
ANALYSIS OF FUNCTIONALLY GRADED PLATES AND SHELLS:

STRESS, BUCKLING AND FREE VIBRATION

Abstract

Finite element formulation for Functionally Graded Material (FGM) thin shells subjected to

Thermal and Mechanical loads are presented. The power law distribution model is assumed

for the composition of the FGM material along the thickness. A software program "COMSAP"

has been developed using Semiloof shell element formulation and validation checks are carried

out using the results available in the related literature. Results for stress, buckling and

vibration analysis of functionally graded shells are reported.
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Nomenclature

[A] = Extension stiffness matrix

[B] = Coupling stiffness matrix

[D] = Bending stiffness matrix

E = Young’s modulus

[fm] = Consistent nodal load vector due to mechanical

    load 

[fT] = Consistent nodal load vector due to thermal load

h = Thickness of shell

[H] = Strain matrix

[Q] = Reduced stiffness matrix of functionally

   graded material

[Ks] = Structural stiffness matrix 

[KG] = Geometric stiffness matrix

[M] = Mass matrix

M = Moment resultant

M
T

= Thermal moment resultant

N = Force resultant

N
T

= Thermal force resultant

po = Outer surface of shell made up of material 1

pi = Inner surface of shell made up of material 2

q = Nodal displacement

R = Radius of shell

V1 = Volume of material 1

V2 = Volume of material 2

∆T = Difference in temperature

α = Coefficient of linear thermal expansion

v = Poisson’s ratio

λ = Eigen value

ω = Natural frequency

Introduction

Functionally Graded Materials (FGM) are heterogene-

ous composite materials usually made from a mixture of

two different materials. The material properties of FGM

are graded continuously and are controlled by the variation

of the volume fraction of the constituent materials. FGM

have the advantage of their ability to withstand high tem-

perature gradients unlike fiber matrix composites, which

show mismatch of mechanical properties across the inter-

face of two discrete materials bonded together and result-

ing in de-bonding at high temperatures in some cases.

FGM are now being strongly considered as a potential

structural material for high-speed spacecraft, engine com-

ponents which encounter extremely high cyclic thermal

loads.FGM represent a rapidly developing area of Science

and Engineering with numerous practical applications in

nuclear projects, space projects and energy sector.
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Literature Review

Over the past years, extensive research has been car-

ried out on the modeling of FGM plates and shells [1-3].

The investigations were carried out in the existing litera-

ture for the stress, free vibration and buckling of FGM

plates, concluding that 3D analytical solutions for FG

plates are very useful than 2D plate theories. El-Abbasi

and Meguid [4] presented a new thick shell element which

accounts for thickness strain and stresses. Finite element

formulation for thermoplastic analysis of FG Plate and

shell were presented by Naghadabadi and Kordkheili [5],

using eight noded degenerated shell element. Arciniega

and Reddy [6] formulated shell element based on first

order shear deformation theory with seven parameter and

higher order lagarngian element. Pradyumna et. al [7]

presented formulation for geometric nonlinear transient

analysis based on higher order eight noded C° element

with nine degrees of freedom per node. Formulation of

cylindrical shell element based on classical shell theory is

given by Setareh and Mlsvandzibael [8] for FGM cylin-

drical shells.

From the literature review, it is found that very few

papers are available in this area of FEM for thin shells

subjected to thermo mechanical loading. In order to get

better accuracy of results for practical structures (thin

plates and shells) Semiloof shell element is preferred for

the analysis of structures, developed by Irons [9] thin

structures and also Semiloof shell element which is suc-

cessfully used for buckling, vibration, geometric non-lin-

ear analysis, non-linear vibration analysis for isotropic and

composite thin plate and shell [10-12], is extended to FGM

plates and shells.

Materials Modelling

FGM are microscopically inhomogeneous materials

made from a mixture of two different materials, the com-

position continuously varies such that the upper surface

(z=h/2) of the plate is material 1 whereas the lower surface

(z=-h/2) is material 2 as shown in Fig.1. The effective

material properties of Functionally Graded Materials P

can be expressed as 

P  =  p
o
 V1 + p

i
 V2 (1)

po  =  Temperature dependent properties of outer surface

of shell made up of material 1.

pi  =  Temperature dependent properties of inner surface

of shell made up of material 2.

