, as

λ
pb

λ
b

  =  1  +  
λ

t

λ
b

  =  1  +  

λ
t
u

 + λ
t
w

λ
b

(9)

Novel FE Formulation

The main motivation of this study is to propose a linear

novel FE methodology, to predict thermal postbuckling

behavior of heated uniform columns, when the tempera-

ture rise ∆T defined earlier is constant along the length and

across the cross-section of column. ∆T produces a me-

chanical equivalent of constant compressive thermal load,

if the two ends of column are restrained to move axially.

In the novel FE formulation, standard linear 4 by 4 element

stiffness [k], and the same order element geometric stiff-

ness [g] matrices are used. Details of the derivation of

these commonly used element matrices are not given here,

as these are available in Refs.[8, 9]. One-dimensional,

straight beam FEs, which are used for the final linear

eigenvalue analysis, have two nodes at the ends and two

DOF, w and 
dw

dx
 ( = w ′ ) at the nodes, which are the de-

flection w and its first derivative with respect to the axial

coordinate x of column. The important feature of this FE

formulation, when compared to other formulations, is that

the DOF corresponding to axial displacement u and its first

derivative 
du

dx
 are not necessary, even for the nonlinear

problem, like thermal postbuckling analysis. The effect of

geometric nonlinearity is introduced here from the con-

stant total axial tensile load parameter λλλλ t . Equal length

beam FEs are used to discretize the column. Global elastic

stiffness [K] and geometric stiffness [G] matrices, are

obtained by following standard procedure [9,10]. The

order of these global matrices before applying boundary

conditions, depends on the number of nodes (n), where n

is 2 (NE +1), and NE is number of equal length FES with

which the column is discretized. The accuracy of evalu-

ation of thermal postbuckling load, depends on the order

of  the  global  matrices after applying boundary condi-

tions.

In the novel FE formulation, the value of induced

tensile load parameter λλλλ t in the column, is treated as a

constant initial tensile load acting along its length, and

following non-dimensional matrix equilibrium equation is

obtained [16], as

[ K ] 



 δδδδ 




  ++++  λλλλ

t
 [ G ] 




 δδδδ 


  −−−−  λλλλ

pb
 [ G ] 




 δδδδ 




  ====  




 0 





(10)
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where 



 δδδδ 




  is non-dimensional eigenvector  and 




 0 




 is a

null vector, which is rewritten in the following form, as 

[ K ] 

 δδδδ 




  −−−−  


λλλλ

pb
 −−−− λλλλ

t


 [ G ] 


 δδδδ 




  ====  


 0 





(11)

Equation (11) represents a linear eigenvalue problem,

and after applying proper boundary conditions, is solved

by using any standard algorithm that extracts eigenvalues

(buckling load parameters) and eigenvectors (buckling

mode shapes). The lowest eigenvalue is thermal buckling

load parameter λλλλb , and the corresponding linear eigen-

vector  



 δ 




 contains  relative values of w and w ′, which

are  non-dimensionalized with respect to the mid-length

deflection ratio 
b

r
 , so that the corresponding normalized

eigenvector contains the specified value of mid-length

deflection 
b

r
. From this eigenvector the value of

λλλλt (((( ==== λλλλtu
 ++++ λλλλtw

 )))) can be evaluated, for a specified SR.

