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FERENTIATION

Abstract

An approach based on neural partial differentiation is suggested, to overcome the numerical

problems faced by classical methods, for the parameter estimation of an aerodynamically

unstable aircraft. Theoretical analysis of the neural modeling, the parameter estimation

process, and the nature of the estimates pertaining to unstable aircraft dynamics using the

neural partial differential method, are discussed. Equation for the relative standard deviation,

which is equivalent to the Cramer-Rao bound in the method like output error approach, is

derived using the neural partial differential method and verified through numerical simulation.

The aerodynamic derivatives are derived for the simulated and real longitudinal flight data of

an unstable aircraft, and the estimates obtained using the neural partial differentiation are

compared with the classical methods such as the equation error and the output error methods.

The parameter estimates from the simulated noisy data are also presented to assess and support

the theoretical developments presented in this paper. The theoretical analysis and the results

presented in this paper make the neural partial differential approach more reliable and widely

applicable.
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Introduction

The process of extracting the stability and control

derivatives from flight measured data is known as aircraft

parameter estimation. Accurate knowledge of stability and

control derivatives plays a vital role in the development

life cycle of a flight vehicle. The parameter estimation is

a necessary effort that leads to accurate and validated

mathematical models. The aircraft parameter estimation

has important roles in the areas such as: verification of

wind tunnel and analytical predictions, development of

high fidelity aerodynamic databases for flight simulators

and off-line digital simulations, design of flight control

laws and stability augmentation systems, analysis of han-

dling quality specifications, support for flight envelope

expansion, and design of adaptive flight control systems

[1]. Therefore, in spite of the availability of the parameters

of an aircraft from wind tunnel measurements, estimation

using flight data becomes inevitable. Over the last four

decades, various estimation techniques were developed

and successfully applied to the aircraft parameter estima-

tion problem. These classical estimation methods can be

broadly categorized as the equation error, the output error,

and the filter error methods [2, 3]. The classical methods

require a priori knowledge of the dynamic model and the

initial estimate of the parameters.

The classical methods are quite efficient to meet the

requirements of stable aircraft aerodynamic charac-
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teristics. However, application of the output error method

poses divergence problem in the numerical integration of

the unstable aircraft dynamics [4]. The filter error methods

which are based on the principle of predictor-corrector

approach have inherent stability in numerical propagation

of the states, as they utilize measurements to update the

states after the prediction step. Therefore, the filter error

method can be applied successfully for the parameter

estimation of the unstable aircraft. However, its imple-

mentation is complicated and it requires setting up of the

state equations for various parameters to be estimated, in

addition to the state equations for the system dynamics.

In order to overcome the problems with the classical

approaches, neural networks were used for the aircraft

parameter estimation. A neural network can learn from the

input-output pairs and can provide reliable function ap-

proximation [5]. This makes it suitable for the aircraft

parameter estimation, where the forces and moments are

directly represented in terms of a linear or nonlinear func-

tion of the motion and control variables. An early investi-

gation into the use of neural network for aircraft parameter

estimation was reported in [6]. In [6], feed forward neural

network was used as a mapping function to map the inputs

(state and control variables) to the outputs (aerodynamic

forces and moments). Similar works were reported in [7,

8, and 9]. In most of these cases, gradient learning algo-

rithm was used to train the neural network. In [8], aerody-

namic coefficient models are derived from simulated

flight data using system identification model composed of

extended Kalman Bucy filter for state and force estimation

and aerodynamic modeling has been done by computa-

tional neural network with first order partial derivatives

for weight estimation. Feteih [10] applied a neural network

to find the aerodynamic coefficients of an unstable aircraft

reported by Hess [6]. The use of a recurrent neural network

which has self-feedback to approximate the dynamics of

a system was reported for the parameter estimation [11],

but the accuracy achieved was not good.

