
SIMPLE MATHEMATICAL MODELS FOR THE DYNAMICS OF

SPACECRAFT WITH DEPLOYED SOLAR PANELS

Abstract

Most present day spacecrafts have large interconnected deployed solar panels having very

low natural frequencies. The control torque applied to maneuver the spacecraft sets up

transient oscillations in the spacecraft. The present work studies the nature of these interac-

tions. The spacecraft in orbit can be modeled as a free rigid mass with flexible elements

attached to it. It is shown that the oscillations of the spacecraft body are characterized by the

dynamic characteristics of the flexible panel even if the mass and mass moment of inertia of

the body is signifcantly higher than that of the flexible panels. A simple model consisting of an

Euler-Bernoulli beam attached to a mass can represents such a system. The infuence of various

parameters of the Euler-Bernoulli beam and the rigid element on the disturbances caused in

the rigid element are investigated. The characteristics are determined for a step and also for

a torque input. The responses are obtained in terms of nondimensionalised quantities. It is

demonstrated that using the simple model developed the responses of spacecraft body can be

easily obtained.
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Introduction

The escalation of power requirements in spacecraft has

led to the design of large solar panels. Since these panels

are very large they have to be stowed during launch and

are deployed in orbit. The natural frequencies of the de-

ployed solar panels are very low. In most of the present

day spacecraft, the desired maneuver of the spacecraft is

carried out by applying the required torque generated

through changing the speed of the momentum wheels. But

the low values of the natural frequencies pose difficulties

in maneuvering the spacecraft. The control torque required

is infuenced by the flexibility of the solar arrays. The

maneuvering of the spacecraft produces transient oscilla-

tions of the main body and hence induce disturbances in

the payload attached to it. In some specific applications

these disturbances should be less than 5 x 10
-5

 degree. The

issue becomes signifcant when one needs to maneuver the

spacecraft quickly and needs to carry out the payload

operations immediately.

The spacecraft in orbit can be considered as a free rigid

element attached with large flexible panels. Several inves-

tigations have been carried out on the stabilization of the

spacecraft after maneuver, assuming the satellite to be

rigid. Nohmi and Uchiyama [1] used a simplified model

of the spacecraft consisting of a rigid body and two flexible

appendages. Using the satellite model which is a rigid

central body with one or more flexible appendages, [2]

studied the interaction of the control system and flexible

panels during orbit transfer maneuver. A satellite model

based on a flexible Euler-Bernoulli beam connected to a

rigid core was analyzed by [3]. Using the assumed mode

method, the equations of motion were derived and re-

sponse of the system to the torque is obtained. Though

there are many studies reported on the dynamic behavior
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of the spacecraft in orbit, they focus on the interactions

between the flexible array and the attitude control of the

spacecraft. That is, the problem addressed is on the torque

to be applied to maneuver the spacecraft in the presence

of the flexible arrays. But studies on the response of the

spacecraft main body and its transient decay due to the

application of torque are seldom reported and this is ad-

dressed in this work.

A spacecraft in orbit with deployed solar array is

represented by a free rigid mass attached with flexible

panels. Response characteristics of the system for an ap-

plied torque are then obtained. It is shown that response of

the rigid mass is very much influenced by the dynamics of

the flexible panel. The above mathematical model is based

on the finite element method. To study the characteristics

of the system for its various parameters an analytical

model is preferred. A free beam with mass and inertia at

one end is used for this purpose. The beam represents the

solar panel and lumped mass and inertia represents the

spacecraft main body.

