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Abstract

A simulation study is performed on laminar flow of an incompressible viscous fluid through

rotating ducts. The ducts considered were rectangular straight, rectangular curved and

circular curved. Simulations were carried out at two Reynolds numbers, three rotation

numbers and five radii of curvature. Secondary flow is induced due to the rotation as well as

the curvature of the duct independently, and this can be observed by the presence of double

vortex in the bend region and in the downstream region of the rotating duct. Secondary flow

creates unwanted losses in the flow. In the present study, the variation of the losses is estimated

by plotting the secondary flow kinetic energy and the total pressure loss coefficient for different

radii of curvature and rotation speeds. It was observed that both the coefficients increase

rapidly in the curved region. The total pressure loss coefficient keeps increasing along the

length, while the secondary kinetic energy coefficient decreases after peaking in the curved

portion and converges to a constant value. This flow phenomenon, especially in turbines and

rotating coolant channels are of practical interest in such applications as heat exchangers,

rotors of electrical machinery, cooling channels of gas turbine rotor blades. Therefore it is

important to understand the underlying physics, which could help in the design of turboma-

chines and in optimizing heat transfer rate in the relevant applications.

Keywords: Secondary flow, Rotating ducts, Curved ducts, Coriolis force, Centrifugal force,
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Nomenclature

C
_

= Bulk mean velocity (m/s)

Cs = Magnitude of secondary flow velocity (m/s)

Cpt = Coefficient of total pressure loss

Csk = Coefficient of secondary kinetic energy

D = Cross sectional dimension of the duct (m)

h = Cell size (m)

i, j = Perpendicular directions to the plane of

   secondary vector

P = Static pressure (Pa)

Po = Total pressure (Pa)

Ptref = Mass averaged total pressure in the reference

   plane (Pa)

R = Radius of curvature (m)

Ro = 
C
_

2 Ω D

X = Non-dimensional stream-wise distance

Ek = Ekman number 




υ

Ω D
 2





Greek Symbols

v = Kinematic viscosity (m
2
/s)

ρ = Density of the fluid (kg/m
3
)

ω = Vorticity (1/s)

Ω = Angular Speed (rad/s)

Introduction

A three dimensional flow could be categorized into

primary flow and secondary flow. Secondary flows are

usually in the vicinity of the boundary of the fluid adjacent

to solid surfaces where viscous forces are at work, such as

FULL LENGTH PAPER

Paper Code : V67 N1/820-2015. Manuscript received on 13 Jun 2013. Reviewed, revised and accepted as a Full Length Contributed

Paper on 30 Oct 2014



in the boundary layer. Such a secondary flow occurs when

the fluid moves in a curved path. Hence the classic cases

would be those of fluid moving in a curved duct or in a

rotating duct. Secondary flow in a curved channel acts to

replace the slow-moving fluid near the walls with faster-

moving fluid, thereby greatly increasing viscous friction

at the wall. Frictional losses are increased not only in the

bend itself, but also downstream, as a result of the persist-

ence of the secondary flow there. Turbines and compres-

sors have blades which change the direction of the

working fluid. There are boundary layers not only on the

blades, but also on the hub and casing walls. In general,

the fluid in the hub and casing wall boundary layers is

turned more than the fluid outside the boundary layers, and

impinges on the next set of blades at an increased angle of

incidence.

Materials as well as momentum may be transported by

secondary flow. Heat transfer and momentum transfer

follow similar laws, so that changes in the flow distribu-

tion which promote heat transfer generally cause increased

friction, and vice versa. Heat exchangers are sometimes

made with wavy passages, to promote secondary flow.

The resultant heat transfer (and friction) can be more than

double that of a comparable straight passage.

Benton [1] used a perturbation expansion and showed

that for laminar flow in circular pipes secondary flow

consisted of double-vortex configuration. Subsequent to

this study, Benton and Boyer [2] examined the case of

laminar flow in a rapidly rotating duct of arbitrary cross-

section. When the Reynolds number is not too large and

when the ratio (ε) of Rossby number to Reynolds number

is small (i.e. << 1), it was shown that the viscous effects

are significant only in the thin boundary layer near the

walls of the duct and also that the inertia effects were

negligible everywhere. For laminar flow in a rotating

rectangular channel, Hart [3] conducted experimental as

well as a theoretical study. He observed the presence of a

weak double vortex in the channel at low rates of rotation.