More noted approaches to obtain the aircraft stability

and control derivatives from flight data, using neural

network based delta and zero methods, were reported in

[12, 13]. Both these methods apply finite differencing to

obtain the stability and control derivatives in the post

training phase. As an extension of the work, the modified

delta method [14] was reported. A combination of the

neural network and the Gauss Newton method [15] can

also be applied to estimate the stability and control deriva-

tives. In this method, the neural network is used to propa-

gate the state of the aircraft, which is followed by applica-

tion of Gauss Newton method to estimate the stability and

control derivatives by minimizing a suitable optimization

function. However, all these methods employ finite differ-

encing to obtain the stability and control derivatives in

post neural-training phase. These methods require addi-

tional data processing in the post training phase in order

to extract the aerodynamic derivatives. Use of radial basis

function neural network for helicopter parameter estima-

tion from flight data was reported in [16] using post

training finite differencing to estimate the parameters.

However, radial basis function method requires more

number of hidden neurons and it is slower than sigmoid

nonlinearity based neural network [17].

In order to avoid the need of post training data proc-

essing and to improve the accuracy of estimation, neural

partial differential method [18] was reported for the esti-

mation of the lateral-directional stability and control de-

rivatives from real flight data of an aerodynamically stable

aircraft. The results obtained using the neural partial dif-

ferential method showed superior performance as com-

pared to those obtained using the zero, the delta, and the

classical equation error methods on real flight data. How-

ever, the work presented [18] did not show theoretical

developments on the accuracy and nature of the estimates

obtained using the neural partial differential approach.

Unlike the other neural methods reported in literature,

the neural partial differential approach can give theoretical

insight into the statistical information such as the relative

standard deviation, which is equivalent to the Cramer-Rao

bound in the output error method. In this work, the nature

of the relative standard deviation of the estimates, obtained

from the neural partial differential approach, is theoreti-

cally developed and later proved through numerical stud-

ies on the real and simulated flight data of unstable aircraft.

The parameter estimation, pertaining to the longitudinal

motion, of the unstable X-31A aircraft (open loop) from

the real flight data is presented. The results of estimation

on the real and simulated data obtained using the neural

partial differential approach are compared with those ob-

tained using the equation error method and the artificially

stabilized output error method [4]. The results of estima-

tion for an unstable aircraft, from two simulated noisy data

set, are also presented to show the effect of noise on the

accuracy of the estimates and to support the theoretical

developments elaborated in the next section.
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Methodology

Mathematical formulation of a multilayer neural net-

work, for estimating the stability and control derivatives

of an unstable aircraft, using the neural partial differential

method is discussed in this section. Mathematical formu-

lation of the standard deviation and relative standard de-

viation is presented for better understanding of the nature

of the estimates. The effect of noise on the derivatives is

theoretically investigated in this section and later simu-

lated in the results section. The architecture of the neural

network to be used for various problems is also discussed.

Neural Network

The schematic of a three layer feedforward neural

network, henceforth to be referred as a neural network, is

shown in Fig. (1). It consists of two hidden layers and one

output layer of neurons wherein the output layer neurons

contain summation function only, i.e. these are free from

activation function. The input and the output vectors of the

neural network are represented as χ
~
 ∈ ℜn+1

 and Z
~
 ∈ℜk

respectively. Let the first and the second hidden layers

augmented output vectors (containing bias) be represented

as  X
~
 ∈ ℜm+1

 and Y
~
 ∈ℜl+1

 respectively. The output of the

neural network can be written as Z
~
 = W

~   T
 Y
~
 , where W

~
 is

the augmented weight matrix connecting the second hid-

den layer to the output layer and is defined as

W
~
  =  
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The vector Y
~
 can be expressed as Y

~
 = f

~
 ( V

~
   T  x

~
 ) = f

~
 ( v

~
 ) ,

 where f (.) is tangent hyperbolic function which serves as

a nonlinear activation function as it provides better result

[19]; and it is represented as 

f (v
i
) = 

1 − e
− λv

i

1 + e
− λv

i

The weight matrix V
~
 can be represented as

V
~
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Similarly, the output of the 1
st

 hidden layer neurons

can be written as X
~
 = g

~
 ( U

~
   T  χ

~
 ) = g

~
 ( β

~
 ) , where g (.) is

the nonlinear activation function (tangent hyperbolic).

