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Abstract

Eight-nodded quadrilateral finite element is used to generate structured grid for a numerical

simulation. The computational domain is sub-divided into number of quadrilateral regions

that display the geometry of each sub-domain. The inner and the outer boundaries of the

computational domain are described in terms of the surface coordinates. An algebraic

homotopy procedure is used to generate grid clustering in order to resolve boundary layer.

The structured grid is linked with the flow solver based on finite volume of space discretiztion

scheme with multi-stage Runge-Kutta time stepping technique. Examples are illustrated to

demonstrate the grid generation procedure and data processing for a forward facing aero-disc

spike attached to a hemispherical blunt body at Mach 6 and over a heat shield of a satellite

launch vehicle at Mach 0.8 at an angle of attack 5 deg. The present grid generation method is

convenient for checking the grid independence test by varying the stretching factor. The

quadrilateral grid generated by finite element, vector plot of velocity and contour plots of the

computed flow field data are easily drawn with the help of MATLAB.

Introduction

Computational Fluid Dynamics (CFD) has an increas-

ing role in aerodynamic design and flow field analysis of

a satellite launch vehicle. As the computer hardware be-

comes affordable and numerical algorithm became com-

putationally faster, efficient and economical for research

and development of new configuration. Thus, the CFD

may reduce the number of blow down of wind-tunnel

testing of the aerodynamic model. The development of

parallel computers has enabled aerodynamist to attempt

more realistic geometrical parameters of the configuration

with the Navier-Stokes flow solver. Computational fluid

dynamics plays a pivotal role in the implementation with

the design process of satellite launch vehicle [1, 2] and

understanding the complexity of the separated flow [3]. A

typical computational fluid dynamics application can be

divided into three major steps such as grid generation, flow

simulation algorithm, and computed flow field visualiza-

tion. Numerical solution of fluid dynamics equations re-

quires a spatial discretization of the physical domain of

interest. A suitable mesh must be generated before starting

the flow computation for a given configuration. Moreover,

it becomes mandatory to do grid independent check [4]

before applying in the engineering design. The grid gen-

eration is the most time consuming process in the numeri-

cal flow simulation.

A desirable mesh processes qualities such as sufficient

resolution of the surface geometry, fine mesh resolution

for viscous flow and smooth variation of the mesh spacing

between fine and course grid regions. Many methods for

grid generation [5, 6] have been developed in the area of

the computational fluid dynamics, which are based on

either solution of partial differential equations or algebraic

method. These grid generations procedure compete with

each other in their relative abilities to obtain improved grid

quantities such as smoothness of point distribution, clus-

tering of points of regions of physical interest, and ability

to accommodate complex body geometry. An overview of

different grid generation techniques in current use has

been presented by Thompson [7].

The octree method [8] belong to a class of mesh

generation schemes known as tree structure methods,
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which used in solid modeling and computer graphics

display methods. In the tesselartion method [9], the user

gives a collection of node points and also an arbitrary

starting node. The method creates the first simplex ele-

ment using the neighboring nodes. Then selecting the node

point that gives the least distorted element shape generates

a neighboring element.

A general method for numerically generating grid is

boundary fitted coordinate systems. In this approach, a

geometry definition, point distributions on lines, and sur-

face grids are achieved using non-uniform rational B

splines [10, 11]. Field lines are obtained by solving a

system of Poisson equations [12]. Algebraic grid genera-

tion is an efficient means of grid generation in terms of

computational speed and memory requirements. The alge-

braic grid generation method relies on transfinite interpo-

lation procedure to obtain a grid when the boundaries of

the grid have been specified with a user described distri-

bution. A hole-re-meshing grid generation method [13]

permits efficient mesh generation about aerofoil with time

dependent leading edge ice accretions.

Zienkiewicz and Philips [14] initially proposed the

application of the isoparametric coordinate system for an

automatic grid generation technique. Number of computer

program based on the isoparametric concepts has been

developed by Durocher and Gasper [15], Segerland [16]

and Ho [17]. They found that the finite element mesh

generation method is most efficient way to generate grid

in term of computer speed and memory requirement.