Wagner and Velkoff [4] also observed double vortex for

a turbulent flow through the rotating rectangular duct. In

his numerical study of laminar, incompressible and vis-

cous flow through rotating rectangular ducts, Speziale [5]

conducted the studies for moderate to relatively high rates

of rotation. He showed that for weak rotation rates, the

double vortex formed in the cross section is independent

of the aspect ratio of the rectangular cross section.   At the

low Reynolds number, numerical analysis in straight and

curved square ducts by Baek and Ko [6] also showed

double vortex formed in cross section and the center of the

vortex moves closer to the upper boundary with increase

in the rotation speed. This is because of the increasing

effect of the secondary flow with rotation speeds (ex-

pressed as reduction in the Ekman number).

A few years later, Lezius and Johnston [7] found that

the critical disturbance mode for laminar flow occurred at

a Reynolds number of 88.53 and a rotation number of 0.5.

Thangam and Hur [8] studied the secondary flow of an

incompressible viscous fluid in a curved duct by using a

finite-volume method. They showed that as the Dean

number increases, the secondary flow structure evolves

into a double vortex pair for low-aspect-ratio ducts and

roll cells for ducts of high aspect ratio. They found that for

ducts of high curvature the onset of transition from single

vortex pair to double vortex pair or roll cells depends on

the Dean number and the curvature ratio, while for ducts

of small curvature the onset can be characterized by the

Dean number alone. They developed a correlation for the

friction factor as a function of the Dean number and aspect

ratio and it was in good agreement with the then available

experimental and computational results for a wide range

of parameters.

Flow visualization studies were made by Cheng and

Wang [9] for rotating radial straight pipes for higher

Reynolds numbers and rotation speeds and captured the

transition to turbulence and the re-laminarization phe-

nomenon. Hoshio Tsujita [10] examined the effects of

passage vortex in a turbulent flow in curved rectangular

ducts using computational methods. They inferred that the

passage vortex contributed predominantly to the genera-

tion of losses not only in the breakdown process but also

in the development process. Qin and Pletcher [11] studied

the velocity field and instability of the flow in a rotating

square duct. They compared their theory with the experi-

mental results of Smirnov and Yurkin [12]. The critical

rotation numbers obtained were in qualitative agreement

with experimental data.

Most of the previous investigations, of either laminar

or turbulent flow regime, which have been done on curved

ducts or straight ducts, involved developing relations

among the flow conditions, velocity profiles and vortex

formations. However, the mechanism of loss generation

in curved ducts has not been fully clarified yet. Investiga-

tions have been made on generation of losses due to

passage vortex or secondary flow in to a turbulent flow

through rectangular ducts. But these studies were done for

a constant radius of curvature, single cross section and

turbulent regime. Hence, this study is an attempt to inves-
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tigate the effect of curvature and cross sectional shape on

the loss generation due to secondary flows in rotating

ducts.

Computational Model

The case to be considered first is that of a laminar flow

of an incompressible viscous fluid in a straight square

duct. The duct is rotated with an angular velocity of  Ω

about an axis perpendicular to the axis of the duct. In the

model created, axis of duct is parallel to the x-axis and the

rotation is about the global z axis.

All the simulations in the project were done using

various tools of ANSYS 13.0. The computational domain

is modeled in ICEM CFD.

Geometry - Straight Square Duct 

The 3D models of the ducts were created using the

‘Design Modeler’ tool in ANSYS 13.0. The straight duct

is of length 40D, D being the dimension of the cross

section. D is chosen as 0.03m. The cross section is

sketched on the YZ plane and then extruded in X-direction

to a length of 40D. The axial direction of the duct is parallel

to x axis while the duct is rotated about z axis, (Fig.1(a)).

The mesh of the duct is generated using ICEM CFD.

A block was created for the entire model and all the edges

were associated to corresponding edges of the model. All

the four edges of the cross section are divided into 30

nodes, with a starting spacing of 0.0002 m near the walls,

with a growth ratio of 1.2 using ‘BiGeometric’ mesh law

in the pre mesh parameters. A total of 200 nodes of

‘uniform’ mesh law are created along the length of the

duct. A hexagonal mesh is created for the model. 

 

Geometry - Curved Square Duct

The entrance length and the exit length for curved duct

are kept constant at 45 D and 30 D, D being the dimension

of cross section. D here  is chosen to be 0.03 m. The axis

of rotation is the global x-axis, which is parallel to the axial

direction of the entrance section of the duct, (Fig. 1(b)).

Fig.1(a) shows the orientation of axes for the straight  duct.

This duct which is used for validation rotates about z-axis.