The weight matrix U
~
 is defined as

U
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where bum is the m
th

 element of the weights related to the

bias of the input layer. The input to the neural network

denoted by the augmented input vector χ
~
 can be defined

as χ
~

 = 

−1  a

~
T


 T

 = 

χ0   χ1   …   χ n

 T
where a~  ∈ ℜn

 is

the input vector excluding the bias term. The normaliza-

tion of the inputs and the outputs is carried out using the

following equation,

Z
i , norm

 = Z
i , norm

min

 + 



Z
i , norm

max

 − Z
i , norm

min





 ∗ 
Z

i
 − Z

i
 , 

min

Z
i , max

 − Z
i , min

where Zi , norm
max

and Zi , norm
min

denote the upper and the

lower limits of normalization range for the Zi respectively;

while Zi , max and Zi , min represent the maximum and the

minimum values of Zi respectively. Zi , norm is the normal-

ized value of the output variable Zi. In this paper,

Zi , norm
max

 = 0.9 and Zi , norm
min

 = -0.9, and therefore, the

normalization equation maps the outputs in the range [ -

0.9, 0.9]. The output vector of the neural network can be

expressed as

Z
~
 = W

~
   T

  f
~
 ( V

~
   T

 g~ ( U
~
   T ( χ

~
 ) ) .
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The cost function, to optimize the weights of the neural

network during the learning process, is taken as the mean

square error (MSE) function as given below:

MSE  =  E (ω
~

) = 
1

2 P
 ∑ 

j = 1

p

   ∑ 

i = 1

k

 (d
i
 − Z

i
 )

j

2

Here, ω
~

 is a vector consisting of all the weights of the

neural network; E is the error function; P is the total data

points (number of observations/patterns); di is the i
 th

nor-

malized measured value of the output; Zi is the normalized

computed value of the output, and the index j stands for

the j
th

data point. Since the neural network training is done

in batch mode, therefore, MSE is computed at the end of

every step of iteration using updated values of the weights.

The neural network training is carried out using the back

propagation method and the scaled conjugate gradient

algorithm (SCGA) [20] to minimize the MSE.

The Neural Partial Differentiation

This methodology is based on the partial differential

of the neural output and is performed analytically at the

end of training using the terms computed during the train-

ing. Therefore, this does not require post training neural

processing unlike the Delta method [12] and its variants.

The basic assumption is that, a trained neural network

represents the mapping function between the inputs and

outputs explicitly. Hence, the outputs can be differentiated

analytically to yield the first order derivatives. If the

training is proper then it is possible to find the higher order

derivatives. However, the derivatives thus computed will

deteriorate in accuracy due to the imperfect training as the

order is increased. This is due to the fact that the neural

network is only an approximation of the function which it

tries to learn from the input-output pairs. Therefore, due

to the errors in the input-output data, the derivatives will

fall away from the actual values as the order increases.

For the current application, aircraft motion and control

variables are the inputs, and the aerodynamic forces and

moments are the outputs for the neural network. The

partial differential of the neural output Z
~
 with respect to

the augmented input vector χ
~

 can be written using the

chain rule of partial differentiation as


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is a diagonal matrix of size (k x k).
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The matrices listed above are available during training

of the neural network; therefore, do not put extra compu-

tational burden unlike the hitherto neural delta method and

its variants. The stability and control derivatives can be

computed at the end of training without adding the burden

of post training data processing or can be computed after

each iteration. This saves time and effort unlike that re-

quired for the finite difference methods in the post training

phase. The derivatives thus obtained at different data

points are averaged and their standard deviations are cal-

culated which can be used to compute the relative standard

deviations which also corresponds to the Cramer-Rao

bound for the non-statistical approaches like the equation

error method using equation 

RSTD  =  
STD

Average
 × 100%

where RSTD and STD are relative standard deviation and

standard deviation respectively.