There are several studies reported on the dynamics of

a cantilever beam. Natural frequencies of cantilever beams

with tip mass was obtained by [4]. Exact frequency and

normal mode shape expressions are derived for generally

restrained Bernoulli-Euler beams with unsymmetrical

translations and rotations at either end [5]. Rao and Mirza

[6] obtained the eigen-frequencies and mode shape pa-

rameters for a wide range of restraint conditions for an

Euler-Bernoulli beam. Bhat and Wagner [7] studied natu-

ral frequencies of a cantilever with tip mass whose center

of mass is offset from the tip. The vibration problem of a

beam with an arbitrarily placed concentrated mass and

elastically restrained against rotation at either end was also

studied [8]. The effects on the eigen-frequencies of the

system on the ratios of the concentrated mass to the mass

of the beam, stiffness of the end spring to the stiffness of

the beam, and position of the mass to the total length of

the beam have also been studied. The vibration response

of a cantilever beam to a base excitation is obtained by To

[9]. Though there are numerous publications on the dy-

namic behavior of a cantilevered beam, there is hardly any

work reported on the dynamic response behavior of the

system in which a flexible beam is attached to a free rigid

mass and subjected to a torque.

In this work a simple model to represent the dynamic

behavior of the spacecraft in the orbit is developed. It

consist of a beam with tip mass and moment of inertia

which is in free-free condition and subjected to torque. The

response quantities are expressed in terms of the non-di-

mensional structural parameters so that these results can

be used for any combination of structural parameters.

Using this model dynamic behavior of the spacecraft body

are characterized. It is then demonstrated for a spacecraft.

In many practical examples, the flexible panels are present

on both sides of the rigid element. In the present study, for

the sake of simplicity, the beam is present only on one side

of the rigid element. Similar results can be obtained for the

system with two beams with a rigorous mathematical

treatment.

Transient Response of Spacecraft Due to Torque

The spacecraft consists of two panels attached to the

spacecraft main body as shown in Fig.1. The mass of the

spacecraft body is 646.1 kg. The axis system is shown in

Fig.2. The mass moments of inertia values are 212.2, 228.9

and 241.0 kg-m
2
, respectively, about X, Y and Z directions.

The mass and the mass moment inertia are lumped at the

center of mass. The torque is applied about the X-axis.

The flexible element is an array of two panels. It

consists of two rectangular panels each having dimensions

800 mm x 1450 mm. The panel is of sandwich construction

and a schematic view is shown in Fig.1. The panel is

connected to the spacecraft main body at two locations.

Two stiffeners are provided on the panel near the fixing

location to improve the bending sti?ness of the panel. Total

mass of the panel is 13.9 kg.

The finite element (FE) model of the system is shown

in Fig.2. The finite element model of the panel comprises

of 8 noded shell elements. Spring elements are used to

connect them. The mass of the system is 660 kg and the

mass moments of inertia values are 246.1, 257.4 and 252.8

kg-m
2
, respectively, about X, Y and Z directions.

Listed in Table-1 are the system and panel elastic

modes. The system modes refer to the natural modes of

the spacecraft with flexible solar panels. As such the first

six system natural modes are the rigid body modes. The

remaining are the system elastic modes. The panel elastic

modes refer to the elastic modes of the solar panels when

they are cantilevered. The first system and panel mode is

the natural mode in bending of the panel and the second

mode is the torsional mode. The bending mode of the

system is shown in Fig.2. From Table-1, the system first

and second mode frequencies are very close to the first two

frequencies of the panel. This is because of the large mass

and inertia of the spacecraft main body.
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The application of torque causes disturbance in the

spacecraft. The equations of motions are
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The torque is applied about the X direction at the center

of gravity of the spacecraft. In this case the center of

gravity of the spacecraft is at the boundary of the system

being analyzed. Since the force is applied at the boundary,

the equations of motion can be partitioned as
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Here b and i are the boundary and interior degrees of

freedom respectively. Response in terms of displacement,

velocities, and accelerations can be computed by solving

Eq.(2).

We determined the response of the system to a unit step

torque. A modal damping factor of 0.02 was used for the

calculations. The angular displacement of the main body,

without considering the rigid body modes, is shown in

Fig.3. The frequency of the oscillation is about 6.5 Hz,

which is the frequency of the fundamental mode of the

system. As discussed earlier, in this case, it is very close

to the fundamental frequency of the panel.

