
LATERAL ADAPTIVE CONTROL OF PARAFOIL-PAYLOAD SYSTEM

Abstract

The motion of a parafoil is characterized by nonlinear dependence of aerodynamic loads on

angle of attack. Nonlinear dynamics and non-rigidity of parafoil-payload system causes

difficulty in estimating aerodynamic coefficients of the parafoil with respect to angular rates.

The present paper addresses the problem of lateral control of a generic 9 degree of freedom

parafoil-payload system under small perturbations. A Lyapunov based dynamic adaptive

controller is proposed in order to control such a system with known static coefficients and

unknown dynamic coefficients. It is demonstrated numerically that the proposed controller is

capable of controlling the system without estimating dynamic coefficients (theoretically or

experimentally).

Nomenclature

a = Unknown parameter vector

â = Estimated parameter vector

AR = Parafoil aspect ratio

b, c, t = Parafoil span, chord length and thickness

CDb = Payload drag coefficient

CL, CD = Lift and drag coefficients of parafoil

Cl, Cm, Cn= Parafoil aerodynamic moment coefficients

Cx, Cy, Cz = Parafoil aerodynamic load coefficients

eδ a = Error in asymmetric deflection angle

F = Force vector

Fo = Force exerted at the joint point

I = Identity matrix

I = Moment of inertia matrix

IF = Apparent moment of inertia matrix

ko, co = Stiffness and damping at the joint point

g = Acceleration due to gravity

m = Mass

M = Moment vector

MF = Apparent mass matrix of parafoil

Min = Mass matrix of air inside parafoil

Mp = Parafoil canopy mass matrix

Mo = Moment exerted at the joint point

p, q, r = Roll, pitch and yaw rate

Rop, Rob = Parafoil and payload link lengths measured

    from the joint point

S = Planform area

S = Reference frame fixed to a body

T = Transformation matrix

u, v, w = Component of velocity along the three axes

uact = Actuator input

U = Speed of a body

v = Velocity vector

V = Lyapunov function

x, y, z = Position in Cartesian coordinate system

x = Position vector

X = System state vector

α = Angle of attack

β = Sideslip angle

δa = Asymmetric deflection angle of parafoil

δs = Symmetric deflection angle of parafoil

Θ = Attitude vector

µ = Parafoil rigging angle

ρ = Density of air at sea level

φ, θ, ψ = Roll, pitch and yaw angle

ω = Angular velocity

ℜmxn
= Real vector space of dimension m x n
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Subscript

b = Referred to payload

p = Referred to parafoil

i = Referred to either payload or parafoil (i = b, p)

A = Referred to aerodynamic

G = Referred to gravitational

trim = Referred to trim condition

o = Referred to joint point

p, q, r = Angular rate stability derivatives

αp, βp = Wind direction stability derivatives

δa, δs = Control surface derivatives

Superscripts

x = Cross product matrix operator

T = Transpose operator on a matrix

-1 = Inverse operator on a square matrix

Introduction

Guided ram air parafoils are long known for their

applications in cargo delivery and recovery systems. They

are cheap and easy to deploy due to compact size and light

weight. Parafoil is an inflated non-rigid wing made of

fabric. The airfoil shape provides the lift along with drag,

unlike parachute where drag is the dominant component

of aerodynamic force. Parafoils have controllable flexible

flaps near the trailing edge which act as elevons as shown

in Fig.1. The development of parafoil applications goes

back to 1964 by Domina Jalbert. The first powered para-

foil system called Aeroflyer was built by John D. Nico-

laides [1]. Despite these inventions, a significant literature

in control techniques of the parafoil-payload system is

reported only in the last decade. One of the major problems

encountered in the history of parafoil systems is the pay-

load oscillation, since it is influenced by gusts.

Recent advancements in guided parafoil systems in-

clude spacecraft and unmanned air vehicle recovery be-

cause they provide precise and soft landing of the payload.

