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Abstract

It is very crucial for unmanned aerial vehicles to have autonomous obstacle detection and

avoidance capability for their survivability during flight. This paper proposes and validates

the application of extended Kalman filter for online obstacle position estimation with a vision

based sensor and the usefulness of this information with two recently developed guidance

algorithms for collision avoidance. The vision sensor is assumed to continuously sense the

environment in front of the vehicle during flight. In case any obstacle is detected, the

information from this sensor is then utilized in the filter to estimate the obstacle position online.

Simultaneously, the collision cone approach is applied to predict any potential collision in

future and, in case of a potential threat, to steer away the vehicle in order to avoid the collision.

This is done by first computing a suitable ‘aiming point’ towards which the velocity vector of

the vehicle must be aligned as soon as possible and then by using either of two recently

proposed guidance laws, namely nonlinear geometric guidance and differential geometric

guidance (which are identically same with appropriate gain correlation, but otherwise are

different) to achieve this objective. Exhaustive simulation studies show that this overall

strategy is fairly successful.

Introduction

Potential applications of Unmanned Aerial Vehicles

(UAVs) include reconnaissance, environmental monitor-

ing, border patrol, search and rescue operations, disaster

relief, traffic monitoring etc. Hence UAVs are expected to

be ubiquitous in the near future for both civilian as well as

military applications [1, 2, 3]. In many of these applica-

tions require the UAVs to fly at very low altitudes, and

hence, close to artificial and natural structures (e.g. build-

ings, towers, trees, power lines etc). This situation poses

a serious risk of a fatal collision resulting in mission failure

as well as vehicle loss. Hence autonomous reactive colli-

sion avoidance is a basic requirement for successful op-

eration of UAVs.

Collision avoidance can broadly be classified into

global and local path planning algorithms, both of which

need to be addressed in a successful mission. Where as

global path planning (which is mainly done offline)

broadly lays out a path that reaches the goal point, local

collision avoidance algorithms, which are usually fast,

reactive and carried out online, ensure safety of the vehicle

from unexpected and unforeseen obstacles/collisions. Re-

active collision avoidance is a problem of local path plan-

ning, where after sensing an obstacle that was not

accounted before in global path planning, the vehicle must

correct its flying path quickly to avoid the potential dan-

ger. An interested reader can see [16] for a comprehensive

review of various collision avoidance and path planning

algorithms proposed in the literature.

Since UAVs are usually small flying machines, there

are several critical issues that need to be addressed for

successful implementation of such an autonomous colli-

sion avoidance algorithm. First, any UAV should be as

light as possible, as otherwise it compromises the endur-

ance and maneuvering capability, thereby limiting the

UAVs effectiveness for many missions. Because of this

requirement, the payload of an UAV is severely restricted

by size and weight, and hence, the onboard power supply
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system (usually a battery) is very limited in its resources.

Due to this reason selection of the onboard processor is

usually done keeping in mind the fact that it must be power

efficient. This ultimately leads to the selection of energy

efficient processors, which are usually poor in their com-

putational efficiency. Moreover, since the vehicle must

keep on flying to sustain itself in air (which is especially

true for fixed wing UAVs), the computational time win-

dow is quite limited. Hence, any algorithm that needs to

be executed in the onboard computer must be computa-

tionally efficient [4]. Second, again due to size and weight

restrictions, obstacle sensing device must compact and be

light weight [1]. Third, military missions require stealth-

ness [5] i.e. such an UAV should not be detectable while

operating inside enemy aerospace. Additionally, to mini-

mize the overall cost, each component used in an UAV

should be as economic as possible.

Both stealthness as well as power efficiency require-

ment leads to the conclusion that the sensors employed

should be passive in nature. In view of these limitations, a

vision based sensor (video camera) is a very suitable

choice since it is compact, lightweight, economical, and

passive. Increasing computational power of small proces-

sors and consequent improvement in digital image proc-

essing are other motivations for applying vision based

sensing [6]. A major fundamental disadvantage of vision

sensing, however, is the lack of depth perception, which

in turn hinders its ability to perceive the world in three

dimensions. This is because, unlike other active sensors

(e.g. lidars) who rely on the reflected signal radiated from

itself, a vision sensor relied only on the in-coming signal.

In fact, getting a 3D perception of the world from the

sequence of 2D images that the camera receives is a

challenging problem for current computer vision systems

[7]. Hence a suitable algorithm must be applied in order

to estimate the depth of obstacles from 2D images. At the

same time, algorithm must be computationally efficient to

be implementable onboard UAV. In this paper, Extended

Kalman Filter (EKF) based estimation technique is ap-

plied for this purpose. An important advantage of EKF is

that it is recursive in nature hence it can be implemented

online efficiently [8]. Moreover, it is a proven technique

which has been applied successfully in a large number of

complex practical problems. On the other hand, EKF is

also "fragile" (i.e. it operates successfully only within a

narrow band of tuning parameters), and hence good care

must be taken for selecting its tuning parameters.