Suhara and Fukuda [18] and Bykat [19] has developed

algorithm that can also automatically generate the grid for

a two-dimensional body. Imafuku and Kodera [20] have

presented a mesh generation method for quadrilateral

zones. Ecer et al. [21] have developed computational grid

around an aircraft using a block-structured finite element

grid generation method. It has been mentioned by them

that the finite element grid generation is fastest procedure

to generate grid in many cases and allows explicit control

of grid distribution.

Commercial software are available to generate grid

[22] such as Gambit, Pro-grid, Patran, I-deas, Pro/Engi-

neer, Solid Edge and many that can be linked to flow

solver CFX, CFD++, Fluent, Star-CD, Flow3D etc.

The above literature survey shows that the finite ele-

ment grid generation method is found easy to generate the

grid and does not need numerical solution of the partial

differential equations. Another attraction of the finite ele-

ment grid generation method is its generality and simplic-

ity in designing a computational grid for an irregular

geometry with minimum restriction. In the present paper,

the application of the block structured finite element

method is implemented with an algebraic homotopic

scheme for the generation of quadrilateral grid [23 - 25].

The homotopic method offers a variety of control options

over the grid qualities such as smoothness and the grid

clustering in the region where are needed. The method is

simple, efficient and easily programmed and coupled with

grid independent test and pre and post processing with the

MATLAB [26].

Finite Element Grid Generation

Quadrilateral Element

The finite element grid generation procedure utilizes a

multi-block structured arrangement to divide the pre-

scribed computational domain in several sub-domains.

The grid generation is demonstrated in the sub-region of

the two dimensional global space (x, y) as shown in

Fig.1(a). The finite element consists of curved-sided quad-

rilateral element. Mapping is one-to-one relationship be-

tween local coordinate (ξ, η) as depicted in Fig.1(b). The

element consists of eight nodes, and all nodes are located

on the boundary. The eight node quadrilateral element

belongs to serendipity family of element. It is initially

described by a single isoparametric finite element. The

isoparametric finite elements are commonly used in finite

element analysis in describing irregular geometries. The

automatically grid generation procedure requires division

of the node points within a region. A quadrilateral element

can be written as

x  =  ∑ 

l = 1

8

 N
l
 (ξ, η) x

l

y  =  ∑ 

l = 1

8

 N
l
 (ξ, η) y

l
(1)

where xl and yl are the natural coordinates of node l (l = 1,

2,..., 8) and the expression for the shape function N can be

written [27] as
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Clustering of Grid

One of the controlling factors for the numerical simu-

lation is the proper grid arrangement to resolve flow field

features such as boundary layer, separated flow, shock

wave, etc. These body-oriented grids are generated alge-

braically in conjunction with homotopy scheme [23]. The

grid generation method is illustrated for an aero-disc spike

attached with the nose-blunted body. The normal coordi-

nate is then described by exponentially structured field

points, xi,j, ri,j extending outwards up to an outer compu-

tational boundary. The grid point i is considered in the

axial direction and j in the normal direction. Sufficient grid

points are allotted in the aero-disc region of the spike.

A computational space over the spiked body is de-

scribed here as an example to demonstrate the finite ele-

ment grid generation method. The normal coordinate is

obtained by exponentially structured field points, xi,j, ri,j

extending outwards up to an outer computational bound-

ary. The stretching of grid points in the normal direction

is obtained using the following expression:
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where ri,w and ri,0 are wall and outer surface points,

respectively, β is stretching factor. nx and nr are total

number of grid points in x and r directions, respectively.

These grids are generated in an orderly manner. Grid

independence tests can be carried out easily taking into

consideration the effect of the computational domain, the

stretching factor to control the grid intensity near the wall,

and the number of grid points in the axial and normal

directions.

Pre-processing of Grid

The following MATLAB’s statement can be employed

to plot the computation grid in order to access the quality

and accuracy of the grid points in the computational do-

main:

for      i = 1:N

                 for     j = 1 : M

                                 row = (i - 1) * M + j;

                                 X (i,j) = f1 (row, 1);

                                 Y (i,j) = f1 (row, 2);

       end

end

for      i = 2:N-1

                 for     j = 2:M-1

                                 row = (i - 1) * M + j;

                                 xvec= [x (i-1,j), x (i,j), x (i,j+1)];

                                 yvec= [y (i-1,j), y (i,j), y (i,j+1)];

       end

hold on;

       end

The above .m file can be executed employing MAT-

LAB software in order to visualize the grid.