Analysis of the Estimates

The multi-input single output system considered in this

paper can be represented as 

Γ(α , q , δ
e
) = A

0
 + A

1
α + A

2
q + A

3
δ

e
 + A

4
α

2
 + A

5
q

2
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6
 δ

e

2
 + …

where Ai (i = 0 , 1 ,2 …) is a coefficient; α  is the angle of

attack, q is pitch rate, and δe is the elevator deflection,

which serve as the inputs to the neural network. The neural

output is the pitch acceleration q
.
. The objective is to

estimate the coefficient Ai such that in the trained state the

neural network output represents this polynomial. This is

achieved by minimizing a mean square cost function as

described earlier. The neural partial differential method

can be applied to the trained neural network to obtain the

first and higher order partial derivatives.

If the inputs to the neural network are highly noisy, the

estimated coefficients may get biased due to improper

learning. Such cases will be obvious from the mean square

error which does not decay to the desired level, but may

yield small relative standard deviation indicating a biased

estimate. A mean square error of the order of 10
-4

 - 10
-5

may be a practical value on the real data set to get realistic

estimates of the derivatives. In the case of low mean square

error, the relative standard deviation is a good indication

of the quality of estimates. It can be shown that the relative

standard deviation of the partial derivative of a neural

output Zk can be written as 
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for one neuron in the first hidden layer (M = 1),

STD =       

  ∑ 

p = 1

P

  






















∑ 

 l = 1

L

 Y ′
l
p

 v
lm

 w
kl

 Z
k

p

′









 X ′

m
p

 −  

∑ 

p = 1

P

  










∑ 

 l = 1

L

 Y ′
l
p

 v
lm

 w
kl

 Z ′
k

p










 X ′

m
p

P













 2

P
  u

m
i

Hence, the relative standard deviation can be written as
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It can be observed in the above equation that the quantities

X ′m , Y ′l , andZ ′k are same for all the input variables

because m=1, they vary only with patterns (data points).

In addition, the weights are fixed quantities after the

training is over. It can be observed that the input layer

weights do not appear in the RSTD equation. Thus, the

relative standard deviations of the partial derivatives for

an output with respect to the inputs will be the same,

provided there is only one neuron in the first hidden layer.

One neuron in the first hidden layer also ensures low

standard deviation by allowing a linear model for the

input-output data.
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The derivatives are not affected by the existence of the

measurement bias either in the inputs or the outputs due to

the partial differential approach. The bias in the inputs and

the output get eliminated due to partial differentiation. If

the input data is highly contaminated with noise then the

training will not be good which will be reflected in the

large mean square error at the end of iteration. Therefore,

even with one neuron in the first hidden layer, the esti-

mated derivatives may be away from the actual value

indicating biased estimates. For the cases where the train-

ing is not good, the output reconstructed using the esti-

mated derivatives will not match with the measured output

implying poor estimation of the derivatives. In addition,

the match between the actual and the neural predicted

values of the output may be poor. Thus, it can be concluded

analytically that biased estimation is due to the poor learn-

ing which arises from highly noisy input data. When the

mean square error at the end of training is quite low, the

higher degree terms will be negligible yielding

∑ 

 p = 1

 P

  
∂ Z

∂ α
  =  PA

1

which results in

A
1
  =  

1

P
  ∑ 

 p = 1

 P

  
∂ Z

∂ α

implying almost exact value of the coefficient. The coef-

ficient thus obtained will match with the value obtained

by setting all the neural inputs to zero, i.e.

A
1
  =  

∂ Z

∂ α
  |

α = 0 , δ
e
 = 0 , q = 0

Results and Discussion

In this section, the neural partial differential method is

applied to the real flight data from the X-31A aircraft and

the simulated data for the test aircraft de Havilland DHC-2

"BEAVER" to estimate the stability and control deriva-

tives for the longitudinal mode.

As a first example, the flight data is generated in open

loop for the simplified model of the test aircraft de Havil-

land [4, 21] DHC-2 "BEAVER" and processed for the

evaluation of the methods developed in the last section.