After estimating the obstacle position, the next logical

step is to predict whether it is a critical one and, in case of

any potential threat, to steer away the vehicle to avoid any

potential collision. This requires a suitable collision predi-

cation as well as an appropriate guidance logic. Among

various guidance logics available in the literature [16], an

interesting minimum effort guidance (MEG) law based on

optimal control theory is proposed in [9] for reactive

collision avoidance. However, reactive collision avoid-

ance problems do not necessarily have minimum effort

requirements. Additionally MEG distributes the control

effort over the available time period and causes vehicle to

maneuver until the aiming point, which can lead to safety

ball intrusion, which can be quite risky given the fact that

obstacle position is not known with absolute certainty. In

this paper, two recently developed nonlinear guidance

laws, named as Nonlinear Geometric Guidance (NGG)

and Differential Geometric Guidance (DGG), are incorpo-

rated for guidance purpose. For the details about these

guidance laws one can refer to [11]. These guidance laws

first apply collision cone approach [12] to detect any

potential collision and then compute an alternate aiming

point in order to avoid it if necessary. The main feature of

both guidance algorithms is that they align the velocity

vector of the vehicle along the aiming point within a part

of the available time-to-go i.e. these guidance laws pro-

duce higher control at the beginning itself. Therefore,

there is no need to maneuver all the way until the aiming

point is reached. These strategies ensure the quick reaction

and safety of the vehicle. After avoiding the obstacles, the

destination serves as final aiming point and hence the same

guidance is applicable when UAV path is obstacle free.

Hence, these guidance laws accomplish both obstacle

avoidance and destination seeking. Note that this falls into

the Level-4 of the autonomous mission control levels as

discussed in a recent review paper [17].

Problem Formulation of Obstacle Position

Estimation

Modeling of UAV Motion and Vision Sensor

In Fig.1, let FI be an inertial reference frame. The

origin of frame FI is fixed by the UAV’s initial position.

The axes of FI are parallel to the that of UAV body frame

FU. Without the loss of generality, it is assumed that

camera is fixed at UAV’s center of mass. The position of

UAV is known with a reasonable certainty with the help

of GPS and/or INS [13] in the frame FI. Let

X = [x  y  z]
T
 is UAV position vector, V = [u  v  w]

T
is

UAV velocity vector, and a = 

ax  ay  az

 T
 is UAV control

(acceleration) input in reference frame FI. The UAV mo-

tion dynamics are modelled as X
.
  =  V  and V

.
  =  a. The
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velocity along X-axis is considered to be constant i.e.

ax = 0.

Let  Xob  =  

xob  yob  zob

T
be the obstacle’s position in

FI, then X
.
ob

 = 0  i.e. obstacle is considered stationary.

From Fig.1, the state vector Xr = 

xr  yr  zr

T
, position of

the obstacle in frame FU can be written as Equation (1).

X
r
  =  X

ob
  −  X (1)

Since  X
.
ob

  =  0 , the relative motion dynamics of ob-

stacle will be X
.
r
  =  − X

.
.

X
.
 r

 = 

x
.
r
  y

.
r
  z

.
r

 T
  =  


u

r
  v

r
  w

r

 T
(2)

Figure 2 shows the problem geometry. Here f is focal

length of the camera and Yk  =  

yk

 i
   zk

 i


 T

is the locus of the

obstacle projection on the image plan at time instant k. The

relationship between output Yk and state vector Xr, can be

easily shown from Fig.2 as Equation (3). Note that output

equation is a nonlinear function of the state vector Xr.

Additionally measurement noise vk is also present. With-

out loss of generality it is assumed here that the camera is

laced at the centre of gravity (CG) if the vehicle. When the

camera is placed near the nose of the aircraft (which is

usually the case), the distance between the CG of the

aircraft and camera CG shall be used during transforma-

tion.

Y
k
  =  











y
k

 i

z
k

 i










  =  

f

x
r
 (k)

  











y
r
 (k )

z
r
 (k )










  +  v

k
(3)

However, Equation (3) can lead to singularity since

state element xr appears in denominator. It is very likely

that at some point xr  →  0 i.e. when UAV crosses the

obstacle on X-axis. Moreover, in our experience estima-

tion errors do not convergences properly with nonlinear

output equation while applying EKF. These issues an be

avoided if Xr is defined in spherical coordinate system as

Equation (4) instead.