Examples

Geometry of Flat Disc Spike

The dimensional detail of the forward facing flat-disc

spike attached to the blunt body, shown in Fig.2, is an

axisymmetric design with a hemi-spherical blunt nose

diameter D = 0.04 m. The spike consists of an aero disc

part and a cylindrical part. The diameter of the cylinder of

the spike is 0.1 D, The spike is having a disc of diameter

0.2 D attached to a stem of diameter of 0.1 D. The spike

length is L = 0.5 D. The coordinate of the surface can be

taken from CAD files.

Computational Grid

The outer boundary of the computational domain is

varied from 3 to 5 times the maximum diameter D of the

hemispherical body. The grid stretching factor β in the

radial direction is varied from 1.5 to 4.0. The present

numerical analysis is carried out on 132 x 52 grid points.

The grid stretching factor β is selected as 3.5. The coarse

grid helps in reducing the computer time. Sub-division of

the computational region is depicted in Fig.3. The dotted

line indicates the outer boundary of the computational
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domain. The symbol x shows the node point on the com-

putational boundary. Each region is having eight nodes;

therefore, adjacent regions are having common node

points. The dotted line indicates the outer boundary of the

computational domain. There are five sub domains, which

are marked by I, II, ..., V in the computational region.

The computational grid is generated using the above

finite element method in conjunction with the homotopy

scheme. The grid is visualized using the above mentioned

.m file and executed using MATLAB. A close-up view of

the computational grid over the spiked blunt body can be

seen in Fig.4. It can be seen from the figure that the grid

is well structured and clustered in the vicinity of the wall.

Axisymmetric Flow Field Solver

Axisymmetric compressible laminar Navier-Stokes

equations are solved using a spatial discretization in the

numerical scheme. The Navier-Stokes equation is written

in integral form of a finite volume method. The spatial and

temporal terms are decoupled using method of lines. The

spatial computational domain is divided into a finite num-

ber of quadrilateral grids as described the above grid

generation method. The cell-centered spatial desretization

is augmented with artificial dissipation terms. Thus, the

discretized solution to the governing equations results in

a set of volume-averaged state variables for mass, momen-

tum, and energy, which are in balance with their area-av-

eraged fluxes (inviscid and viscous) across the cell faces

[28]. The finite code constructed in this manner reduces to

a central difference scheme and is second-order accurate

in space provided that the mesh is smooth enough. The

cell-centered spatial discretization scheme is non-dissipa-

tive; therefore, artificial dissipation terms [29] are in-

cluded as a blend of a Laplacian and biharmonic operator

in a manner analogous to the second and fourth difference.

The artificial dissipation terms was added explicitly to

prevent numerical oscillations near the shock waves to

damp high-frequency modes. Temporal integration was

performed using the three-stage time-stepping scheme of

Jameson et al. [28] based on the Runge-Kutta method. The

artificial dissipation is evaluated only on first stage and

then frozen for the subsequent stages.

The convergence criterion is based on the difference

in density values, ρ, at any grid point between two succes-

sive iterations, that is, | ρ n+1
 − ρ n

 | ≤ 10
−5 , where n is the

iterative index. A conservative choice of the Courant-frie-

drichs-Lewy (CFL) number is taken as 1.4 in order to

achieve stable numerical solution. The details of this flow

field technique are further described in Ref.[30]. The

solver uses a time-marching procedure to compute the

flow. The flow is defined to be steady because the flow

field is converging to a steady state. The steady options

use local time stepping, which leads to a faster conver-

gence to the steady-state flow field.

Conditions corresponding to a freestream Mach num-

ber 6.0 are given as initial conditions. All the variables

were extrapolated at the outer boundary, and the no-slip

wall condition was used to implement the boundary con-

ditions. An isothermal condition was prescribed for the

surface of the model, that is, a wall temperature of 300 K.

The symmetric condition is applied on the centerline.