Equation (11) is solved, after applying boundary con-

ditions of the column, by following standard procedure

used in FE analysis [9,10], to obtain the value of λλλλb , which

is equal to (((( λλλλpb −−−− λλλλt )))) , and the corresponding normalized

eigenvector. This procedure is repeated for different val-

ues of the specified number of mid-length lateral deflec-

tion ratios 
b

r
 and slenderness ratios SR, to obtain thermal

postbuckling load parameter λλλλpb of the heated column for

these ratios. As mentioned earlier, as a degenerate case,

the linear buckling load parameter λλλλb of the column can

be obtained by treating the constant tensile load parameter

λλλλt = 0 , which means that geometric nonlinearity is not

considered in the FE analysis. The number of Finite Ele-

ments (NE) required, which varies with respect to bound-

ary conditions of column, mid-length deflection ratio

b

r
 and SR, to achieve convergence of λλλλb or λλλλt that contain

λλλλtu
 and λλλλtw

 ,  to a specified accuracy of the numerical

results. For typical unsymmetrical boundary condition,

namely, the clamped-hinged (c-h) column, all parameters

and ratios have converged, with 64 elements, to achieve

the specified accuracy of five significant figures. The

complexity of the boundary conditions decrease from the

clamped-clamped (c-c) to hinged-hinged (h-h) columns,

which require 32 and 16 elements for convergence, to

achieve the same specified accuracy. An important advan-

tage of the proposed novel FE formulation is that conver-

gence study with respect to the number of FES is the only

criterion, to obtain the values of  λλλλt , which contains

λλλλtu
 and λλλλtw

 , λλλλb and λλλλpb and subsequently the ratio of ther-

mal postbuckling to thermal buckling loads 
λpb

λb

 accu-

rately, for  the  values of 
b

r
 and SR  considered  in this

study.

Numerical Results and Discussion

The proposed linear novel FE formulation, is used to

obtain thermal postbuckling behavior, considering Green

nonlinearity in terms of 
λpb

λb

 of the heated uniform and

isotropic columns, with different boundary conditions on

deflection, for a specified central deflection ratio 
b

r
 and

slenderness  ratio SR( = 
L

r
 )   This ratio is 

λpb

λb

 evaluated

from the constant tensile loads λλλλtu
 and λλλλtw

 . An important

requirement of the FE formulation is to study the conver-

gence of λλλλb and constant total tensile load λλλλt , with the

number of equal length FEs (NE) with which the column

is discretized, where λλλλt is the algebraic sum of two con-

stant tensile loads λλλλtu
 and λλλλtw

 induced in the column un-

dergoing large deflections, due to the nonlinearities

existing in the axial displacement and deflection, in the

general Green strain-displacement relation. The boundary

conditions of column, in terms of the end deflection w and

its first derivative w ′, considered in this study are the h-h,

c-h and c-c, where c (w = 0 and w ′  = 0) and h (w = 0)

represent the clamped and hinged boundary conditions.

Table-1 presents, the convergence of the thermal buck-

ling load parameter λλλλb for the h-h, c-h and c-c columns.

For the h-h column, the maximum value of 
b

r
 is taken as

10.0, and for the c-h and c-c columns, the maximum value

of 
b

r
 is taken as 16.0. A good convergence is achieved for

the three boundary conditions, namely, for h-h, c-h and

c-c columns with 16, 64 and 32 element discretization,

respectively. It is seen from this Table that the converged

values of λλλλb match very well with those given by Ti-

moshenko and Gere [2].
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The convergence study of constant tensile loads

λλλλtu
 and λλλλtw

 are presented in Table-2 for all three boundary

conditions of column. It is already mentioned that λλλλtu
 is

directly proportional to 




b

r




4

 and inversely proportional to

SR
2
, and λλλλtw

 is directly proportional to 




b

r




2

 and is inde-

pendent of SR. For the h-h column the value of λλλλtu
 and

λλλλtw
 are evaluated for the maximum value of 

b

r
 = 10.0 and

SR = 60.0 (middle value of the three values of SR consid-

ered). For the c-h and c-c columns, the values of λλλλtu
 and

λλλλtw
 are evaluated at the maximum value of 

b

r
 = 16.0 and

SR = 80.0 (again the middle value). The convergence of

λλλλtu
 and λλλλtw

 is achieved, with the same NE as in the case of

λλλλb , and ensures convergence of 
λpb

λb

 , as this ratio is a

direct function of λλλλtu
 and λλλλtw

 , for the three boundary con-

ditions considered.

It is to be noted that the relatively poor convergence of

λλλλb for c-h column is due to the unsymmetric configuration

of the column, when compared to the h-h and c-c columns.

The similar phenomenon for λλλλtu
 and λλλλtw

 is that the refer-

ence (maximum) deflection is taken at the mid-length of

the columns. While this is acceptable for the h-h and c-c

columns, for the c-h column the mid-length deflection is

not the maximum deflection, but the maximum deflection

occurs at a point nearer to the hinged end of the column,

and hence the convergence of λλλλtu
 and λλλλtw

 is poor for the

c-h column.