X
r
 (k )  =  


r
r
 (k )   θ

r
 (k )   φ

r
 (k )



 T
(4)

Here rr is range, θr is azimuth and φr represents eleva-

tion of obstacle. The locus of obstacle projection on image

plane is measured in terms of angles θi
 and φi

 as shown in

Fig.3. So output equation becomes a linear function of the

state vector. Another advantage of having a linear output

equation is that C matrix becomes a constant. It saves

significant computational load since C can be pre-stored

and there is no need calculate C during each iteration.

Y
k
  =  











θ
k

 i

φ
k

 i










  =  





0      1     0

0      0     1




  

r
r
 (k )   θ

r
 (k )   φ

r
 (k )



 T

Y
k
  =  





0      1     0

0      0     1




  X

r
 (k ) (5)

Relative Obstacle Motion Dynamics in Spherical Co-

ordinate Frame

The relationship between Cartesian and Spherical co-

ordinates of obstacle in frame FU can be given by the

following sets of equations.

r
r

 2
  =  x

r

 2
 + y

r

 2
 + z

r

 2
(6a)

tan θ
r
  =  

y
r

x
r

(6b)

tan φ
r
  =  

z
r

√ x
r

 2
 + y

r

 2
(6c)

x
r
  =  r

r
 cos θ

r
  cos φ

r
(7a)

y
r
  =  r

r
 sin θ

r
  cos φ

r
(7b)

z
r
  =  r

r
 sin φ

r
(7c)

Differentiating Equation (6a) and substituting Equa-

tions (2) and (7)

r
.
r
  =  u

r
 cos θ

r
  cos φ

r
 + v

r
 sin θ

r
 cos φ

r
 + w

r
 sin φ

r
(8)

Similarly differentiating Equation (6b) and substitut-

ing Equations (2) and (7)

θ
.
 r  = − 

sin θ
r

r
r
 cos φ

r

 u
r
 + 

cos θ
r

r
r
 cos φ

r

 v
r

(9)

AUGUST 2012 DYNAMIC ESTIMATION OF OBSTACLE OF UAVs 189



Finally differentiating Equation (6c) and substituting

Equations (2) and (7)

φ
.
 r  = − 

cos θ
r
 sin φ

r

r
r

 u
r
 − 

sin θ
r
 sin φ

r

r
r

 v
r
 + 

cos φ
r

r
r

 w
r

(10)

Equations (8), (9) and (10) constitute the dynamics of

the state vector defined in Equation (4).

                               u
r
 cos θ

r
  cos φ

r
 + v

r
 sin θ

r
 cos φ

r
 + w

r
 sin φ

r
        

X
.
 k

  =  













r
.
r

θ
.
  r

φ
.

r













  =                      − 
sin θ

r

r
r
 cos φ

r

 u
r
 + 

cos θ
r

r
r
 cos φ

r

 v
r

(11)

                            − 
cos θ

r
 sin φ

r

r
r

 u
r
 − 

sin θ
r
 sin φ

r

r
r

 v
r
 + 

cos φ
r

r
r

 w
r
        

X
.
 r   =  f (X

r
 ) (12)

Here f (⋅) represents the nonlinear dynamics of state

vector Xr.

Vision Based Position Estimation Using EKF

This section presents the details of EKF implementa-

tion. The objective is to estimate the state vector Xr  de-

fined in Equation (4) based on output Yk  given by

Equation (5).

Dynamics of State Vector and Process Noise

The system dynamics given by Equations (12) is re-

written to accommodate the process noise as Equation

(13).

X
.
 r   =  f (X

r
 ) + G (t ) w (t ) (13)

here G(t) is process noise influence matrix and w(t) is zero

mean Gaussian noise with covariance given by Equation

(14) [14]. The process noise in each state element is

considered independent of each other hence process noise

influence matrix will be unity i.e. G(t) = I.

            E [w (t ) ]  =  0

E w (t) w
 T

 (τ )  =  Q (t ) δ (t − τ ) (14)

Measurement Noise Model

It is assumed that measurement noise is zero mean

Gaussian process having properties given by Equation

(15) [14].

        E [v
k
 ]  =  0

E 

v

k
 v

j

 T


  =  R

k
 δ

k − j
(15)

      E 

w (t ) v

k

 T


  =  0

Another assumption is that the magnitude of the meas-

urement noise is a function of obstacle range i.e. higher

the distance between the sensor and the obstacle, higher

will be the measurement uncertainty. It is a reasonable

assumption since closer you get to an obstacle, better is

the quality of the visual information obtained. Based on

this philosophy, a nonlinear function of range has been

devised to calculate the measurement noise covariance.

m
k
  =  m

o
 (1 − δ

 r
r
 (k )

) (16)

here mk is the percentage noise at time instant k, mo

represents the initial percentage measurement noise

rr (k ) is the range of the obstacle at time instant k, and δ

is a tuning parameter, which defines how mk changes with

change in rr (k ). Moreover, based on nature of visual

sensing, it is assumed that mk changes slowly for higher

range value and drops quickly for lower values of range.