In 1995, the Guided Parafoil Airborne Delivery System

(GPADS) program demonstrated the stabilization and

touchdown precision of parafoil systems having a span of

150 ft. with a number of military payloads at high altitudes

[2].

The trailing edge flaps may have angular deflections

in the same direction or opposite direction similar to

elevon deflection in aircrafts. There are two types of

control actuation techniques defined for a parafoil system,

namely symmetrical and asymmetrical brake deflections.

The symmetric brake deflection is responsible for change

in glide slope of the parafoil system. An important aspect

of the parafoil-payload system control was made by

Slegers and Costello [4] in 2003 by pointing out the two

counter modes of lateral control, namely roll steering and

skid steering. Roll steering corresponds to a dominant

rolling motion of the system, due to dominant differential

lift force, when an asymmetric brake deflection is applied.

On the other hand, if there is a dominant yaw motion, due

to dominant differential drag force, for the same asymmet-

ric deflection, the mode is called skid steering. The asym-

metric brake deflection causes banking of the system in

opposite directions depending on which of the two modes

is active. Slegers and Costello [4] also found that change

in the canopy curvature and magnitude of the asymmetric

brake deflection causes a transition between the two

modes.

The parafoil payload system has aerodynamic coeffi-

cients which are highly nonlinear functions of angle of

attack and brake deflections [5]. Another important aero-

dynamic design aspect of parafoil systems is the angle

between parafoil linkage and parafoil roll axis, called the

rigging angle. Prakash and Ananthkrishnan [5] analysed

the gliding and turning flights of a parafoil-payload system

using 9 degree of freedom dynamic model for different

rigging angles and symmetric and asymmetric brake de-

flections.

A model predictive control strategy for parafoil-pay-

load system was presented by Slegers and Costello [7]

using a 6 degree of freedom reduced state linear dynamic

model. Gorman and Slegers [6] also showed that a 6

degree of freedom simulation model is inadequate to pro-

duce all significant motion of the system.

Longitudinal control of parafoil-payload system is dif-

ficult to achieve and has a limited account in the literature.

A longitudinal control technique of glide slope by change

in incidence angle is reported by Slegers et al. [8]. For this

purpose, the authors used rigging changes and an addi-

tional servoactuator.

The determination of parafoil aerodynamic coeffi-

cients is a difficult task. Due to non-rigid structure of the

parafoil, mounting conventional motion sensors on the

canopy is troublesome. However, measurement of static

aerodynamic coefficients in a wind tunnel is relatively

easier. The objective of the present work is to control the

parafoil-payload system for unknown parafoil dynamic

derivatives where the static derivatives are known. A
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Lyapunov based dynamic adaptive controller for the para-

foil-payload system is proposed which can handle lateral

disturbances in the system. The present dynamic adaptive

control law guarantees global asymptotic stability of the

system, similar to the control law used by Slotine and Li

[10] for robot manipulators. A 9 degree of freedom model

of the system is considered for this purpose. Because of

the complexity involved in achieving the longitudinal

control of parafoil-payload system with the help of sym-

metric brake deflection, the asymmetric brake deflection

is taken as the only control input with symmetric brake

deflection being constant. For the analysis, the system

(canopy and links) is assumed to be rigid and completely

inflated at all times.

Parafoil-Payload System

Figure 1 shows an inflated parafoil-payload system at

an angle of attack. Points P and B are respectively the

centers of gravity of the parafoil and the payload. The

parafoil is connected to the payload through the links OP

and OB meeting at a common joint point O. Sp, Sb and So

represents parafoil fixed, payload fixed and joint point

fixed frames respectively. The [Xi, Yi, Zi] refers to the

orthogonal axes of the frame Si. The joint point fixed frame

is chosen in such a way that two of its axes ( Xo and Yo) lie

in horizontal plane and one axis (Zo) is along the direction

of gravity.