The 3D models were created using the Design Modeler of

ANSYS 13.0.

The meshing was generated using ICEM CFD. First, a

block is created for the entire model and it was split into

three blocks. The edges associated to each block were

associated to the edges of the parts in each zone i.e. entry,

curved and exit zones. For the cases where in the radius of

curvature is large, i.e. 5 D and 10 D, the curved region

block was further split into 3 blocks. The mesh configura-

tion in the cross section is same as that of a straight duct.

30 nodes on all the edges with a BiGeometric mesh law.

Along the length of the duct, a total of 100 nodes in the

entry section, 10 nodes per block in the curved section, and

75 nodes in the exit section were created with uniform

mesh law. Since the number of blocks in the curved region

varies with radius of curvature, the total number of nodes

and elements vary for each of the curved ducts. Fig.2

shows a side view of the curved duct with measuring

planes. Fig.3(a) is a close view of the mesh generated in

the curved region.

To estimate the discretization error, Grid Convergence

Index (GCI) study based on the Richardson Extrapolation

(RE) method was performed. The three grids used with the

GCI method are 107712 (coarse), 207727 (medium) and

350697 (fine). The grid size h1 < h2 < h3 was maintained.

These three different sets of grid are geometrically similar,

each with a grid refinement factor (r) greater than 1.3.

Procedure for calculating GCI and  discretization error is

adopted from Roache et al.[13].

Table-1 presents the calculation of discretization error

for total pressure at the exit of the rotating curved duct at

Re = 500. The value of GCI is below 1%, which indicates

an accurate calculation. Fig.3(b) shows the value of total

pressure variation at the exit of the duct with number of

elements. The value with fine grid matches with the ex-

trapolated value.

For straight duct, number of nodes and number of

elements are 180000 and 192125 respectively. The num-

ber of elements for the curved duct is 350697. The num-

bers are arrived at after conducting grid independence

study. Grid independence study was conducted as per the

procedure given by Roache et al.[13].

Fluid Model

The fluid selected for the simulations was air at 25°C,

with a reference pressure of 101325 Pa. The domain was

set to rotating mode, with the axis specified as described

in the previous sections. Simulation type was set as steady
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state. The boundary conditions considered for various

cases are given as follows:

For Re = 10 and 500, the flow velocity at inlet is given

as 0.0053 and 0.265 m/s respectively. The outlet static

pressure is given as 0 Pa relative to atmospheric pressure.

The walls are given no slip condition.

Results and Discussion

The results from the simulations of all the cases are

presented in this section. The case of no rotation for the

straight duct gives a basic understanding of how the sec-

ondary flow affects the flow in the presence of a non-zero

rotation or a curve in the duct, followed by the  results for

the rotating curved ducts. The losses arising due to secon-

dary flows are measured using Total Pressure Loss Coef-

ficient (Cpt) and Coefficient of Secondary Kinetic Energy

(Csk), which are defined as follows (Hoshio Tsujita [10]):

C
pt

  =  
P

tref
 − P

o

0.5 ρ C
_
   2

(1)

C
sk

  =  




C
s

C
_ 


2

(2)

Where Ptref  is the mass averaged total pressure near

the reference plane (i.e. x = 0, here the plane at 0° of the

bend) and Po is the total pressure at a point. Cs is the

secondary velocity defined as

C
s
  =  √ υ

i

2
 + υ

j

2
(3)

where i and j are the perpendicular directions in the plane

of the secondary vector i.e. (y, z) for entry section, (y, x

sin θ - z cos θ) for the planes in the curved section (θ is

the angle between the plane’s normal and x-axis) and (x,

y) in the exit section. C is the bulk mean velocity of the

fluid.

Stationary Case

In the case of a straight square duct, in the absence of

rotation, there is no secondary flow taking place because

there is neither centrifugal force nor the Coriolis force.

Hence the case reduces to an incompressible, viscous flow

through a square channel and the fluid attains a quasi-para-

bolic profile inside the channel after the flow is fully

developed. The Figs.4 and 5 illustrate the same.

Validation of Straight Square Duct

The results from the case of rotating straight square

duct were compared to those of Baek and Ko [6] and the

results showed a good agreement. The results and com-

parison are showed in detail in this section.

Cases Considered :

Where Ek is Ekman number 



Ek  =  

v

Ω  D
 2




 and Ro is

Rossby Number 



Ro  =  

C
_

2 Ω  D




.