Fig.4 shows variation in mk with range from zero to 500

meters for mo = 20 and δ = 0.99. The measurement noise

covariance is given by Equation (17).

R
k
  =  




m

k
 

w
v

100
  ×  

1

3





2

(17)

here wv  is the angular width of camera’s field of view.

Here it is assumed 120° on both horizontal and vertical

axis. The whole expression inside the bracket represents

the standard deviation of the measurement noise. Since

noise is normally distributed, above equation insures that

measurement noise will be bounded by mk or 3σ for almost

all of the cases.
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Initialization and Pre-Run of the EKF

• Initialization of State Vector : For initialization pur-

pose, range of obstacle is assumed known with 50%

uncertainty. Following equation shows initialization of

state vector.

X
^

  r

 (0)  =  

r̂
r
 (0)   θ̂

r
 (0)   φ̂

r
 (0)



T
(18)

here r̂r (0) is known as 50% error. The domain of initial

obstacle range (rr (0) ) is between 300 to 500 meters while

r̂r (0) is initialized as a randomly selected value within

±50% of the rr (0). Other state elements θ̂r (0) and φ̂r (0)

are initialized with the very first measurement from vision

sensor.

• Initialization of Error Covariance Matrix : Based on

known initial uncertainty in range estimation and initial

measurement noise, Po is initialized as the following

diagonal matrix :

P
o
  =  diag  









a1
 e

R

 2
  a

2
 




m
o
 × w

v

100





2

  a
3
 




m
o
 × w

v

100





2








 (19)

here eR is the maximum range measurement uncertainty

(in meters), mo is initial measurement noise a1 , a2 and

a3 are scalar parameters, which needs to be tuned (Section

- Tuning of EFK). wv  is camera’s width of view (in

radians) defined earlier.

• Pre-Run of EKF : It is highly recommended that EKF

runs sufficiently before its actual application so that

initial error can be stabilized [14]. Hence we start EKF

10 seconds before applying any control in order to

avoid it. It is assumed that obstacles are detected, by

video sensor and image processor, sufficiently ahead

of time. The UAV remains on its original global path

during pre-run period. After that, it reinitializes Po

again as Equation (19) and X̂r (0) as the average of all

previous estimates. Before performing the averaging

operation, it is necessary to project all the estimates to

the same time since all estimates are taken from differ-

ent UAV positions during different time instants. So

first all estimates made during pre-run are converted

from Spherical to Cartesian system. Then these esti-

mates are transferred to reference frame FI  from FU

by Equation (20) (Fig.1). Then we average all projected

estimates in FI  as Equation (21). Finally we reinitialize

the X̂r (0) by converting averaged estimate back from

FI to FU   and then from Cartesian to Spherical system.

X̂ ob
 (i)  =  X (i) + f

sph

 cart
 

X̂ r  (i)  


(20)

X̂ r  (0)  =  f
cart

 sph
  





















1

N
  ∑ 

i = 1

N

 X
^
  ob (i)    










 − X (N )










(21)

here fsph
 cart

 represents the function which converts coordi-

nates from spherical system to Cartesian system, similarly

fcart
 sph

 converts Cartesian coordinates into the spherical co-

ordinates. X(N) is the UAV position in FI at the end of the

pre-run. N is the number of estimations made by EKF

during pre-run.

Propagation of State and Error Covariance

Based on the system dynamics derived in Section-

Relative Obstacle Motion Dynamics in Spherical Coordi-

nate Frame, the states are propagated as Equation (22).

X
^
 r   =  f (X^ r ) (22)

The propagation of error covariance matrix or the P

matrix is given as Equation (23).

P
.
(t)  =  A(t) P(t) + P(t) A

T
 (t) + Q (23)

here A(t)  =  
∂ f

∂ X r

 |
X
^
  r (t)

 .

Updation of State and Error Covariance

Once the measurements arrive, EKF updates the pre-

viously propagated state and error covariance based on the

current measurements. First Kalman Gain is computed as

Equation (24).

K
k
  =  P

k

 −
 C

k

 T
  



C

k
 P

k

 −
 C

k

 T
 + R

k





 −1

(24)

here Ck = 




∂ h

∂ Xr





 | 
X
^

r

 −
(k)

 = 




0      1     0

0      0     1




 (constant)  and Rk

is measurement noise covariance given by measurement
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noise model described earlier. The state vector and error

covariance matrix are updated according to Equations (25)

and (26) respectively.