V1 and V2 are volume fractions of material 1 and material

2 and related by

V1 + V2 = 1 (2)

For a shell with a uniform thickness "h" and a reference

surface at its middle surface, the volume fraction can be

written as

Vc  =  




2 z + h

2h





n

(3)

z - Distance in thickness direction

Where n is the power law exponent,

0 ≤ n ≤ ∞

p (z)  =  (p
o
 − p

i
 )  




2 z + h

2h





n

  +  p
i

(4)

Where po and pi are the corresponding properties of upper

and lower surface.

The material properties along the thickness of the shell,

such as Young’s modulus E(z), Poisson’s ratio ϑ(z) and

the coefficient of thermal expansion α(z), can be deter-

mined according to Eq. (4). With these material properties,

the stresses can be determined as
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[Q] - Reduced stiffness matrix

Where E(z), ϑ(z), α(z) and ∆T are the Young’s Modulus,

Poisson’s ratio, coefficient of linear expansion and tem-

perature referenced to the stress free state respectively.

The axial force N and the moment M can be calculated

using the following expression.
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

N

ij
 M

ij
  =  ∫  

−h ⁄ 2

 h ⁄ 2
 (1 , z ) σ

ij
 dz (6)

Hence we have

{N} = [A] {e}  +  [B] {k}  -  {N
T
}

And {M} = [B] {e}  +  [D] {k}  -  {M
T
}

In which [A], [B], and [D] matrices are extension stiffness,

coupling stiffness and bending stiffness respectively.

Where

{e} - strain vector

{k} - curvature vector

( [A], [B], [D] )  =  ∫ (
−h ⁄ 2

 h ⁄ 2
 1, z ,z

2
 ) [Q] dz (7)

And the thermal force N
T
 and the thermal moment M

T
 are

given by

{N
T
,M

T
} = ∫ [

−h ⁄ 2

 h ⁄ 2
 Q ] 




 α ( z ) 


 ∆ T ( 1 , z ) dz (8)

Finite Element Formulations

Semiloof shell element has all the advantages of

Isoparametric formulation and uses Isoparametric shell

theory and Discrete Kirchhoff Theory which can over-

come the locking phenomenon. The quadrilateral semiloof

shell element where the local coordinate system (X,Y,Z),

Isoparametric curvilinear coordinates system (R,S,T) is

illustrated in Fig.2. The semiloof element is first formu-

lated with 43 degrees of freedom, (d.o.f).

• Four corner nodes and four mid side nodes possessing

3 degrees of freedom (d.o.f) u,v,w along the global

x,y,z, direction respectively,

• Eight loof nodes, two on each side, located at the

Gaussian quadrature position (+1/√3, -1/√3) and hav-

ing two rotational d.o.f (θxz and θyz) along and perpen-

dicular to the edge respectively,

• 3 d.o.f u,v,w at the central node.

Of those, 11 are eliminated by Kirchhoff shear con-

straint, so that the final version of the element has 32 d.o.f

as follows.

• Four corner nodes and four mid side nodes possessing

3 d.o.f u,v,w.

• Eight loof nodes, having one rotational d.o.f θxz.

The geometry of the element is described by eight node

Serendipity-type shape function. The displacement vector

u [10] is given as

[u] = [d] [q] (9)

Where [q] - Nodal degree of freedom.

            [d] - Shape function

Finite Element Formulation for Stress

The Finite Element Formulation is based on minimi-

zation of the total potential energy. The total potential

energy Π of the functionally graded shell subjected to axial

load may be written as

Π  =  Σ
 m

 ∫  
1

2
  


e
k




T

  




A

B
   

B

D




 


e
k



 da  −  ∫ [ q ]

T
  [ d ]

T
 [ p ] da

−  ∫  


e
k




T

  







N
 T

M
 T










  da (10)





e
k



  =  [H] [q] (11)

Where [H] is the strain matrix [12, 13]. Substituting

Eq. (11) in Eq. (10)

Π = Σ
m

 ∫ 
1

2
 [q]

T
 [H]

T
 [C] [H] [q] da − ∫ [q]

T
 [d]

T
 [p] da

−  ∫ [q]
T
 [H]

T
  




N
 T

M
 T




  da (12)

Where [C]  =  




A

B
   

B

D




  and m - Number of elements (12a)

Differentiating the total potential energy with respect

to nodal displacement [q] and equating to zero gives

Σ
m

 ∫ [H]
T
 [C] [H] [q] da − ∫ [q]

T
 [p] da − ∫ [H]

T
  










N
 T

M
 T










  d a  =  0

(13)

[p] - Mechanical load vector
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[K
S
] [q] = [f

M
] + [f

T
] (14)

[fM] - Consistent nodal force vector due to mechnical load.