The three defined frames are mutually inclined to each

other. The orientation of the parafoil fixed frame and

payload fixed frame with respect to the joint point fixed

frame can be represented using Euler 3-2-1 rotation se-

quence. Hence, quantities expressed in frame So can be

transformed into payload or parafoil fixed frame coordi-

nates as follows,
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where, Ti is the transformation matrix for a body having

an orientation of (ψi (3), θi (2), φi (3)) with respect to the

joint point fixed frame (or earth fixed frame). It can be

observed from Fig.1 that the system has 9 degrees of

freedom defined independently by

( xo, yo, zo, φp, θp, ψp, φb, θb, ψb ).

Parafoil-Payload Dynamics

The dynamics of the parafoil-payload system can be

modelled by resolving the system into two subsystems,

linked at the joint point. The load transfer between the

parafoil and the payload takes place through the joint point

O. The kinetic equations of the payload subsystem is given

by,
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where, Fo and Mo are the force and moment respectively,

exerted on the payload by the joint point. Note that the

joint forces and moments are expressed in joint point fixed

frame, So. The apparent mass and moment of inertia plays

a major role in the dynamics of the parafoil. Lissaman and

Brown [9] provided the apparent mass and moment of

inertia matrix for the inflated parafoil dynamics. The

translational and rotational dynamic equations of motion

of the parafoil subsystem [9] can be written as,
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where, Ma is the net included air mass and the apparent

mass matrix of the parafoil. Therefore,

M 
a
  =  M 

in
  +  M 

F
(6)

The position vectors of point P and B in joint-point

fixed frame are denoted by rop and rob respectively, such

that,
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Equations (2)-(5) can be easily grouped together in the

form of a matrix equation,
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where,
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Equation (8) is the complete kinetic equation of motion

of the 9 degree of freedom parafoil-payload system. It is

important to note that the joint point force, Fo is not a state

variable of the system. It is only an intermediate variable

which exhibits the relation between dynamics of the pay-

load subsystem and parafoil subsystem.

The links are free to rotate about the joint point, there-

fore no moment transfer is expected at point O. However

in practice, the twisting of the links restricts the yawing

motion of the payload with respect to parafoil. Therefore,

it is assumed that moment transfer occurs only in the yaw

direction and hence modelled in accordance to the spring-

damper system [4]. It follows that,
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The kinematic equation of motion of the parafoil-pay-

load system can be written as,
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where,
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 and

are the position vector, payload attitude and parafoil atti-

tude respectively. The 9 dynamic equations of motion

given by Eq.(8) along with 9 kinematic equation of motion

given by Eqs.(17) and (18) constitute the equation of

motion of the parafoil-payload system. The kinematic

relationship between payload/parafoil velocity and joint

point velocity can be found using the transformation ma-

trix in Eq.(1). It follows that,
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The angle of attack and angle of sideslip of the parafoil

are evaluated using the following equations,
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108 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.67, No.2



β
p
  =  sin

−1
 (v

p
 ⁄ U
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 ) (21)

Aerodynamic Modelling

The aerodynamic drag force acting on the payload can

be written as,
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The center of pressure of the payload is taken at its

center of mass. Also, it is assumed in the current study that

the payload is bluff body. Hence, the drag is the only

dominant aerodynamic force acting on the payload. The

aerodynamic forces and moments acting on the parafoil is

given by,
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The parafoil lift, drag and pitching moment coeffi-

cients are nonlinear functions of angle of attack and sym-

metric brake deflection [5]. Aerodynamic coefficients for

the parafoil can be written as [5],
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where, CL (αp, δs ), CD (αp, δs )  and Cm
ac

 (αp, δs ) are

parafoil lift, drag and pitching moment coefficients re-

spectively for a given angle of attack and symmetric brake

deflection at zero asymmetric brake deflection.