If the rigid body modes are included in the calculation,

the angular displacement will tend to infinity. But the

angular acceleration is expected to converge to the rigid

body angular acceleration which in this case is 0.004147

rad/s
2
. The angular acceleration of the spacecraft main

body is determined and given in Fig.4.

A typical torque applied in practice is as shown in

Fig.5. The torque is applied about X direction at the center

of gravity of the spacecraft. The angular displacement of

the main body about X without considering the rigid body

modes is shown in Fig.6. The angular acceleration of the

main body about  X is calculated considering the rigid

body modes. The response after 21 sec of the application

of the load is shown in Fig.7. The angular acceleration of

the main body, and hence the disturbances of the main

body, show transient decay that corresponds to the mode

of the flexible panel. It is expected that the transient decay

will be at the frequency of the fundamental mode of the

system. The result to be noted here is that though the rigid

system has a very high mass and mass moment of inertia,

the response of the rigid system is characterized by the

dynamics of the flexible panels attached to it.

Simple Models for Dynamic Behavior

The results presented above are based on typical values

for the structural properties of the system and it is based

on finite element model. The characteristics for any other

set of parameters can be obtained only by developing

corresponding finite element model. Therefore suitable

simple analytical model is preferred. The model consid-

ered here is an Euler-Bernoulli beam with a point mass and

inertia attached at one end. The system is free in space.

The beam represents the flexible panels and the lumped

mass represents the rigid satellite body characterized in

terms of its inertial mass and moments of inertia. The

model is shown in Fig.8.

It is to be noted that the subject of interest is the

response of the satellite body and not the panels. Therefore

it is thought to be adequate to represent the panel by a beam

representing the bending mode. Later the results will show

that accurate results can be obtained using such models. If

the dynamic responses of the panels are of interest then a

2D representation of the panels is necessary. The equa-

tions of motion of the system are presented first. Thereaf-

ter the natural frequencies of vibration together with the

natural mode shapes of the system are determined. They

are obtained for various values of normalized mass and

mass moment of inertia. The transient response for a unit

torque step function is determined. The variation in the

time-domain response to various mass and mass moment

of inertia ratios is studied to ascertain their effect.

Table-1 : Natural Frequencies of the System

Mode Natural Frequency (Hz)

System Panel

1 6.69 6.34

2 10.22 10.17

3 17.06 15.95

4 26.79 26.09
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Equations of Motion and Natural Modes

The beam has a flexural rigidity EI, mass per unit

length m and length L. A mass M0 having mass moment

of inertia I0 is attached to one end of the beam as shown

in Fig.8. The equation of motion is then

EI 
∂

4
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∂ x
4

 + c υ
.
 + m υ

..
  =  f ( x , t ) (3)

The boundary conditions at x = 0 are
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2
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(4)

and conditions that correspond to a free end are applied x

= L.

The characteristic equation of the eigenvalue problem

associated with Eq.(3) is obtained and variation of the

displacement at a particular instant can be obtained as

d
 4
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(6)

Solution of Eq.(5) is of the form

φ (x ) = A cos h  λx + B sin h  λx + C cos  λx + D sin λx , (7)

where φ (x ) is the eigen-function.

These boundary conditions at x = 0 and x = L yield a

set of four homogeneous equations in the four constants

A, B, C and D. The matrix representation of the system of

equations is
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which can be written as
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The non-trivial solution is obtained by equating the

determinant of the matrix in Eq. (9) to zero. That is

3 + r
4
 RU + cos h r ( (− 3 + r

4
 RU ) cos r

+ r (r
2
 R + 3U ) sin r ) + r (r

2
 R − 3U ) cos r sin h r = 0

(10)

Here R = 
3I0

m L
3
  is the ratio of the mass moment of

inertia of the right part to that of the flexible element and

U = 
M0

mL
  is the ratio of the mass of the rigid part to that of

the flexible element.