The simulated flight data, spanning over 11.5 seconds,

corresponds to an overall unstable system which is

achieved by the adjustment of static stability parameter

q
.
w [4]. One of the eigen values of the system matrix for

the system described by the following state equations is

positive and it corresponds to unstable mode.

q
.
  =  q

.
w

 w + q
.
q
 q + q

.
δ

e

 δ
e
 , 

w
.
  =  Z

w
 w + (U

o
 + Z

q
) q + Z δ

e
 δ

e
 , 

The observation equations are

N
z
 = Z

w
 w + Z

q
 q + Z δ

e
 δ

e
 ,

w = w ,

q = q ,

q
.
 = q

.
w

 w + q
.
q
 q + q

.
 δ

e
 δ

e
 ,

where w is the velocity along the z -body axis, δe is the

elevator deflection, q is the pitch rate, Nz is the normal

acceleration, and Uo is the initial forward speed. The

parameters Zw , Zq , Zδe , q
.
w , q

.
q , and q

.
δe are to be esti-

mated from the simulated observation data. The nominal

values of the coefficients along with the elevator input [1]

are taken and the state equations are integrated using the

fourth order Runge-Kutta algorithm in FORTRAN to

generate the state variables w and q. The stability and

control derivatives Zw , Zq , Zδe , q
.
w , q

.
q , and q

.
δe  are es-

timated using the neural partial differential method. More-

over, the equation error and the stabilized output error

methods are also applied to the simulated data to estimate

the stability and control derivatives. The number of neu-

rons used in the first hidden layer is one, while in the

second hidden layer and the output layer three and one

respectively (1-3-1 architecture). The output layer neuron

consists of a summation function only, i.e. no non-linear-

ity.

The values of the stability and control derivatives

estimated using the neural partial differential approach

from the simulated data (without noise) are compared with

the nominal, the equation error method, and the stabilized

output error method values. The results are presented in

Table-1. The identification of open loop system is carried

out by treating the control surface deflection as the neural

input. The neural network is trained for 5000 iterations. It

can be observed from Table-1 that the parameters esti-

mated using the neural partial differential approach

closely match with the nominal values and the equation

error method estimates. The relative standard deviations
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of the derivatives obtained using the neural partial differ-

ential approach, corresponding to the outputs q
.
 and Nz are

according to the conclusions arrived at in the previous

section. This confirms the mathematical validity of the

derivations carried out in the last section regarding the

relative standard deviation of the estimated parameters.

The relative standard deviation for the least square method

is not given in the Table as this approach yields the exact

value. The relative standard deviations for the stabilized

output error method seem to be better than the neural

approach, however, the estimates of neural approach are

closer to the nominal values. The relative standard devia-

tion in the case of neural method is slightly larger than that

from the stabilized output error method as it is derived by

averaging the derivatives at various data points. A value

without standard deviation can be obtained if all the input

variables are set to zero. This is demonstrated later for the

simulated noisy data.