State Equation

The state equation of the parafoil-payload system us-

ing dynamic and kinematic equations from Eqs.(8), (17)

and (18) and can be rewritten as,
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where, b5 = Cbωb; b6 = Cpωp; b7 = vo

Adaptive Controller

In this section, a dynamic adaptive controller similar

to Slotine and Li [10] is derived in order to control the

parafoil-payload system. Consider a scalar variable s

which gives a measure of the error in state of the system,

such that,
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o
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o
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where, λ, γ and η are strictly positive constant.
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tively with respect to the trim condition defined as,

v~ 
o
  =  v 

o
  −  v 

o
trim

(40)

ω
~

i
  =  ω

i
  −  ω

i
trim

(41)

Let a ∈ ℜ6x1
 denotes the unknown dynamic coefficient

vector,

a  =  



C
l
p

   C
n

p

   C
m

q

   C
y

r

   C
l
r

   C
n

r





T
(42)

If â denotes the estimate of the unknown parameter, the

error in the estimate of the unknown parameter can be

written as,

a~  =  â − a (43)

Choosing a quadratic Lyapunov function as follows,

V ( s, a~ )  =  
1

2
 s

2
  +  

1

2
 a~ 

T
  a~ (44)

It can be seen from Eq.(44) that the chosen positive

definite function, V is continuous and differentiable for all

s ∈ ℜ and ã ∈ ℜ6x1
. The time derivative of Lyapunov

function can be written as,

V
.
 ( s, a~ )  =  s s

.
  +  ã

.
  T

 a~ (45)

The first term on the r ight hand side of Eq.(45) can be

simplified using Eq.(34) as follows,

s s
.
 = s ( λ ( u

.
o
 + v

.
o
 + w

.
o
 ) + γ ( p

.
p
 + r

.
p
 ) + η ( p

.
b
 + r

.
b
 ) ) = s A

_
 b

(46)

where, A  ∈ ℜ1x21
 can be written as,

A
_
 = λ ∑ 

j = 7

9

  

A 

 −1
  j + γ ∑ 

j = 4,6

  

A 

 −1
  j + η ∑ 

j = 1,3

  

A 

 −1
  j (47)

[A
-1

]j denotes the j
th

 row of the matrix A
-1

 . The vector

b can be broken down into terms containing aerodynamic

forces and moments acting on the parafoil and another

vector b ∈ ℜ21x1
 as follows,

b  =  b
_
  +  



















0  ∈ ℜ
3×1

F
pA

0  ∈ ℜ
3×1

M
 pA

0  ∈ ℜ
 9×1



















(48)

Therefore from Eq.(46), it follows that,

s s
.
  =  s  










 A
_

 b
_

 + A
=

 











F
pa

M
 pa










    










(49)

where,

A
=

= [ [A]
4
   [A]

5 
  [A]

6
  [A]

10
   [A]

11 
 [A]

12
] ∈ ℜ

1x6
 .

Substituting aerodynamic forces and moments on the

parafoil from Eqs.(23) and (24),

A
=

 











F
pa

M
 pa










 = 

1

2
 ρ U

p

 2
 S

p
 A
=

 



















C
x

C
y

C
z

b C
l

c C
m

b C
n



















 = H
δa

 δ
a
 + H

β p
 β

p
 + H

o
 + h 

T
 a

(50)
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where,

H
δa

 = 
1

2
 ρ v

p

 2
 S

p
 A
=

 

























C
L

δa

 
w

p

U
p

 − C
D

δa

 
u

p

U
p

C
y

δa

− C
L

δa

 
u

p

U
p

 − C
D

δa

 
w

p

U
p

bC
l
δa

cC
m

δa

bC
n

δa

























(51)

H
β p

 = 
1

2
 ρ U

p

 2
 S

p
 A
=

 

















0

C
y

β p

0

bC
l
β p

0

bC
n

β p

















(52)

H
o
 = 

1

2
 ρ U

p

 2
 S

p
 A
=

 

























C
L
 (α

p
, δ

s
 ) 

w
p

U
p

 − C
D

 (α
p
, δ

s
 ) 

u
p

U
p

0

− C
L
 (α

p
, δ

s
 ) 

u
p

U
p

 − C
D

 (α
p
, δ

s
 ) 

w
p

U
p

0

cC
m

a c

 ( α
p
, δ

s
 )