Equation (10) is a function of r and the roots of the

equation are evaluated using Mathematica


. The lowest

two roots are r1 = 0 and r2 = 0, which correspond to the

rigid body modes of translation and rotation. r3 = λ3L is

the first elastic mode frequency. Fig.9 shows the variation

of r3 for various values of mass ratio of the rigid part to

the flexible element U, and mass moment of inertia ratio

of the rigid part to the flexible element R. The results show

that for large values of U and R, the natural frequency

converges to the natural frequencies of the cantilevered

beam. This is an expected result and it confirms the

correctness of the present analysis. Also, these results help

in obtaining the natural frequencies for any value of the

structural parameter. Similar results are obtained for the

other modes but not presented here. For each value of r the

corresponding natural mode shapes are determined. The

following expression gives the mode shape function.
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Figure 10 shows the first elastic mode shape of the

beam for various values of ratios of mass and moment

inertia of the rigid part to the flexible element. The results

show that even for small values of U and R, the mode

shapes converge to the mode shapes of the cantilever

beam. For U = 0 and R = 0, the mode shapes are that of the

free-free beam.

Similar curves can be obtained for other modes too,

but not provided here for brevity. It is to be noted that the

natural frequencies correspond to the beam with a mass

and mass moment of inertia at the end and not with self

mass alone. The end mass and moment of inertia are

implicitly considered through boundary conditions.

Hence these modes satisfy orthogonality.

Orthonormalization of Modes

The natural modes are orthogonal. Due to the presence

of mass and mass moment of inertia at the end of the beam,

the orthogonality relations for the modes get altered. It is

to be noted that the orthogonality relation with respect to

the stiffness does not get modified but the one with respect

to the mass gets modified.

Let φi (x)  and φj (x)  be two different eigenfunctions

of the system [10]. Using the integral calculus and apply-

ing boundary condition the orthogonality relation can be

expressed as in Eq. (12).
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Orthonormalization of the right body modes requires

some discussion. The rigid body modes can be shown to

be of the form φ (x) = D1 + D2 x. For the rigid body mode

involving rigid translation, the eigen-function is A1 and

that involving rotation the eigen-function is B1 + B2x.

Since these modes should be orthonormal, we get
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A1 and B1 can be determined by normalizing with respect

to the mass
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Nondimensionalized Response to Force Excitation

The equations of motion of the beam with a transverse

vertically acting distributed force can be written as

E I υ′′′′ (x ) + m υ
..

 (x)  =  f (x , t) (19)

The solution is of the form

υ (x , t)  =  ∑ 

i = 1

∞

 a
i
 (t) φ

i
 (x ) , (20)

where ai(t) is the generalized co-ordinate and φi (x)  is the

mode shape. Using the orthogonality relations, Eq. (12),

the equation of motion of the beam with forcing term,

Eq.(3) becomes
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where pj (t ) = ∫  
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damping for the system [11, 12], we can write the equa-

tions of motion for the damped case as
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from which the response of the system in the generalized

coordinate can be determined. Subsequently, using

Eq.(20), the response of the system in the physical coor-

dinates can be obtained. When a large number of variables

are involved, non-dimensionalization of the parameters

help in expressing the results. It also helps in avoiding

computation for each new value of the physical parameter.

Therefore some parameters as well as the response quan-

tities are non-dimensionalized as described below. Let
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Let τ  =  ωc t  be the non-dimensionalised time and
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where ′  denotes derivative with respect to non-dimension-

alized time. Let x
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 be the non-dimensionalized spatial

coordinate and the modal vector can be written as
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 ). The non-dimensional displacement re-
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Hence the angular displacement in terms non-dimension-

alized parameter is
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Response to Unit Step Torque

Main interest of the present work is in the angular

motion of the rigid system subject to a torque loading. An

unit step torque is applied on the lumped mass and the

responses are determined. The torque can be expressed in

terms of the unit doublet function F-2, which is given by

[13].