Flow Field Visualization Over a Flat-disk Aerospike

The above mentioned numerical algorithm is applied

to obtain the flow field over the flat-face disk spike at-

tached to the hemispherical blunt body. Velocity vector

and contour plots are drawn employing the MATLAB.

The following statements used to create .m file and exe-

cuted on the MATLAB to obtain velocity vector.

for i = 1:N

      for j = 1:M

           row = (i-1) * M+j;

           X(i,j) = f1 (row, 1);

           Y(i,j) = f1 (row, 2);

            PX(i,j) = f1 (row, 3);

            PY(i,j) = f1 (row, 4);

    end

end

quiver (X, Y, PX, PY, 0.15)

Figure 5 depict the velocity vector plots over the

flat-disk aerospike for the length to the diameter ratio L/D

of 0.5 at freestream Mach number 6. Characteristic behav-

iors of the flow field around the spiked blunt body at

supersonic speeds are investigated with the help of veloc-

ity vector plots. The bow shock wave follows the aeros-

pike contour and the fore-body is entirely subsonic up to

the corner tangency point of the flat-faced aerospike. The

reflected reattachment wave and the shear layer from the

interaction are seen behind the reattachment shock wave.

A large separated region is observed in front of the blunt

body and the shear layer; and the boundary of the separated

region is clearly observed in Fig.5. A strong recirculating

flow at the spike can be observed distinctly. The bow
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shock wave, the recirculating zone and the reattachment

shock are distinctly visible in the vector plot. A large

separated region is observed in front of the blunt body and

the shear layer; the boundary of the separated region is

clearly observed in the velocity vector plots. The follow-

ing .m file is used to obtain the contour plots:

for i = 1:N

      for j = 1:M

           row = (i-1) * M+j;

           X(i,j) = f1 (row, 1);

           Y(i,j) = f1 (row, 2);

            Z(i,j) = f1 (row, 7);

    end

end

[cs,h] = contour (X, Y, Z, 25);

colorbar (‘vert’)

The density contours and corresponding vector plots

for the flat-face disk are shown for Mach 6.0. In Fig.6, the

interaction between the bow shock wave starting from the

aero-disc of the spike and the reattachment shock wave of

the blunt body is observed. The reflected reattachment

wave and shear layer from the interaction are shown

behind the reattachment shock wave. The numerical simu-

lation gives the effects of the subsonic region over the

spike. The flow field is characterized by the formation of

the bow shock wave in front of the spike, a separated flow

region and interaction between the bow shock wave and

the reattachment shock wave. The body is completely

enveloped within the recirculation region, which is sepa-

rated from the inviscid flow within the bow shock wave

by a separation shock. The bow shock wave interacts with

the reattachment shock generated by the blunt body. The

cause of the drag reduction is due to increase of the

separation region over the aerodisk. The normal shock

wave in front of the aerodisk will reduce the drag. In the

fore region of the aerodisk, the fluid decelerates through

the bow shock wave. At the shoulder of the aerodisk, the

flow turns and expands rapidly, the boundary layer de-

taches, forming a free shear layer that separates the inner

recirculating flow region behind the base from the outer

flow field. The corner expansion over aerodisk process is

a modified Prandtl-Mayer pattern distorted by the pres-

ence of the approaching boundary layer.

Computational Grid Over the Heat Shield of

Satellite Launch Vehicle

The outer boundary of the computational domain is

varied from 3 to 5 times the maximum diameter D of the

hemispherical body. The grid stretching factor in the radial

direction is varied from 1.5 to 4.0. The present numerical

analysis is carried out on 132 x 52 grid points. The grid

stretching factor is selected as 3.5. The coarse grid helps

in reducing the computer time. Sub-division of the com-

putational region is depicted in Fig.7. The dotted line

indicates the outer boundary of the computational domain.

The symbol x shows the node point on the computational

boundary. Each region is having eight nodes; therefore,

adjacent regions are having common node points. The

dotted line indicates the outer boundary of the computa-

tional domain. There are five sub-domains in the heat

shield as depicted in the figure, which are marked by I, II,

..., V in the computational region.