Coriolis forces play dominant role in curved rotating

ducts, Ekman number, Ek (ratio of viscous forces to Co-

riolis forces) is used in the present analysis.  Rossby

number, Ro (ratio of interial forces to Coriolis forces) will

be in fixed proportion to Ekman number for a given

Reynolds  number and fluid viscosity. In the present in-

Table-1 : Grid Independence Study

No. of Elements

N1, N2, N3

350697, 207727, 107712

r21 (h2/h1) 1.2

r32 (h3/h2) 1.25

Total Pressure at the outlet

(fine grid)

182.908 Pa

Total Pressure at the outlet

(medium grid)

184.436 Pa

Total Pressure at the outlet

(fine grid)

184.732 Pa

Extrapolated value 182.7 Pa

Approximate relative

error

-0.84%

Extrapolated relative

error

-0.1%

CGI fine grid -0.12%

Re = 10 Ek = 0.1, 0.01, 0.001 Ro = 0.00507,

0.0507, 0.507

Re = 500 Ek = 0.1, 0.01, 0.001 Ro = 0.253, 2.53,

25.3
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vestigations the ratio of Ro/Ek ≈ 253. The value of Rossby

number is also mentioned in the text.

Figures 6 and 7 show the comparison of axial velocity

(non-dimensional) along the vertical center plane from

simulation with that of Baek and Ko [6]. The agreement

between the results is quite good. The axial velocity profile

distorts from a quasi-parabolic profile (when Ω = 0, as

shown in Figs.4 - 5) to a flatter profile as the speed of

rotation increases (i.e. as Ekman number decreases). This

can be observed from Figs.6 and 7. This means that the

axial velocity gradient along the center plane is reduced,

and hence its maximum value is also reduced. This is the

effect in the vertical plane.

Convective inertia term is weak at low Reynolds num-

ber (Re = 10). The center of vortex moves to upper and

lower wall, as the rate of rotation increases, (Fig.6).  Be-

cause the rate of rotation is small at high Ekman number

(Ek = 0.1), Coriolis force does not have a substantial effect

on the flow. Therefore the axial velocity profile shown in

Fig.6 has quasi-parabolic velocity distribution. But at low

Ekman number (Ek = 0.001), the Coriolis force dominates

flow in the duct interior except in the region of thin viscous

boundary layers.

At high Ekman number (low rotational speed), the

secondary flow is weak but at low Ekman number (high

rotational speed), the magnitude of the secondary flow is

comparable to axial velocity. As the speed of rotation

increases, the strength of the secondary flow becomes

larger. At low Ekman number (Ek = 0.001) the maxima in

the axial velocity are closer to the end walls and the flow

has nearly uniform axial velocity profile in the vertical

planes of the duct as can be seen in Fig.6. The axial

velocity along the vertical centreline of the duct is sym-

metric and begins to flatten in the core region of the duct

with the increase of rotation rate. When Ekman number is

0.001, the gradient of the axial velocity along the vertical

centreline is zero in the core region and the peaks of the

axial velocity are closer to the walls.

When inertia plays a significant role (Re = 500), more

complicated flow evolves. Figs.7 - 9 show the variation of

axial velocity for different Ekman numbers in vertical

plane. When Ekman number is high (Ek = 0.1), a double

vortex secondary flow appears in the transverse planes of

the duct, (Figs.7, 8(a), 9(a)). But as the speed of rotation

increases, the secondary flow with two vortices is split into

a four-vortex secondary flow, (Figs.8(b) and 9(b)). If the

rotation rate is increased further, the secondary flow resta-

bilizes to a slightly asymmetric double-vortex configura-

tion, (Figs.7, 8(c), 9(c)). The unstable flow with a four-

vortex results from a disparity in the symmetry of the

convective and the Coriolis terms. But the unstable flow

with a four-vortex (Ek = 0.01) shows three peaks in

velocity profile, (Fig.7). As the rate of rotation increases

further, the axial velocity profile on the vertical centre

plane shows two peaks in the near region of the upper and

lower walls with the plateau in core region. The secondary

flow distorts substantially the axial velocity profile even

though the magnitude of secondary flow is small, that is,

Coriolis force has a substantial effect on the axial velocity

flow profile.

Rotating Curved Ducts

In the present study so far, the primary reason for

inducing secondary flows has been Coriolis force (rotating

straight ducts). But, in the case of curved ducts, two forces

induce the secondary flows in the rotating duct - Centrifu-

gal force and Coriolis force. Both the forces do so indi-

vidually. Centrifugal force is responsible for the

secondary flow created in the bend region of the duct,

while the Coriolis force is responsible for the secondary

flow in the downstream region from the curve. The effects

of these two forces are distinguishable from axial velocity

contour diagrams and secondary flow vector diagrams.