0

























(53)

h 
T
 = 

1

2
 ρ U

p

 2
 S

p
 A
=

 



































0

0

0

p
p
b

2

2U
p

0

0

     

0

0

0

0

0

p
p
b

2

2U
p

     

0

0

0

0

q
p
c

2

2U
p

0

     

0

r
p
b

2U
p

0

0

0

0

     

0

0

0

r
p
b

2

2U
p

0

0

     

0

0

0

0

0

r
p
b

2

2U
p



































(54)

Substituting s s
.
 in time derivative of Lyapunov function

given in Eq.(45),

V
.
 ( s, a~ ) = s ( A

_
 b

_
 + H

δ a
 δ

a
 + H

β p
 β

p
 + H

o
 + h 

T
 a ) + ã

.  T
 a~

(55)

Control Law

Choosing a control law for the system,

δ
a
 = 

1

H
δ

a

 ( − A
_

 b
_

 − H
β p

 β
p
 − H

o
 − h 

T
 â − K

s
 s ) (56)

where, Ks is a strictly positive number and Hδ
a

  ≠  0. The

chosen control law is substituted in the time der ivative of

Lyapunov function to obtain the following,

V
.
 ( s, a~ )  =  − K

s
 s

2
 − s h 

T
 a~ + ã

.
  T

 a~ (57)

Adaptation Law

The above expression for V
.
 suggests that we take an

adaptation law of the following form,

ã
.
  =  s h (58)

The adaptation law when substituted in the time de-

rivative Lyapunov function yields,

V
.
 ( s, a~ )  =  − K

s
 s

2
  ≤  0 (59)
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It can be seen from Eq.(59) that the time derivative of

Lyapunov function is negative definite. Also, the condi-

tion of radial unboundedness, V ( s, a~ ) →  ∞ as | (s, a~ ) |→

∞ is satisfied. Hence, from the Lyapunov theorem of

global stability, the chosen control law is globally asymp-

totically stable. Since the unknown parameter vector a is

constant, the adaptation law can be alternatively written

as,

â
.
  =  s h (60)

The dependence of control input on estimated parame-

ter vector, â  allows it to be a part of the state vector of the

system. Therefore, the order of the system increases from

18 to 24 as,

X  =  

p

b
, q

b
, r

b
, p

p
, q

p
, r

p
, u

o
, v

o
, w

o
, φ

b
, θ

b
, ψ

b
, φ

p
, θ

p
, ψ

p
,




x

o
, y

o
, z

o
, Ĉ lp , Ĉ np

, Ĉ mq
, Ĉ yr

, Ĉ lr , Ĉ nr
, 


T

Actuator Model

The generation of parafoil trailing edge deflection

according to the control law provided in Eq.(56) requires

a servo actuator of appropriate control system and band-

width. A typical servo actuator input can be modelled as

a PD (proportional & derivative) system of the angular

deflection, given by,

u
act

 ( t )  =  K
D

 δ
.
 a  ( t )  +  K

P
 δ

a
 ( t ) (61)

where, KP and KD are propor tional and der ivative gains

respectively. If the desirable angular  deflection as a func-

tion of time is given by Eq.(56), it is clear from Eq.(61)

that we have a tracking control problem in hand. We can

write Eq.(61) in terms of tracking error, as follows,

u
act

 ( t )  =  K
D

 e
.
δ

a

( t ) + K
P
 e

δ
a

( t ) + K
D

 δ
.
 a

d

( t )  +  K
P
 δ

a
d

( t )

(62)

A combination of feedback and feedforward control

loops for the actuator input leads to the choice of following

actuator control law,

u
act

 ( t ) = K
D

 δ
.
 a

d

( t )  +  K
P
 δ

a
d

( t ) − K
e
 e

δ
a

( t ) (63)

where, Ke is a constant feedback gain. It can be noticed

that choice of an actuator control law of the form given by

Eq.(63) essentially reduces Eq.(62) to a first order linear

plant in terms of tracking error as state variable.