Table-3 presents the results of the present study with

those given in Ref.[17]. From this Table, it can be ob-

served that different parameters β, and m are used to

present the results for 
λpb

λb

 in Ref.[17] separately for the

h-h and c-c columns. For a better understanding of the

results of Ref.[17], it is necessary to obtain 
b

r
 correspond-

ing to β and m. The corresponding expressions that convert

β and m are given by

Table-1 : Convergence Study of Buckling Load

Parameter λλλλb

NE h-h Column c-h Column c-c Column

2 9.9438 20.7088 40.0000

4 9.8747 20.2322 39.7754

8 9.8699 20.1935 39.4986

16 9.8696 20.1909 39.4797

32 --- 20.1907 39.4784

Ref.[2] 9.8696 20.19 39.4784

Table-2 : Convergence Study of Tensile Load Parameters λλλλtu or λλλλtw

NE h-h Column c-h Column c-c Column

λλλλtu
$

λλλλtw
++++ λλλλtu

# λλλλtw
@ λλλλtu

# λλλλtw
@

2 12.684 116.48 --- --- --- 838.96

4 12.684 246.73 71.823 775.68 --- 838.96

8 12.684 246.74 66.329 666.39 48.369 631.68

16 12.684 246.74 62.016 666.14 46.758 631.65

32 --- --- 61.153 666.14 46.758 631.65

64 --- --- 61.144 --- --- ---

$ SR = 60.0 and 
b

r
 = 10.0 + Independent of SR and 

b

r
 = 10.0

# SR = 80.0 and
 b

r
 = 16.0 @ Independent of SR and 

b

r
 = 16.0
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b

r
  =  

β
180

  (((( SR )))) (12)

and

b

r
  =  

m

2 π
2
  (((( SR )))) (13)

The comparison of 
λpb

λb

 obtained from the present

study, compare well with those given in Ref. [17], after

changing the parameters β and m to 
b

r
. It is to be noted here

that the 
b

r
 value after modification from the parameters of

Ref.[17] are not simple as given in other Tables, but

contain decimal numbers, which can be seen from the

results presented in Table-3.

The values of the parameters λλλλtu
,  λλλλtw

 and the ratio of

thermal postbuckling to buckling loads 
λpb

λb

 of the h-h

columns for several values of 
b

r
 varying from 2.0 to 10.0

in steps of 1.0 and for the values of SR equals to 30.0, 60.0

and 120.0 are presented in Table-4. In Tables-5 and 6

similar values for the c-h and c-c columns are presented

for several values of 
b

r
 varying from 2.0 to 16.0 in steps of

2.0, and for the values of SR equals to 40.0, 80.0 and 160.0.

As has been mentioned earlier, the values of λλλλtu
 and λλλλtw

 in-

crease with 
b

r
, whereas the value of λλλλtu

 decreases with

increasing SR, and the value of λλλλtw
 is independent of SR.

This indicates that the constant tensile load parameter,

which arises from the consideration of the nonlinearity in

the axial displacement due to the nonlinearity in axial

displacement is smaller for higher SR, when compared to

lower SR. However, the ratio 
λpb

λb

 increases with the in-

creasing ratio 
b

r
, and increasing SR. The effect of higher

SR from 120.0, makes the value of the parameter λλλλtu
 very

small, when compared to the value of the parameter

λλλλtw
, which is significant. This reveals an important phe-

nomenon that for higher values of SR the von-Karman

nonlinearity (nonlinearity in w) is sufficient to predict the

thermal postbuckling behavior, and consideration of the

general Green nonlinearity is not necessary. On the other

hand, when the value of SR is smaller, in which case the

contribution of both the nonlinearities corresponding to

the axial displacement and lateral deflection are signifi-

cant. In such a situation, the effect of transverse shear

Table-3 : Comparison of Present Results with Ref.[17]

h-h Column, SR = 120 (NE = 16) Absolute

Value of

%

difference

c-c Column, SR = 160 (NE = 32) Absolute

Value of

%

differenceβ
b

r
λλλλtu λλλλtw

λλλλpb

λλλλb
m

b

r
λλλλtu λλλλtw

λλλλpb

λλλλb

Present Ref.[17] Present Ref.[17]