Figure 10 shows axial velocity contours from various

sections of the curved duct as marked in Fig.2. In

Fig.10(a) - 10(c), the shift of the velocity contours towards

the right side could be observed. Right side here signifies

the radially outward direction which is caused due to the

centrifugal force. With the secondary flow effects coming

in, the velocity profile becomes flatter with its gradient in

the vertical direction close to zero. This can be observed

in Fig.10(d). The fluid is then significantly far away from

the axis of rotation to experience the Coriolis force. This,

along with the diminishing centrifugal force (as the fluid

surpasses the curved region) allows Coriolis effects to

dominate and hence the bulk of the fluid velocity slowly

moves to the trailing edge of the rotating duct (Here to the

top edge of the cross section). This can be observed in Figs.

10(e) - 10(h).

In the following figure (Fig.11), the same effects are

shown through the secondary flow vectors. Fig.11(a)

shows the secondary flow vectors at section ‘c’ in Fig.2

and Fig.11(b) shows secondary flow vectors at section ‘i’

in Fig.2. Both are drawn to the same scale. Here in

Fig.11(a), the double vortex is symmetrical about the
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horizontal center plane while in Fig.11(b), the double

vortex is symmetrical about the vertical center plane. This

shift starts at about the end of curved region and takes

place through the downstream region in the exit section.

Another important thing to notice here is the magnitude of

the vectors. The magnitude in Fig.11(a) is about 0.13 m/s

while in that of in Fig.11(b) is an order less, around 0.01

m/s (The common legend for both the figures is shown in

Fig.11(c)).

Secondary flows create unwanted losses in the flow.

These losses can be quantified using Total Pressure Loss

Coefficient and the Secondary Kinetic Energy Coefficient

as defined in equations (1) and (2). In this section, a

stream-wise variation of these losses with stream wise

distance X (non-dimensional) is shown for various radii

of curvature, Ekman numbers and different cross sections.

Variation of Losses with Ekman Number

This section presents the variation of both the coeffi-

cients with Ekman number for all the cases. Stream wise

distance X (non-dimensional) is defined as l/D, where l is

the stream wise distance from the reference plane and D

is the cross sectional dimension. The area of interest is to

the right of the origin. The following Figs.12, 13, 14, and

15 show the variation of total pressure loss coefficient for

radii of curvature 1D, 2.5D, 5D and 10D of curved square

duct respectively. In all the four figures, it is seen  that the

losses increase with the Ekman number.

Variation of Losses with Radius of Curvature

The following (Figs.16 - 18) show the stream-wise

variation of total pressure loss coefficient for different

radii of curvature at all the Ekman numbers. The loss

coefficient decreases with increase in the radius of curva-

ture. In all the figures, duct with 1D curvature has the

highest pressure loss, while the one with 10D curvature

has the least pressure loss coefficient. It is also observed

that as the speed of rotation increases, the slope of the lines

in the exit section increases, and can be clearly seen in the

case of 5D and 10D lines. In fact, in Figs.17 and 18, 5D

and 10D lines have smaller slopes in the curved section

than in the exit section.

The stream-wise variation of coefficient of secondary

kinetic energy with respect to radius of curvature is shown

in Figs.19-21. The coefficient of secondary kinetic energy

decreases with increase in radius of curvature. It is highest

for the duct with curvature 1D and least for the duct with

curvature 10D. The difference in peaks reduces with in-

crease in rotation speed. An important observation is that

all the lines are converging to about the same value in the

exit section of the duct. This proves the dominance of

curvature over rotation in contributing to the losses.

Variation of Losses with Shape of the Cross Section

The value of the coefficient also depends on whether

the cross section is square or circular. Since we have

chosen area as the constant parameter, the value of hydrau-

lic diameter is different for both. D is 0.03 m for the square

while it is 0.0339 for the circle. Hence the amount of

wetting surface is less for circular duct compared to a

square duct and consequently the frictional losses in the

circular duct would be less. This is reflected is Fig.22

which compares Cpt of square duct and circular duct for

same conditions. Important observation here would be the

lower slope of the circular duct lines.

The following figure compares the secondary kinetic

energy of both the ducts under similar conditions. Since

the diameter of the circle is more than the side of the

square, for the same Ekman number, the circular duct

rotates with a slightly slower speed of rotation and hence

experiences lesser secondary kinetic energies in the flow.