Results and Discussions

The simulation is carried out with the system specifi-

cations and aerodynamic coefficients given in Tables-1

and 2 respectively, taken from Prakash and Ananthkrish-

nan [5]. A nonlinear variation of the lift, drag and quarter

chord pitching moment coefficients for the parafoil-pay-

load system configuration of Prakash and Ananthkrishnan

[5] is shown in Fig.2. The three curves for each of the

longitudinal aerodynamic coefficient corresponds to zero

symmetric brake deflection (δs = 0
o ), half symmetric

brake deflection (δs = 45
o
 ) and full symmetric brake de-

flection (δs = 90
o
 ). The moment transfer in yaw direction

at the joint point is assumed to be taking place through a

spring-damper of damping coefficient, co = 50 and stiff-

Table-1 : Parafoil-Payload System Specifications

Parafoil Specifications

mp 5 kg

I p + I F

diag  











373.87

127.84

70.0










 kgm

2

AR 20

Sp 28 m
2

c 3.75 m

b 7.5 m

t 0.675 m

δs 30°

Load Specifications

mb 135 kg

I b

diag  











29.67

26.76

42.32










 kgm

2

Sb 0.5 m
2

CDb 1.05

Link Specifications

µ 9°

Rop 10 m

Rob 0.5 m

ko 0

co 50
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ness, ko = 0 so as to absorb the relative vibration between

the two subsystems.

The rigging angle, µ is taken to be 9°, as suggested by

Machin et al. [3] and later proposed by Prakash and

Ananthkrishnan as the optimal rigging angle for good

glide and flare characteristics for the current parafoil-pay-

load configuration. A constant symmetric brake deflec-

tion, δs = 30° is assumed throughout the controller

operational time of 100 s. Longitudinal aerodynamic co-

efficients are found as a function of parafoil angle of attack

for the assumed symmetric brake deflection by linear

interpolation of the three curves.

The trim and initial conditions for the simulation are

shown in Table-3. The small perturbations in the system

are assumed by taking initial conditions close to the trim

conditions. A generalized case is taken when there is

absolutely no knowledge of dynamic coefficients of the

parafoil, hence â (0) = {0, 0, 0, 0, 0, 0}
T
. The chosen

controller parameters are shown in Table-4. The controller

parameters however not optimal provide a decent regula-

tion profile to the system.

Simulation results are shown in Figs.3-5. It can be

observed in Fig.3 that the settling time of the angular

deflections of the system is about 40 s. The system attitude

is shown to be settling at the trim value in Fig.5. Fig.6

shows the time history of parafoil angle of attack and

sideslip angle. The steady state value of the angle of attack

and the sideslip angle is about 58.7° and 5.08° respec-

tively, with a peak value of about 60.16° and 7.02° respec-

tively.

The asymmetric brake deflection is shown in Fig.7(a),

reaches a steady state value of 0° as desired, in about 40 s.

Maximum asymmetric deflection is found to be about

-10.54°. It can be observed in Figs.1-7 that the state

Table-2 : Aerodynamic Coefficients Used in the

Simulation

Static Coefficients

(known)

Dynamic Coefficients

(unknown)