2 1.3328 0.0010 4.3829 1.4441 1.4438 0.0270 0.2 1.6211 0.0012 6.4842 1.1642 1.1638 0.0411

4 2.6623 0.0159 17.4885 2.7735 2.7764 0.1017 0.4 3.2422 0.0197 25.9369 1.6574 1.6563 0.0718

6 3.9854 0.0799 39.1907 4.9789 5.0019 0.4586 0.6 4.8634 0.0997 58.3606 2.4808 2.4816 0.0315

8 5.2990 0.2500 69.2831 8.0451 8.1265 1.0006 0.8 6.4855 0.3155 103.7831 3.6368 3.6464 0.2619

10 6.6002 0.6017 107.4865 11.9516 12.1590 1.7055 1.0 8.1056 0.7699 162.1101 5.1257 5.1604 0.6705

12 7.8860 1.2263 153.4452 16.6714 17.1130 2.5799 1.2 9.7268 1.5965 233.4424 6.9535 7.0365 1.1781

14 9.1540 2.2264 206.7576 22.1745 23.0010 3.5932 1.4 11.3470 2.9568 317.6888 9.1220 9.2914 1.8228

16 10.4016 3.7117 266.9562 28.4243 29.8420 4.7503 1.6 12.9690 5.0458 415.0044 11.6399 11.9460 2.5617

- - - - - - 1.8 14.5900 8.0820 525.2310 14.5089 15.0240 3.4282

- - - - - - 2.0 16.2110 12.3179 648.4244 17.7367 18.5600 4.4356
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deformation has to be considered [18]. Though the effect

of transverse shear deformation is significant for smaller

values of SR, it affects only λλλλb and consequently 
λpb

λb

, and

does not affect the two geometric nonlinear terms λλλλtu
 and

λλλλtw
. 

Conclusions

The major conclusions, based on the present investi-

gation, are briefly summarized below:

• In the novel FE formulation, thermal postbuckling

problem is solved as a linear eigenvalue problem, and

as such it is not necessary to use the tedious iterative or

step-by-step method (with load increments).

• The convergence, which depends on the boundary con-

ditions and use of reference deflection point of the

column, of  the thermal buckling load parameter

λb, λλλλtu
, λλλλtw

 and 
λpb

λb

 for specified values of central de-

flection ratio 
b

r
 and slenderness ratio SR is good.

Table-4 : Values of λλλλtu, λλλλtw and 
λλλλpb

λλλλb
 of h-h Column (NE = 16)

b

r

SR = 30.0 SR = 60.0 SR = 120.0

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

2.0 0.081176 9.8696 2.0082 0.020294 9.8696 2.0021 0.0050735 9.8696 2.0005

3.0 0.41096 22.207 3.2916 0.10274 22.207 3.2609 0.025685 22.207 3.2526

4.0 1.29992 39.478 5.1316 0.32498 39.478 5.0329 0.081245 39.478 5.0082

5.0 3.17088 61.685 7.5712 0.79272 61.685 7.3303 0.19818 61.685 7.2701

6.0 6.5752 88.826 10.6661 1.6438 88.826 10.166 0.41095 88.826 10.042

7.0 12.1812 120.90 14.4839 3.0453 120.90 13.558 0.76130 120.90 13.327

8.0 20.7808 157.91 19.1051 5.1952 157.91 17.526 1.2985 157.91 17.131

9.0 33.3664 199.86 24.6307 8.3416 199.86 22.095 2.0854 199.86 21.462

10.0 50.592 246.74 31.1260 12.648 246.74 27.285 3.1710 246.74 26.321

Table-5 : Values of λλλλtu, λλλλtw and 
λλλλpb

λλλλb
 of c-h Column (NE = 64)

b

r

SR = 40.0 SR = 80.0 SR = 160.0

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

2.0 0.05972 10.408 1.5184 0.014930 10.408 1.5162 0.0035575 10.408 1.5157

4.0 0.95536 41.634 3.1093 0.23884 41.634 3.0739 0.059710 41.634 3.0650

6.0 4.8368 93.676 5.8791 1.2092 93.676 5.6994 0.30229 93.676 5.6545

8.0 15.286 166.54 10.0054 3.8215 166.54 9.4376 0.95538 166.54 9.2597

10.0 37.3192 260.21 15.7359 9.3298 260.21 14.350 2.3325 260.21 14.003

12.0 77.384 374.70 23.3907 19.346 374.70 20.516 4.8366 374.70 19.798

14.0 143.368 510.01 33.3603 35.842 510.01 28.035 8.9604 510.01 26.703

16.0 244.576 666.14 46.1057 61.144 666.14 37.021 15.286 666.14 34.750
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• The values of λλλλtu
, λλλλtw