X
^

r

  +
(k) = X

^

r

  −
(k) + K

k
 



Y

k
 − h  




X
^

r

  −
(k)






(25)

P
k

 +
  =  (I − K

k
 C

k
) P

k

 −
 (I − K

k
 C

k
)
 T

 + K
k
 R

k
 K

k

 T
(26)

Smoothing of Estimate

Sometimes due to momentarily high measurement

noise, state estimate fluctuate. These fluctuations can pro-

duce large associative control accelerations since it is a

closed loop system. This can severely destabilize the

whole system. To avoid that, it is better to smooth the new

estimate with respect to the previous estimates i.e. instead

of using the current estimate only for guidance purpose,

first take the average of current estimate with few previous

estimates and then apply the guidance according to the

averaged or "smoothed" estimate. The smoothing opera-

tion performed as following :

X
_̂

  ob
 (i)  =  

1

n
      ∑ 

i = k − n − 1

k

    

 f

sph

 cart
  

X
^
  r (i)  


 + X (i)


(27)

here n is the number of previous estimates used for

smoothing operation (n = 10 in our case), X
_̂
  ob

 (k) is

smoothed estimate and X
_̂
  r

 (k) original estimate at time

instant k. The value of n is set at a low number because

position estimations get better as UAV gets closer to the

obstacle. Hence only recent estimates are considered for

smoothing operation.

Tuning of EKF

After developing the whole EKF, its tuning is the final

step. Tuning of EKF requires proper selection of parame-

ters Q, Po and Rk. As stated earlier, EKF is fragile in nature

i.e. it works well only for a narrow band of Q, Po and R

parameters [14]. Hence tuning of EKF should be done

carefully.

Since we are using a range dependent measurement

noise model, parameter Rk is fixed by measurement noise

model given by Equation (17). The Rk is given by follow-

ing formula :

R
k
  =  diag  








m

k
 

w
v

100
  ×  

1

3





2

   



m

k
 

w
v

100
  ×  

1

3





2




(28)

P(0) is selected by some prior information about error

in initial estimation of state. This knowledge can be em-

pirical or can be an educated guess. It is given by Equation

(29).

P
o
  =  diag  









a1
 e

R

 2
  a

2
 




m
o
 × w

v

100





2

  a
3
 




m
o
 × w

v

100





2








 (29)

here eob is the maximum range estimation uncertainty for

obstacle being estimated (assumed known). a1 , a2 and

a3 are scalar parameters, which are tuned to following

values through trial and error.

a
1
  =  1   a

2
  =  2   a

3
  =  2

The process noise covariance Q set to :

Q  =  diag  (0.2   0.025   0.025) (30)

here the diagonal elements of Q matrix are selected

through trial and error method. First diagonal element of

Q matrix represents the process noise covariance (in me-

ter) for the range elements of the state vector. Similarly

second and third diagonal elements represent the process

noise covariance for angle elements (in radians) of state

vector. The entire estimation algorithm can be found in a

step by step form in Appendix.

Guidance of UAV Using Vision Information

Once the obstacle position is estimated, the objective

reduces to applying the guidance to navigate the UAV

around it.

Collision Cone Philosophy

The first task is to finding out whether obstacle is

critical i.e. if collision with obstacle is imminent. For that,

first we apply the Collision Cone approach [12]. The

collision cone is an effective toll for :

• Detecting an incoming collision

• Finding an alternate direction of motion in order to

avoid the collision

The construction of the collision cone is shown in

Fig.5. A spherical safety boundary of radius d is con-
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structed around the obstacle. An obstacle is considered to

be critical if the UAV is expected to violate the safety

boundary in future. Since the collision cone approach

operates in two dimensions, the plane containing Xr and V

is considered for constructing the cone. The safety sphere

thus reduces to a circle β in this plane. A collision cone is

constructed by dropping tangents from the UAV to the

circle β. If the velocity vector V lies within the collision

cone, the UAV will violate β in due course and result in

collision. Thus the obstacle is said to be critical. The

collision criterion can be stated as, if a > 0 AND b > 0, the

obstacle under consideration is said to be critical. The

aiming point is determined in the following way :

if   a > b ,  X
ap

  =  X + r
1

if   b > a ,  X
ap

  =  X + r
2

(31)

Note that if obstacle is not critical then destination

serves as the aiming point. Further explanation on colli-

sion cone approach can be found in [11, 12]. After fixing

the aiming point, Fig.6 shows the geometry of the resultant

guidance problem. The objective is to align the VAV

velocity vector V in the direction of aiming point Xap i.e.

eliminating the angle θ. This 3D problem can be seen as a

combination of two separate 2D problems in the XY and

XZ planes. The guidance objective can be restated as to

generate control accelerations ay and az so that v → v
∗
and

w → w
∗
respectively within available fraction of the tgo.