F−2
  =  < x − a >

−2
(30)

This function has the value 0 for x ≠ a and the value ±
∞ for x = a. If the function given by Eq. (30) is multiplied

by the torque value M, it represents the intensity of the

equivalent distributed load. That is, the intensity of

equivalent distributed load is f (x, t).

f (x , t )  =  M  <  x  −  a > 
−2

(31)

from which the generalized force can be determined.

Figs.11 to 13 show the non-dimensionalized angular dis-

placements of the lumped mass for various values of U and

R. Modal damping factor of 0.02 is considered for all the

modes. The first three elastic modes are included in the

response estimation but the rigid body modes are not

included.
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The angular displacements of the lumped mass show

transient decay. The frequencies of these transient decays

are given in Table-2 for various values of U and R. They

are compared with the fundamental natural frequency of

the system. It can be seen that the response of the lumped

mass is a transient decay at the fundamental natural fre-

quency of the system. It was shown earlier that the funda-

mental natural frequency of the system is governed by the

fundamental natural frequency of the flexible panel. From

these results one concludes that the response characteristic

of the rigid element, though its mass and moment of inertia

is very high, is very much influenced by the dynamics of

the fundamental elastic mode of the flexible panel.

It is to be noted that the system has 6 rigid body modes

and the seventh mode is the elastic mode. The transient

decay will converge to the first elastic mode response.

Hence the response seen is not rigid body motion but it is

the elastic motion. During the elastic motion there is an

angular displacement of the mass attached at the end

causing the disturbances.

The angular displacement of the rigid element was

computed and given for three values of U and R. Similar

computations can be done for any value of U and R.

For a unit step torque, the angular acceleration should

converge to zero if the rigid body modes are not included

in the computation. Angular acceleration of the lumped

mass for U = 80 and R = 80 is shown in Fig.14.

When the rigid body modes are included in the com-

putation, the response should converge to the rigid body

angular acceleration of the system, which is solely decided

by the moment of inertia of the system. For a system

having U = 80 and R = 80, the angular acceleration is

expected to converge to 
0.037

m L
3

. The response characteristic

for U = 80 and R = 80 is shown in Fig.15.

All the above results confirm the correctness of the

mathematical model, numerical computation of the re-

sponse and the normalization procedure used.

Response to Torque Pulse

The responses are now obtained for a typical torque

pulse applied in practice. A simplified form of such a

typical torque pulse applied in practice is shown in Fig.16.

The response characteristics are expected to be de-

pendent on the pulse width τ. Therefore it is convenient to

non-dimensionalize the pulse width so that these results

can be used for any other similar forcing functions. Define

a parameter τn such that it is the ratio of pulse period to

the natural period of the fundamental mode of the beam.

A system with mass ratio U = 80 and mass moment of

inertia ratio R = 80 and a modal damping factor of 0.02 is

considered. Fig.17 show the non-dimensionalized angular

displacement of the rigid element for various values of τn

considering the first three elastic modes. Values of τn

considered are 0.5, 1.0, 2.0 and 100. When τn is very large,

that is the pulse width is very large compared to the natural

period of oscillation, the response contains three transient

decays. This is because the application of the positive

torque produces a transient decay which is followed by the

transient decay caused by the application of the negative

torque. Lastly the torque becoming zero produces another

transient decay. When τn is very small, that is the pulse

width is very small compared to the natural period of

oscillation, only one transient decay is seen. This is be-

cause by the time one oscillation is complete, the torque

goes to a zero value. A similar results given in Fig.17(d)

was obtained for a typical spacecraft as given in Fig.6. The

simplified model is very much a representation of the

problem in hand. For similar reasons, when τn is near

unity, the response contains only one transient decay term.

However, note that the response is quite significant when

τn is near unity. The above results are for values of U = 80

and R = 80. Similar results can be obtained for any value

of U and R.