  and 
λpb

λb

 are presented for h-h

column, when the deflection ratio 




b

r



 is at the mid-

length of the column, for the values of SR equal to 30.0,

60.0  and  120.0. As  mentioned earlier, the values of

λpb

λb

  are more, for the lower value of SR. It is due to the

fact that λλλλtu
 is inversely proportional to (SR)

2
, and

λλλλtw
 is independent of SR. For the c-h and c-c columns,

the values of 




b

r



 are at the mid-length of the column

and SR equals to 40.0, 80.0 and 160.0. The conclusions

of h-h column are valid for the variation of λλλλtu
, λλλλtw

 and

λpb

λb

 for these two boundary conditions.

• The parameter λλλλtu
 that represents the nonlinearity in the

axial displacement, is directly proportional to the ratio

of 




b

r




4

 and inversely proportional to SR
2
, whereas the

parameter λλλλtw
 that represents the nonlinearity in deflec-

tion, is directly proportional to 




b

r




2

 and is independent

of SR of the column.

• This is an important observation, which gives an insight

into the effect of considering the general Green non-

linearity that  for very  slender columns  the  ratio of

λpb

λb

  will be the same as that obtained by von-Karman

nonlinearity, as the value of the parameter λλλλtu
 is very

much lower than the value of the parameter λλλλtw
 for a

specified value of 
b

r
. On the contrary, when the col-

umns are short, both the values of the parameters

λλλλtu
 and λλλλtw

 are of the same order and the ratio 
λpb

λb

, has

to be evaluated by considering the general Green non-

linearity.

• When the value of SR is small, say, 30.0 or 40.0, the

effect of shear deformation is to be considered, to

evaluate λλλλb or 
λpb

λb

. However, the values of λλλλtu
 and

λλλλtw
 are independent of this effect. As such, for very

short columns it is sufficient to know the value of

λλλλb , to predict thermal postbuckling of columns.

• As per the general behavior observed by the authors

work on thermal postbuckling of columns and plates,

the ratio 
λpb

λb

 decreases as the over all stiffness of the

column increases, for a  specified ratio of  
b

r
 consid-

ered, irrespective of the value of SR, in the present

investigation. It can be seen from Table-1, based on

thermal buckling load parameter λλλλb , the overall stiff-

ness of the column increases for the boundary condi-

Table-6 : Values of λλλλtu, λλλλtw and 
λλλλpb

λλλλb
 of c-c Column (NE = 32)

b

r

SR = 40.0 SR = 80.0 SR = 160.0

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

λλλλtu λλλλtw λλλλpb

λλλλb

2.0 0.04566 9.8696 1.2511 0.011415 9.8696 1.2503 0.0028538 9.8696 1.2501

4.0 0.73056 39.478 2.0184 0.18264 39.478 2.0046 0.045605 39.478 2.0011

6.0 3.697 88.826 3.3436 0.92425 88.826 3.2734 0.23103 88.826 3.2558

8.0 11.6892 150.91 5.1186 2.9223 150.91 4.7486 0.73057 150.91 4.8411

10.0 28.538 246.74 7.9728 7.1345 246.74 7.4307 1.7836 246.74 7.2952

12.0 59.176 355.31 11.4990 14.794 355.31 10.375 3.6985 355.31 10.094

14.0 109.632 483.61 16.0270 27.408 483.61 13.944 6.8519 483.61 13.424

16.0 187.024 631.85 21.7423 46.756 631.85 18.189 11.689 631.85 17.301
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tions from hinged-hinged, clamped-hinged and

clamped-clamped columns.

The proposed novel FE formulation is general and can

be applied to columns with complicating effects, and to

other structural members, where linear FE buckling analy-

sis is valid.
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