Nonlinear Geometric and Differential Geometric

Guidance

The Nonlinear Geometric Guidance (NGG) [11] law

is as follows :











a
y

a
z










  =  











k̂
v
  sin  θ

y

k̂
w

  sin  θ
z










(32)

Thus, the control is a nonlinear function of the aiming

angle θ. An advantage that immediately presents itself is

that the range of the sine function is [-1, 1] whereas the

range of θ is [ − ∞ , ∞]. This indicates that the acceleration

in NGG is always bounded, provided k̂v  is bounded.

The nonlinear Differential Geometric Guidance

(DGG) [11] is based on Dynamic Inversion (DI) [15], a

control strategy used for output tracking of nonlinear

systems. The main advantage of DI is that it essentially

guarantees global asymptotic stability with respect to the

tracking error. The DGG law is given as Equation (33).











a
y

a
z










  =  











− k
v
  (v − v

∗
)

− k
w

  (w − w
∗
)










(33)

The constant kv and kw are designed such as the settling

time (i.e. the time taken to align the velocity vector with

the aiming line) is inversely proportional to the tgo. To

make these guidance laws more realistic, a limit of ± 20

m/s
2
 is applied for both control accelerations.

The DGG is equivalent to the NGG, if its control gains

kv and kw are set as given by Equation (34) and (35) [11].

With these gain settings for DGG, the controls generated

by it will be exactly same as controls generated by NGG.

Since both guidance strategies are directly correlated, the

NGG also guarantees the global asymptotic stability.

Mode  details  on  these guidance laws can be found in

[11].

k
v
  =  k̂

v
  




u

√u2
 + v

2
 √u2

 + (v
∗
)
2
 




(34)

k
w

  =  k̂
w

  




u

√u2
 + w

2
 √u2

 + (w
∗
)
2
 




(35)

Simulation Results

Test Environment

The simulations are conducted in two scenarios,  Sin-

gle Obstacle with Destination Estimation and Two Obsta-

cles with Destination Estimation in 3D separately for each

of the guidance strategy. The simulations involves a finite

space with one or two point obstacles with pre-selected

safety sphere radius. The position of the obstacle is ran-

domly chosen in each simulation run while making sure it

obstructs the path of the UAV. The origin and destination

are chosen randomly with distance about 600m between

them. Obstacles and Destination are located about 100m

from each other. Fig.7 shows the UAV trajectory in two

obstacles case with DGG guidance. Fig.8 shows the XY

and XZ views of UAV trajectory with phases of the

algorithm, while Fig.9 and 10 show the control output

generated by DGG strategy in terms of g (gravitational

acceleration). The initial velocity of the UAV is also
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chosen randomly between limits given by Equation (36)

(in meters per second).

   5  ≤  u  ≤  20
− 5  ≤  v  ≤  5
− 5  ≤  w  ≤  5 (36)

The Process noise is generated with covariance given

by Equation (30) and added to the UAV’s position X

during each iteration of the simulation run. Similarly to

simulate the measurement noise, normally distributed ran-

dom noise generated with covariance given by Equation

(28) and magnitude given by Equation (16) and added to

the real values of the relative obstacle position while

taking the measurements. Note that since both DGG and

NGG are directly correlated and equivalent to each other

with proper gain settings, results are presented inde-

pendently with no gain correlation.

EKF Validation Check

It is important to perform the consistency check while

using EKF [8]. Sigma bound test is one such test which

checks whether EKF is behaving close to what is theoreti-

cally expected. During the simulation runs of system,

sigma-bound test was also performed in order to check if

error in state estimates lies within the standard deviation

given by the error covariance matrix P. With each simu-

lation run, Sigma bound test was performed i.e. estimation

error in state element is compared with the square root of

the corresponding diagonal element of the P matrix. At the

same time estimation errors are also compared with two

times and three times of the error standard deviation.

Following Figs.11 and 12 show the Sigma-bound test for

obstacle 1 and obstacle 2 position estimation for UAV

flight shown in Fig.7 respectively.

Success Criterion

The success of the algorithm was tested on three crit-

erions :

• Violation of the safety sphere

• Divergence from the safety sphere

• UAV’s destination miss distance

Important thing to note here is that while our primary

objective is to avoid the obstacle, at the same time UAV

should not diverge too much from its path in the process.

If the estimate of the obstacle position is reasonably good

then UAV’s closet approach with the obstacle should be

roughly equal to the radius of the safety sphere, since

obstacles appear almost at the direct path between start

point and destination. Both, too much violation of safety

sphere and too much divergence from it, indicate that

obstacle position estimates were not good enough. Based

on these success criterions, different segments of success

are created defined by the band of the closet approach of

the UAV with obstacles and destination. These segments

of success are named as S-1, S-2, S-3, S-4 and S-5 where

each increment represents slightly relaxed success condi-

tions i.e. width of the tolerable closest approach band is

increased so S-1 represents the strictest conditions while

S-5 represents most relaxed case. These conditions are

described in Table-1.