[f
M

]  =  Σ ∫ [d
T
] [p]  d a (15)

[fT] - Consistent thermal load vector.

[f
T
]  =  ∫ [H]

T
  




N
 T

M
 T




  d a (16)

[KS] - Structural stiffness matrix.

[K
S
]  =  Σ

m
 ∫ [H]

T
 [C] [H] da (17)

Finite Element Formulation for Buckling

The work done due to the prebuckling stress during

buckling is expressed as [10]

w  =  
1

2
 
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N
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 
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U

X

2
 + V

X

2
 + W

X

2 
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2 
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

+ 2N
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Y
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X
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Y
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X
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

 ) (18)
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w  =  
1

2
 [s]

T
 [P] [s] (20)

[s]
T
  =  [U

X
 , U

Y
 , V

X
 , V

Y
 , W

X
 , W

X
 ] (21)

[s]  =  [G] [q] (22)

[G] - Shape function matrix of displacement and its de-

rivative.

Substituting Eq. (22) in Eq. (20)

w  =  
1

2
 [q]

T
 [G]

T
 [P] [G] [q] (23)

The total potential energy for the buckling state can be

written as

π
 c

 = ∑ 

m

 ∫ 


1

2
 [q]

T
 [H]

T
 [C] [H] [q] + 

1

2
 [q]

T
 [G]

T
 [P] [G] [q]




 da

(24)

From the Eq.(24), Geometric Stiffness Matrix [13] can

be written as

[K
G

  =  Σ
m

  ∫ [G]
T
 [P] [G] da (25)

In order to establish the critical buckling state corre-

sponding to neutral equilibrium condition, the second

variation of the total potential energy must be equal to

zero.

Hence | [Ks] + λ [KG] | = 0 (26)

Where λ is the Eigen value which multiplies the ap-

plied load to give the critical buckling loads.

Finite Element Formulation for Free Vibration

The governing equation can be derived from the La-

grangian Equations,

d ⁄ dt (∂ L ⁄ ∂qi )  −  ∂ L ⁄ ∂ qi  =  0 ,   i = 1 , 2 , 3 (27)

Where L is the Lagrangian, defined as L = T - Π (28)

and T is the kinetic energy

The kinetic energy for an element is defined as

T  =  
1

2
 ρh ∫ u

.
2
 + v

.
2
 w
.

2
 da (29)

T  =  
1

2
 ∫ u

. 



T
 [p

 m
] 




u
. 


 da (30)

Where 



u
. 



T
  =  




u
.
 , v

.
 , w

. 



(31)

[p
m

] =  











ph

0

0

    

0

ph

0

    

0

0

ph










(32)

The vector u can be defined as
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


u
. 


  =  [d] 




q
. 



(33)

Substituting Eq.(330 in Eq.(30)

T  =  
1

2
 



q
. 



T
  [M] 




q
. 



(34)

Where mass matrix

[M]  =  ∑ 

m

 ∫  

[d]

T
 [p

m
] [d]


 da (35)

Applying the langrangian equation Eq.(27) the gov-

erning equation for the free vibration can be written as

[Ks]  [q]  −  [M]  [ 



q
. 


 ]  =  [0] (36)

Assuming harmonic oscillation the above equation can

be written as

[Ks]  −  ω
2
  [M]  [q]  =  [0] (37)

Where ω is natural frequency

Verification of the Program

The software package "COMSAP" developed by using

semiloof shell element formulated by Kari Thangaratnam

et al. [10-12] have the following capabilities.

• Mechanical and thermal stress analysis.

• Linear buckling analysis.

• Extended linear buckling analysis considers the pre-

buckling deformation.

• Nonlinear analysis to find out snap through and bifur-

cation buckling.

• Free vibration.

• Large amplitude vibration.

In this work, FGM material model is added and veri-

fied with exact solutions and existing FEM results.