In Fig.2 the actual and the neural  network   predicted

Nz are plotted showing a good match. In Fig.3 the RMS

values of the estimated parameters are plotted against the

iteration number. It is clear that the convergence takes

place within 200 iterations. However, the fine adjustment

in the weights continues as the iteration number increases,

which leads to a better estimate of the derivatives that

closely match with the nominal and the equation error

method values. A plot of the actual values of the stability

and the control derivatives, predicted using the neural

partial differential approach against the data points, is

shown in Fig.4. It can be observed from Fig.4 that the

values of the normal acceleration derivatives show very

small oscillations. The oscillations occur wherever the

input variables are appreciable in magnitude. This is due

to the fact that neural network effectively models a poly-

nomial as explained in the last section. The coefficients of

higher degree terms in such polynomial are negligible, but

add to the derivatives as very small perturbations, at the

large values of the input variables, leading to the small

oscillations in the estimated values of the derivatives. For

the real data, this effect is more prominent as shown later

for the flight data of X-31A aircraft. In Figs.5 to 7, results

for the pitch acceleration and its derivative with respect to

the motion and control variables are shown. It can be

observed from Fig.5 that the actual and the neural pre-

dicted values of the output q
.
 match well. Moreover, RMS

values of the q
.
 derivatives converge within 200 iterations

as shown in Fig.6. However, further iterations are neces-

sary for the fine adjustments in the weights leading to the

correct values of the derivatives. The estimated values of

the derivatives (q
.
δe , q

.
q  and q

.
w ) are quite close to the

nominal/actual and the equation error method estimates as

shown in Table-1. The plots for the estimated derivatives

are shown in Fig.7. The results obtained above confirm the

theoretical analysis of the previous section proving effi-

cacy and accuracy of the proposed neural approach. Add-

ing more hidden layers in the neural network improves the

processing power and system flexibility at the cost of

complexity in training algorithm. Moreover, the network

with too many hidden neurons becomes over specified and

lacks the generalization capability; and the network with

too few hidden neurons prevents the system from proper

mapping and reduces the robustness.

Evaluation of the proposed neural partial differential

approach on the real flight data of the experimental unsta-

ble aircraft X-31A is considered as a second example. The

Table-1 : Stbility and Control Derivatives Estimated Using the Equation Error Method (EEM), Neural Partial

Differential (NPD), and Stabilized Output Error (SOEM) Methods

Parameters NV [4] EEM SOEM NPD

EST EST RSTD (%) AVG STD RSTD (%)

Zw -1.4249 -1.4249 -1.4268 0.0090 -1.4246 0.00080 0.05657

Zq -1.4768 -1.4768 -1.4768 fixed* -1.4782 0.00084 0.05657

Zδe -6.2632 -6.2632 -6.1711 0.0169 -6.2665 0.00354 0.05657

q
.
w 0.2163 0.2163 0.2170 0.0065 0.2162 0.00012 0.05584

q
.
q -3.7067 -3.7067 -3.7201 0.0071 -3.7055 0.00207 0.05584

q
.
δe -12.7840 -12.7840 -12.8148 0.0087 -12.7808 0.00714 0.05584

(NV = Nominal Value;  EST = Estimated; AVG = Average; STD = Standard Deviation; RSTD = Relative Standard Deviation;

SOEM = Stabilized Output Error Method; * Zq  is kept fixed at the nominal value for processing)
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X-31A aircraft was designed for enhanced maneuverabil-

ity. It is a single-seater fighter configuration with a takeoff

gross weight of approximately 16000 lb. The open loop

configuration of the basic X-31A aircraft is aerodynami-

cally unstable in the longitudinal axis at low angle of

attack. The numerical flight data for this aircraft is unavail-

able, hence, digitized the real flight data plots in [4] to

obtain the numerical data for the estimation purpose. The

plots of the state variables and control input (q , α , and

δe ),  and the derived pitch acceleration q
.
 corresponding

to the two consecutive pitch doublets [4] are digitized.

Here, q, α, and δe serve as the inputs to the neural network

while q
.
 serves as the output. The direct estimation of the

stability and control derivatives Cmα , Cmq , and Cmδe is

not possible as many of the information required to proc-

ess the data are not available (for example, the altitude

which decides the density which in turn decides the dy-

namic pressure). However, it is possible to estimate the

derivatives q
.
α , q

.
q , and q

.
δe from the digitized data. In

fact, q
.
 can be written as

q
.
 = 

q
_
 S c

_

I
y

  C
m

 CG
  +  

1

I
y

 M
eng

 CG
 ,

where q
_
 , S , and c

_
 are the dynamic pressure, reference

area, and mean aerodynamic chord respectively. Iy is the

pitching moment of inertia, Cm
 CG

 is the pitching moment

coefficient about the center of gravity (C.G.), and Meng
 CG

 is

the moment due to the thrust of the engine at the center of

gravity. If the effect of the engine is neglected then it can

be written as

 

q
.
  =  

q
_
 S c

_

I
y

  C
m

 CG

A simplified model for the moment about the center of

gravity under the assumption that the thrust line coincides

with the drag line can be written as

C
m

 CG
  =  C

m

 AC
  +  C

L
 h

CG
 ,

where Cm
 AC

 is the pitching moment coefficient about the

aerodynamic center (A.C.) [4], hCG is a non-dimensional

distance measured from the aerodynamic center (A.C.) to

the center of gravity, and CL is the lift coefficient. A lift L

and a moment M
 AC

 can be assumed to act at the aerody-

namic center [4]. The above equations for pitch rate and

pitching moment can be combined to write as

q
.
  =  

q
_
 S c

_

I
y

  