Results : Single Obstacle with Destination Estimation

A total of 1000 simulation runs performed in order to

test the effectiveness of both DGG and NGG laws while

estimating the obstacle and destination position with EKF.

Based on the success criterion described earlier, following

Table-2 shows the percentage of successes with the DGG

and NGG guidance strategies.

Figures 13 and 14 show the UAVs closest approach

with obstacle as the percentage of the safety sphere radius

with DGG and NGG guidance respectively.

Two Obstacles with Target Estimation

A total of 1000 simulation runs performed in order to

test the effectiveness of both DGG and NGG laws while

estimating the obstacle and target position with EKF.

Based on the success criterion described earlier, following

Table-1 : Different Success Bands

Success

Band

Tolerable

Safety Sphere

Violation 

(as % of the

Safety Sphere

Radius

Tolerable

Divergence

from Safety

Sphere 

(as % of the

Safety Sphere

Radius)

UAV’s

Destination

Miss

Distance 

(m)

S-1 10% 10% < 10

S-2 20% 20% < 10

S-3 30% 30% < 10

S-4 40% 40% < 10

S-5 50% 50% < 10
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Tables-3 and 4 shows the percentage of successes with

DGG and NGG guidance strategies respectively.

Conclusions

This paper address the problem of reactive obstacle

avoidance for UAVs with vision sensing. An EKF based

technique is developed in order to estimate the obstacle

position based on output from a vision sensor. Then two

recently developed guidance strategies, NGG and DGG

are incorporated to achieve the guidance objective. To test

the effectiveness of this algorithm, a number of simula-

tions are carried out in 3D scenario with stationary obsta-

cles. The simulation results demonstrate that, this

algorithm provides a good estimate of the obstacle posi-

tion with reasonable certainty in the presence of syntheti-

cally generated process and measurement noise. Results

also demonstrate the viability of these guidance laws in

the presence of vision sensing.

A logical extension to the technique developed, would

be the problem of estimating the position of moving and

maneuvering obstacles such as other UAVs, birds etc. The

application of this technique is not just limited to the

obstacle avoidance. Same technique can be used to esti-

mate the position of a destination as well; hence it can be

applicable to the missile guidance, where target serves as

the object whose position needs to be estimated. However,

some of the assumptions made in this study (such as

stationary point obstacles, perfect information about

UAV’s position and velocity, availability of assumed im-

age processor, kinematic model) are not realistic and

should be relaxed in future studies.
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Appendix

Steps of Vision Based Obstacle Avoidance Algorithm

The step-by-step algorithm implemented in the nu-

merical simulations is given in this appendix. For simplic-

ity, algorithm presented is for position estimation of only

one object. However, it can be easily scaled up for simu-

lataneous position estimation of multiple objects by aug-

menting the state vector and EKF accordingly.

Step 1 : After getting the first processed image from the

image processor, initialize the state vector X
^
  r

 (0) accord-

ing to following.

X
^

  r

 (0)  =  

r̂
r
 (0)   θ̂

r
 (0)   φ̂

r
 (0)



T

Step 2 : Initialize the Error Covariance Matrix Po :

P
o
  =  diag  









a1
 e

R

 2
  a

2
 




m
o
 × w

v

100





2

  a
3
 




m
o
 × w

v

100





2









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a1 = 1 , a2 = 2 and a3 = 2 are tuning parameters. wv is

camera’s width of view (in radians) assumed 120°.

Step 3 : Initialize the Process Noise Covariance  Q :

Q  =  diag  (0.2   0.025   0.025 )

Step 4 : Run EKF in open loop system for 10 Seconds

(Pre-run)

4.1 : Propagate the State Vector X
^

r
  +(k − 1) → X

^
 r
  −(k) :

                        u
r
 cos θ̂

r
  cos φ̂

r
 + v

r
 sin θ̂

r
 cos φ̂

r
 + w

r
 sin φ̂

r
        

X
^
.

  r
  =                      − 

sin θ̂
r

r̂
r
 cos φ̂

r

 u
r
 + 

cos θ̂
r

r̂
r
 cos φ̂

r

 v
r

                      − 
cos θ̂

r
 sin φ̂

r

r̂
r

 u
r
 − 

sin θ̂
r
 sin φ̂

r

r̂
r

 v
r
 + 

cos φ̂
r

r̂
r

 w
r
        

4.2 : Propagate the Covariance Matrix Pk − 1
 +

  →  Pk
 −

 :

P
.
(t)  =  A(t) P(t) + P(t) A

T
 (t) + Q

4.3 : Compute Measurement Error Covariance Matrix

Rk :

R
k
  =  diag  








m

k
 

w
v

100
  ×  

1

3





2

   



m

k
 

w
v

100
  ×  

1

3





2




here mk is given by the Equation (16) from range depend-

ent measurement noise model.