Quasi-Three-Dimensional Grid and Flow Solver

The above mentioned grid generation method is ap-

plied for generating a quasi-three dimensional finite ele-

ment grid over a typical heat shield of a satellite launch

vehicle. The high speed flow around the heat shield is

required to study the capability of the present grid genera-

tion method. The computational domain is divided into

five sub-domains to accommodate the computational

zone. The stretching of the mesh near the surface of the

heat shield requires resolving the flow features. The finite

element grid generation is used to get coordinates along

the inner and the outer boundaries of the computational

domain. It is important to mention here that the present

grid generation is very rapid for generating the grid for

different grid stretching factor, far-field boundary location

and number of grid points as needed for the validation of

grid independent check for the flow solver. The design of

the structured block is aimed to provide separate grids for

critical flow regions and automate the process of designing

or modifying the grid on a block basic. Fig.8 depicts the

grid over the heat shield. The grid is drawn using in-house

plotting software. The present grid is employed to calcu-

late inviscid surface pressure over the heat shield [1, 31].

Grid convergence has been checked with respect to the

vehicle aerodynamics coefficient, the inviscid solution

was obtained on 30 x 18 x 45 -cell grids, counting stream

wise, circumferentially, and normal to the heat shield.

Axial-force coefficient is within 1% on the above grid

arrangement.

The numerical simulation is carried over heat shield of

satellite launch vehicle by solving the compressible form

of three-dimensional Euler equations. The governing fluid

dynamic equations are closed by two assumptions of ther-

modynamics of gas. First, the gas is considered thermally
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perfect following the ideal gas law. Second, the gas is

calorically perfect. The compressible inviscid equations

are numerically simulated with a finite volume solver

developed in-house and described [31]. The code solves

the compressible fluid dynamics equations in a conserva-

tive form on a boundary-fitted multi-block grid. The con-

vective fluxes are solved with a low dissipation upwind

scheme and three-stage Runge-Kutta scheme employed

for time marching. The details on the implementation of

the local artificial damping [29], and the boundary condi-

tions are discussed in detail [1]. At the wall, slip conditions

are imposed and at the out flow boundary the two-tangen-

tial velocity components are extrapolated from the inte-

rior, while at the inflow boundary they are specified at

having field values.

Transonic Flow Field Over the Heat Shield

An example of grid generation in conjunction with

CFD result is presented for typical heat shield of satellite

launch vehicle. Fig.9 depicts the density contour plots at

Mach 0.8 and angle of attack 5 deg. it can be visualized

from the density contour plots a terminal shock is well

captured in leeward and windward side of the flow field.

The grid generation can be easily used to generate grid for

complex configuration such as protuberance on the satel-

lite launch vehicle [32].

Conclusion

The grid generation algorithm associates with the fi-

nite element method and the homotopy scheme has been

presented and demonstrated by utilizing a practical con-

figuration. The grid generation procedure needs following

three steps:

• Each block of the computational region is defined as

eight-nodded quadrilateral isoparametric single ele-

ment.

• Appropriate grids are defined in each sub-division of

the computational domain.

• An algebraic homotopy scheme is employed to cluster

the grid in the high gradient region of the flow.

The grid generation method is very simple, flexible

and robust. The grid generation procedure is very rapid

therefore can be coupled with the flow solver for the grid

independency check, influence of the computational re-

gion, and stretching of the grid. The present grid genera-

tion method maintains geometrical conservation of

computational domain. The grid, velocity vector and con-

tour plots can be easily visualized with the help of the

MATLAB software.
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Fig.1 Quadrilateral Element (a) Global Coordinate

(b) Natural Coordinate

Fig.2 Dimensions of the Spiked Blunt Body

Fig.3 Subdivision of Computational Domain

Fig.4 Enlarged View of Grid Over the Spiked Blunt Body

Fig.5 Velocity Vector Plot Over the Spiked Blunt Body
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Fig.6 Mach Contour Over the Spiked Blunt Body
Fig.8 Grid Over the Heat Shield of Satellite Launch Vehicle

Fig.9 Mach Contour Over the Heat Shield at

Mach = 0.8 and Angle of Attack 5 deg

Fig.7 Grid Over the Heat Shield of Satellite Launch Vehicle
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