This is shown in Fig.23.

Conclusions

Secondary flow analysis was performed on rotating

ducts for various cases. After analyzing the results, the

major conclusions drawn from the present study are as

follows:

• In the case of straight duct, Coriolis force induces the

secondary flow. Flow destabilizes due to rotation by

forming a pair of double vortices. The flow re-stabilizes

at higher rates of rotation and the axial velocity attains

a uniform profile in the duct.

• In the case of curved ducts, secondary flow effects

appear individually, due to both centrifugal force (in

the bend region) and Coriolis force (in the exit region).

• Centrifugal forces dominate in the curved region com-

pared to the Coriolis force. Hence the secondary flow

effects in the curved region are mainly due to the

centrifugal force.

• The total pressure loss coefficient increases with in-

crease in the rotational speed and decreases with an

increase in the radius of curvature. This is because of
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the inverse relation between the radius of curvature and

the centrifugal force.

• For ducts with lower radius of curvature (1 D and 2.5

D), the total pressure loss coefficient increases more

rapidly in the curved region of the duct compared to the

exit region while for ducts with higher radius of curva-

ture, it increases less rapidly in curved region compared

to that in the exit region.

• The coefficient of secondary kinetic energy increases

with an increase in the rotation speed and decreases

with an increase in the radius of curvature. The value

of the coefficient peaks in the curved region for any

curvature at any speed. Hence the intensity of losses

due to centrifugal forces is more than that of Coriolis

force.

• The coefficient of secondary kinetic energy converges

to about the same value for different radii of curvature

at all the Ekman numbers. This shows the inde-

pendence of the losses created due to the secondary

flows in the exit section.

• The difference among the peak values of coefficients

of secondary kinetic energy for different radii of cur-

vature decreases with increase in the speed of rotation.

This coupled with the fact that its value increases with

the speed of rotation shows strong dependence of sec-

ondary flow effects due to centrifugal forces on speed

of rotation.

• The coefficient of total pressure loss varies more rap-

idly for a square curved duct compared to a circular

curved duct. The coefficient of secondary kinetic en-

ergy has lesser values for a circular duct compared to a

square duct for the same Ekman number and radius of

curvature.
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Fig.1 Orientation of the Axes and the Flow Direction

(a) Straight Duct  (b) Curved Duct

Fig.2 A Side View of a Curved Duct Model with

Measuring Planes

Fig.3(a) A Closer View of the Mesh Generated in the

Curved Region

Fig.3(b) Variation of Total Pressure at the Exit of the

Rotating Duct with Number of Elements (Re = 500)

Fig.4 Axial Velocity Contours of a Stationery Straight Duct
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Fig.5 Variation of Axial Velocity in (a) Horizontal and (b) Vertical Center Planes

Fig.6 Variation of Axial Velocity in the Vertical Center Plane

for Re = 10 in Straight Duct

Fig.7 Variation of Axial Velocity in the Vertical Center Plane

for Re = 500 in Straight Duct

Fig.8 Axial Velocity Contours in the Cross Section of the Straight Duct
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Fig.9 Secondary Flow Vectors in the Cross Section of the Straight Duct

Fig.10 Avial Velocity Contours at Various Sections of Duct
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Fig.11 Secondary Flow Vectors in the Cross Sections of the Curved Duct (a and b are at sections ‘c’ and ‘i’ in Fig.2)

Fig.12 Cpt vs X for R = 1D, Curved Square Duct

Fig.13 Cpt vs X for R = 2.5D, Curved Square Duct
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Fig.14 Cpt vs X for R = 5D, Curved Square Duct

Fig.15 Cpt vs X for R = 10D, Curved Square Duct

Fig.16 Stream-wise Variation of Cpt at Ek = 0.1 for Various Radii of Curvature
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Fig.17 Stream-wise Variation of Cpt at Ek = 0.01 for Various Radii of Curvature

Fig.18 Stream-wise Variation of Cpt at Ek = 0.001 for Various Radii of Curvature

Fig.19 Stream-wise Variation of Csk at Ek = 0.1 for Various Radii of Curvature
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Fig.20 Stream-wise Variation of Csk at Ek = 0.01 for Various Radii of Curvature

Fig.21 Stream-wise Variation of Csk at Ek = 0.001 for Various Radii of Curvature

Fig.22 Stream-wise Variation of Cpt  for Different Cross Sections
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Fig.23 Stream-wise Variation of Csk for Different Cross Sections
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