Cyβ p - 0.5443 Clp - 0.1330

Clβ p - 0.0802 Cnp - 0.0130

Cn β p 0.0286 Cmq - 1.864

CL δ a 0.235 Cyr - 0.0060

CD δ a 0.0957 Clr 0.0100

Cy δ a 0.1368 Cnr - 0.0350

Cl δ a - 0.0063

Cm δ a 0.294

Cn δ a 0.0155

Table-3 : Trim Conditions and Initial Conditions

Trim Conditions Initial Conditions

uotrim 4.70 m/s uo (0 ) 4.70 m/s

votrim 0.83 m/s vo (0 ) 0.83 m/s

wotrim 7.75 m/s wo (0 ) 7.75 m/s

pbtrim 0 deg/s pb (0 ) 0 deg/s

qbtrim 0 deg/s qb (0 ) 0 deg/s

rbtrim 0 deg/s rb (0 ) 0 deg/s

pptrim 0 deg/s pp (0 ) 0 deg/s

qptrim 0 deg/s qp (0 ) 0 deg/s

rptrim 0 deg/s rp (0 ) 0 deg/s

φbtrim 0° φb (0 ) 1°

θbtrim - 0.62° θb (0 ) - 0.62°

ψbtrim 10.9° ψb (0 ) 12.9°

φptrim 0° φp (0 ) 3°

θptrim - 34.26° θp (0 ) - 34.26°

ψptrim 10° ψp (0 ) 11°

Fox (0) - 1.035 x 10
4

Foy (0) 0

Foz (0) - 1.114 x 10
5

â (0) 


0, 0, 0, 0, 0, 0





T

Table-4 : Chosen Control Parameters

Control Parameters

λ 15

γ 1500

η 45

Ks 200
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variables as well as control input has an oscillatory time

profile before system reaches the steady state. Although

such oscillatory time profiles generally increases the set-

tling time, on the other hand causes low energy dissipation

in the system.

Figure 8 shows the frequency response of the asym-

metric deflection angle and actuator input, found by Dis-

crete-Fourier-Transform of the time signal given in Fig.7.

A dominant frequency of 0.8 Hz is observed along with

two other frequencies of 0.05 Hz and 1.625 Hz. The

actuator input frequency response sets a minimum limita-

tion on the choice of actuator control system hardware. In

a practical sense, the required bandwidth of the actuator

should be at least ten folds of the desired actuator fre-

quency. Based on the frequency content of actuator input

shown in Fig.8(b), it can be stated that the minimum

actuator bandwidth requirement is relatively smaller and

hence easier to implement.

It is evident from the system trajectory as shown in

Fig.9 that it follows roughly a straight line path to the

ground. Further, the time profiles of joint force and yaw

moment are also plotted as shown in Fig.10.

The Lyapunov global stability theorem guarantees the

global asymptotic stability of the system with respect to

the lateral disturbances. Note that the current method may

not necessarily estimate the unknown parameters, but

allows the error in state variables to converge to zero [10].

Conclusions

A Lyapunov based dynamic adaptive controller is

derived to handle the lateral disturbances in a 9 degree of

freedom parafoil-payload system with unknown dynamic

coefficients. The current approach closely resembles to the

flight control using nonlinear dynamic inversion (NDI).

However, the latter requires the knowledge of system

parameters, whereas the current approach has an advan-

tage of assuming a dynamic variable as a candidate for the

unknown system parameter. Hence, the dynamic variable

acts as a state variable which brings the system to its

desired state. In addition to this, the Lyapunov based

controller also guarantees global asymptotic stability of

the system. A 7.5 m span parafoil-payload system under

lateral disturbances is numerically shown to stabilize us-

ing the present adaptive controller. A relatively smaller

control input frequency observed during the simulation

will help in easier installation of the control actuator on

the system. The current simulation is carried out with

typical values of system parameters and initial conditions

giving a satisfactory time as well as frequency response.

However, in a situation of severe gusts the robustness of

the present control law is still needed to be checked.
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Fig.1 A Parafoil-Payload System

Fig.2 Longitudinal Aerodynamic DataFig.3a Parafoil Angular Rate
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Fig.3b Payload Angular Rate

Fig.4 System Velocity (or Joint Point Velocity)

Fig.5a Parafoil Attitude

Fig.5b Payload Attitude

Fig.6 Parafoil Angle of Attack and Sideslip Angle

Fig.7 (a) Asymmetric Brake Deflection and

(b) Actuator Input
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Fig.8 Frequency Response of (a) Asymmetric Brake

Deflection and (b) Actuator Input

Fig.9 Trajectory

Fig.10a Joint Force

Fig.10b Joint Moment
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