4.4 : Compute Kalman Filter Gain Kk :

K
k
  =  P

k

 −
 C

k

 T
  

C

k
 P

k
 C

k

 T
 + R

k




 −1

here Ck = 
∂ h

∂ X
 | 

X
^

 r

 −
(k)

 = 




0      1     0

0      0     1





4.5 : Take the Measurement Yk :

Y
k
  =  





0      1     0

0      0     1




  X

r
k

 + v
k

Note that Xr
k

 is the actual value of the state vector and vk

is the measurement noise.

4.6 : Update the State Vector X
^

r
  −(k) →  X

^
 r
  +(k) :

X
^

r

  +
(k) = X

^

r

  −
(k) + K

k
 



Y

k
 − h  




X
^

r

  −
(k)






4.7 : Update the Covariance Matrix Pk
 −

  →  Pk
 +

 :

P
k

 +
  =  (I − K

k
 C

k
) P

k

 −
 (I − K

k
 C

k
)
 T

 + K
k
 R

k
 K

k

 T

4.8 : For first 10 seconds, at every grid point of time, repeat

steps 4.1 to 4.7.

Step 5 : Reinitialize the State Vector X
^
  r  (0)

X̂ ob
 (i)  =  X (i) + f

sph

 cart
 

X̂ r  (i)  



X̂ r  (0)  =  f
cart
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

Step 6 : Reinitialize the Error Covariance Matrix Po :

P
o
  =  diag  
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Step 7 : Run EKF with Guidance in Closed Loop System

till the UAV reaches the Destination

7.1 : Repeat steps 4.1 to 4.7 i.e. Estimate the Obstacle or

Destination Position.

7.2 Perform the Smoothing Operation

X
_̂

  ob
 (i)  =  

1

n
      ∑ 

i = k − n − 1

k

    

 f

sph

 cart
  

X
^
  r (i)  


 + X (i)



here X
_̂
  r

k
 is amoothed estimate used to generate the control

accelrations, X
^
  r

k

 is  original estimate at time instant k and

n = 10.

7.3 : If Estimated Object is Obstacle :
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• Check for collisions (Apply Collision Cone approach

[11])

- Compute a and b

- If a > 0 AND b > 0, obstacle is critical

• Find Xap

- If a > b ,  Xap  =  Xv + r1

- If b > a ,  Xap  =  Xv + r2

7.4 : If Estimated Object if Destination :

X
ap

  =  X
_̂

  r
k

7.5 : Find (Xap )XY , (Xap )XZ , VXY  and VXZ : Project

Xap  and V on to XY and XZ planes

7.6 : XY plane : (Same approach for XZ plane)

• Angle error θy  =  cos
−1

  




VXY . (Xap)XY

|| VXY  |||| (Xap)XY ||





• Desired velocity v
∗
  =  

[ ( Xap) XY ]y

[ ( Xap) XY ]x

 u

• Sign convention :

- If v
∗
  <  v ,  θy  >  0

- If v
∗
  >  v ,  θy  <  0

• Compute control ay

- DGG : ay  =  kv (v − v
∗)

- NGG : ay  =  k̂v  sin θy where

 k̂v  =  kv  
√u

2
 + v

2
  √ u

2
 + v

∗2

u

7.7 : State update : 




X
.

V
.



  =  





V

a




 with a  =  


0  ay  az

 T

Fig.1 Inertial Reference Frame and UAV Body Frame

Fig.2 Video Sensor Model

Fig.3 Measurement of Obstacle Projection on Image Plane in

Terms of θ and φ

Fig.4 Measurement Noise as a Function of Obstacle Range
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Fig.5 Construction and Analysis of the Collision Cone

Fig.6 Geometry of the Guidance Problem in 3D

Fig.7 UAV Trajectory with Two Obstacles Between Origin

and Destination

Fig.8 XY and XZ Views of UAV Trajectory

Fig.9 Control Acceleration Along Y Axis

Fig.10 Control Accelertion Along Z Axis

AUGUST 2012 DYNAMIC ESTIMATION OF OBSTACLE OF UAVs 199



Fig.11 Obstacle 1 Estimation Error Fig.12 Obstacle 2 Estimation Error

Fig.13 UAV’s Closest Approach to Obstacle with DGG Guidance

Fig.14 UAV’s Closest Approach to Obstacle with NGG Guidance
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