Application to Spacecraft

The mathematical model developed in this work can

be very easily used to estimate the disturbances caused to

the spacecraft main body when it is subjected to a torque

without using a finite element model. This is demonstrated

for a spacecraft. The spacecraft considered in Section,

Transient Response of Spacecraft due to Torque is consid-

Table-2 : Frequency of Oscillation

System

Parameter

Frequency of

Oscillation

Natural

Frequency

U = 20

R = 20
3.651 ωc 3.650 ωc

U = 40

R = 40
3.588 ωc 3.584 ωc

U = 80

R = 80
3.548 ωc 3.550 ωc
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ered here. Correspondingly following properties are used

for the model. The mass of the beam is 13.7 Kg and length

of the beam is 1.75 m. The cross section is selected such

that the fundamental bending mode frequency of the beam

is 6.44 Hz. It is to be noted that the beam represents the

long flexible array and it has a natural frequency of 6.34

Hz as given in Table-1. The mass attached at the end is

646 Kg and the mass moment of inertia is 614 kg-m
2
.

These values correspond to those of the spacecraft body.

The parameter mass ratio U is 46.5 and the inertia ratio R

is 42.3. The first elastic mode is 6.44 Hz. The frequency

of the spacecraft is 6.69 Hz.

The angular displacement of the end mass, that repre-

sents the spacecraft body, is obtained for a torque as given

in Fig. 5. The computed angular displacement is shown in

Fig.18. Comparing with the results of the spacecraft as

given in Fig.6 it can be seen that the model developed

predicts the spacecraft behavior very accurately.

Conclusion

Transient response of a spacecraft main body to the

application control torque is studied. The results show that

the transient disturbances of the free rigid elements are

infuenced by the flexible element attached to it even

though it is having very high mass and mass moment of

inertia. A suitable simple analytical model that represent

the dynamic behavior of the spacecraft body is developed.

An expression for the response of the rigid element is

derived. The transient decay of the rigid element is at the

fundamental bending mode frequency of the beam. It is

seen that response of the rigid element is significantly

influenced by the dynamic characteristics of the beam.

Response characteristics of the system for a torque pulse

are then obtained. The dynamic disturbances are signifi-

cant when the excitation pulse width is close to the natural

period of the fundamental mode of the beam. Several

results are provided in non-dimensionalized form using

which the response of the rigid element can be directly

obtained for any value of structural parameters and exci-

tation pulse width. These results can be conveniently used

to determine the transient oscillations of the main body of

a spacecraft in orbit and subjected to a torque. This is

demonstrated for a spacecraft. The model developed al-

lows a quick and accurate estimation of responses.
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Fig.1 Schematic View of the System

Fig.2 First Elastic Mode of the System in Free-free Condition

Fig.3 Angular Displacement of the Main Body for an Unit

Step Torque

Fig.4 Angular Acceleration of the Main Body for an

Unit Step Torque

Fig.5 A Typical Torque Applied

Fig.6 Angular Displacement of the Main Body Due to the

Application of Typical Torque
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Fig.7 Angular Acceleration of the Main Body Due to the

Application of Typical Torque

Fig.8 Euler-Bernoulli Beam Mounted on a Free Rigid System

Fig.9 r3 = λ3L for Various Values of U and R

Fig.10 First Mode Shape

Fig.1 Angular Displacement of the Rigid Element for

U = 0 and R = 0

Fig.12 Angular Displacement of the Rigid Element

System for U = 20 and R = 20
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Fig.13 Angular Displacement of the Rigid Element for

U = 80 and R = 80

Fig.14 Angular Acceleration of the Rigid Element

Without Rigid Body Modes for U = 80 and R = 80

Fig.15 Angular Acceleration of the Rigid Element

With Rigid Body Modes for U = 80 and R = 80

Fig.16 A Typical Torque Applied in Practice
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Fig.17 Non-dimensional Angular Displacement of the Rigid Element for Various Values of τn : 

(a) τn = 0.5, (b) τn = 1, (c) τn = 2 and (d) τn = 100

Fig.18 Angular Displacement of the End Mass Due to the

Application of Typical Torque
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