FGM Plates Under Uniform Pressure

Figure 3 shows central deflection versus the volume

fraction exponent ‘n’ for FGM square plates under uni-

form pressure load [13]. The material properties Young’s

modulus and Poissons ratio for zirconia and aluminum are

Ez=151GPa, vz=0.3, Ea=70GPa, va=0.3 respectively. The

quarter of the plate is modeled with 3x3 mesh and sym-

metric condition applied. Comparisons of the exact values

with present results are very good.

Thermal Buckling of FGM Plate

FGM square plate composed of Alumina (Al2O3) and

Nickel (Ni) is subjected to uniform temperature rise with

clamped boundary condition [14]. The geometric parame-

ters used are aspect ratio, a/h=100, span a=1m. Critical

temperature for different volume fraction index obtained

is compared in Table-1 and good agreement is observed

between the two even for a coarse mesh 3x3.

Free Vibration of FGM Shell

Functionally graded cylindrical shell with length (L)

=20m, radius(R) =1.0 m thickness (h) = .002m is consid-

ered from Ref. [15]. Both the edges are simply supported.

Symmetric conditions prevail at the mid length and the

cylinder buckles in 2 circumferential full waves (mc=2)

and one axial wave (ma=1). Results of convergence study

are given in Table-2 and compared well with results from

Ref. [15].

Table-1 : Critical Temperature with Respect to

Volume Fraction Index

Volume Fraction

Index (n)

Critical

Temperature Ref

[14]

Critical

Temperature

Present Result

.3 28.21 27.47

1 30.56 29.78

5 34.17 35.93

Table-2 : Convergence Study of Vibration of

Functionally Graded Cylindrical Shell

(L/R=20., h/R=0.002, ma=1, mc=2)

Mesh

(Axial x

Circum-

ferential)

Frequency (Hz)

Present Value

at ma=1

Frequency (Hz)

at ma=1

Ref.{15}

% of

 Error

2 x 4 4.04 4.480 10.89

4 x 4 4.24 4.480 5.6

6 x 4 4.420 4.480 1.3
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Results and Discussion

For the analysis of shell material 1, 2 and 3 as in

Table-3 are used. The material properties are calculated at

room temperature (T=27°C) [16-18].

Shells Subjected to Uniform Pressure

A quadrant of the shell is considered based on the

symmetric conditions and modeled using 6x4 mesh. The

geometric parameters used are Length, L=1m, Radius

R=1m, Thickness h=.01m, angle θ=90° . The shell is

subjected to uniform pressure of 0.1kPa and the displace-

ment at centre of the shell is reported for different bound-

ary conditions such as clamped immoveable, clamped

movable and simply supported movable in Fig.4, Fig.5

and Fig.6 respectively.

It is observed that as the volume fraction increases, the

displacement also increases for the different boundary

conditions as the property changes from ceramic to metal.

The displacement varies as volume fraction increases from

0 to 2 and then the variation is less and it is due to the

variation of extensional and bending stiffness of the ma-

terial.

Shell Subjected to Temperature Load

A quadrant of the shell is considered for the symmetric

conditions and modeled using 6x4 mesh.The length of the

shell is L=1m, Radius R=1m, Thickness h=.01m. The

shell is subjected to linear temperature variation (0 to

100°C) through thickness and the displacements are stud-

ied for the two boundary conditions clamped moveable

and clamped immovable and given in Fig.7 and Fig.8. In

the case of thermally stressed shells, for materials 1, 2 and

3, the displacement increases as the volume fraction in-

creases and then decreases when n is equal to 5, whereas

for material 2 the displacement starts decreasing when n

is equal to 2. The variation of the moment resultant along

the length of shell is given for clamped movable shell in

Fig.9 and in Fig.10 for material 1 and 2 respectively for

different volume fraction index from n=0 to 5.The mo-

ment resultants increases locally, along the length up to

0.25y/L and thereafter decreases up to 0.1y/L and then

increases and remains constant after 0.3y/L for material 1

and 2 for all volume fractions. For material 1 the moment

resultants decreases as volume fraction index increases

from 0 to 2 and increases after n is 5 but for material 2 the

moment resultants decreases as volume fraction index

increases from 0 to 0.4 and increases after n is 0.8.

Buckling of Shells Under Axial Load

A quadrant of the shell is analyzed considering the

symmetric conditions and modeled using 6x4 meshes. The

Radius(R) of the shell 1cm, thickness (h) is 0.03 cm and

material 4 is used in this analysis. For various L/R ratios

buckling loads are calculated for simply supported (SS)

and clamped clamped (CC) boundary conditions and the

results are shown in Fig.11 and Fig.12. From the graphs it

is seen that the well known result buckling load decreases

rapidly as L/R ratio increases, since the slenderness ratio

increases as length increases. In all  above cases circum-

ferential wave (mc) is 2 and axial wave  (ma) varies from

13, 13, 11, 11, 9 and 9 for different L/R ratio 5, 10, 20, 30,

40 and 50 respectively for clamped clamped shells. For

simply supported shells circumferential wave (mc) is 2

and axial wave ( ma) varies 12, 11, 11, 8, 8 and 7 for

different L/R ratio 5, 10, 20, 30, 40 and 50 respectively.

Table-3 : Material Properties of the FGM Materials

FGM Material

Number

FGM Material E gpa v ρ (kg/m
3
) α ° C

Material 1

Ref [16]

Aluminum (Al) 70. 0.3 2707 23 x 10
-6

Zirconia (ZrO2) 151 0.3 3000 10 x 10
-6

Material 2

Ref [16]

Ti-6Al-4v 105.6 0.3 4420 6.94 x 10
-6

Alumina  (Al203) 320.2 0.3 3970 7.2 x 10
-6

Material 3

Ref [17]

Titanium (Ti) 105.8 0.3 4420 8.4 x 10
-6

Silicon Carbide (SiC) 410 0.17 3100 4.3 x 10
-6

Material 4

Ref [18]

Stainless Steel 207.78 0.31 8166 10.1 x 10
-6

Zirconia 168.04 0.2885 5700 10 x 10
-6
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Free Vibration of Cylindrical Shell

Natural frequency of a functionally graded shell  hav-

ing R=1 m, h=002 is considered. Material 4 is used for

analysis. Natural frequencies of a functionally graded shell

for various L/R ratios (5, 10, 20, 30, 40 and 50) for both

the simply supported and clamped - clamped boundary

conditions given in Fig.13 and Fig.14. In both the bound-

ary conditions natural frequency decreases rapidly as L/R

ratio increases. It is also noted that the natural frequency

decreases gradually as the material changes from zirconia

to stainless steel, since the Young’s modulus of zirconia

is greater than stainless steel and the Young’s modulus of

FGM is based on the volume fraction of the two materials

and lies in between them. For both boundary conditions

circumferential wave (mc) is 2 and axial wave (ma) is 1

for different L/R ratio.

Conclusion

The Finite element formulation using semiloof shell

element for functionally graded material modeling is pre-

sented. The accuracy of the numerical results is verified

with the existing results from the reviewed literature and

the results are agreeing well. The displacement under

uniform pressure load and thermal load are studied for

cylindrical shell. For the thermal load the displacement

behavior is different from mechanical load behavior and

it is influenced by the thermal force and moment resul-

tants, which is mainly due to the coefficient of thermal

expansion variation in constituent materials. For shells the

L/R ratio increases the buckling load and frequency de-

creases. From the results it is clear that constituent volume

fractions and configuration of the constituent materials

affect the natural frequency and buckling Load.
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Fig.1 Functionally Graded Plate

Fig.2 Semiloof Shell Element

Fig.3 Central Deflection of a Square Plate Under Uniform

Load

Fig.4 Displacement at Centre of Clamped Immoveable Shell

Under Uniform Pressure
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Fig.5 Displacement at Centre of Clamped Moveable Shell

Under Uniform Pressure

Fig.6 Displacement at Centre of Simply Supported Moveable

Shell Under Uniform Pressure

Fig.7 Displacement at Centre of Clamped Moveable Shell Un-

der Thermal Load

Fig.8 Displacement at Centre of Clamped Immoveable Shell

Under Thermal Load

Fig.9 Moment Resultant Along the Length of Cylindrical Shell

for Material1

Fig.10 Moment Resultant Along the Length of Cylindrical

Shell for Material2
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Fig.11 Buckling Load Against L/R Ratio (ma=1, h/R=20)

for Simply Supported Boundary Conditions

Fig.12 Buckling Load Against L/R Ratio (ma=1, h/R=20)

for Clamped Clamped Boundary Conditions

Fig.13 Natural Frequency Against L/R Ratio for

Simply Supported Boundary Condition

Fig.14 Natural Frequency Against L/R Ratio for

Clamped Clamped Boundary
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