C

m

 AC
 + C

L
 h

CG




The expression for C
m

 AC
 [4] can be written as

C
m

 AC
 = C

m

∗
 + C

m
α

 AC
 (α − α

∗
) + C

m
q

 AC
 (q − q

∗
) 


c
_

2V



 + C

mδ
e

 AC
 (δ

e
 − δ

e

∗
)

where the symbols have their usual meaning and the terms

such as α∗
 , δe

∗
 , and q

∗
correspond to the trim state. For

training of the neural network, the trim values need not be

computed separately because these are implicitly modeled

by the neural network. The canard effectiveness parameter

is kept constant [4] as it is highly correlated with the angle

of attack and its estimation is not possible. Therefore, it is

eliminated from the above equation and its effect can be

assumed to be absorbed in the constant Cm
∗

. Nominal

values of the derivatives of the parameters CL and Cm
 AC

 are

available [4] as given in Table-2. The observation model

for estimating the derivatives q
.
a , q

.
q , and q

.
δe using the

neural partial differential approach can be written as

q
.
 = q

.
o
 + q

.
α

 α + q
.
q
 q + q

.
δe

 δ
e
 ,

where q
.
 is available from the differentiation of the meas-

ured pitch rate which serves as the output for the neural

network. Here, it is obtained by the digitization of the

q
.
 plot [4] as mentioned earlier. The variables α , q , and

δe  are available from the measurements and serve as the

inputs to the neural network. It is possible to correlate

these coefficients (q
.
α etc.) with the derivatives

Cmα , Cmq , and Cmδe , this allows verification of the esti-

mated coefficients to some extent. The results obtained

using the neural partial differential method are analyzed

below and supported by various data to show the efficacy

of the neural partial differential approach.

A neural network consisting of one neuron in the first

hidden layer, three neurons in the second hidden layer, and

one neuron in the output layer is used to map the inputs to

the output (1-3-1). The output layer neuron is merely a

summation function. A total of 180 data points are used to

train the neural network, while 100 data points are kept for

verification. In fact, such a division of the data set is not
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required if only one neuron is used in the first hidden layer.

A single neuron in first hidden layer ensures that only a

linear model is fitted to the input-output data, provided the

mean square error is small. In addition, if the derivatives

obtained from the neural partial differential operation are

correct then these can be used to reconstruct the output

values which should match with the given output values.

Therefore, reconstruction of the output can also be used to

ensure the proper training of the neural network. Merely,

checking on the basis of data division is not the only way

of ensuring correct training. In fact, the reconstruction

technique is much more reliable than the data division

approach. Hence, no data division was applied for the

synthetic data case in the first example. However, in the

present case the data is highly noisy and the nominal

values of the q
.
 derivatives are not available. Therefore, in

order to provide a double check, the data division is

applied. As mentioned earlier, α , q , and δe are used as the

inputs to the neural network while q
.
 serves as the output.

The weights of the neural network are generated using a

uniform random number generator in the range -0.1 to

+0.1. It is to be noted that the initialization with the

different set of weights does not affect the derivatives

obtained from the neural partial differential method using

the (1-3-1) architecture. This remains valid as long as only

one neuron is used in the first hidden layer. Therefore,

neither study on the effect of weights initialization is

provided nor any averaging of the resulting derivatives is

carried out from different runs.

In Table-2, the values of the derivatives q
.
α , q

.
q , and

q
.
δe  obtained using the neural partial differential approach

are presented. For the comparison purpose, the least square

estimates in combination with the equations error method

and the results for the stabilized output error method are

also given. It can be observed from the Table-2 that the

derivatives from the stabilized output error method regis-

ter high relative standard deviation. The estimates using

the neural partial differential approach seem to be reliable.

This will be evident from the graphs, for the reconstructed

q
.
 using the derivatives obtained from the neural partial

differential and stabilized output error methods, to be

explained in the following paragraph.

The actual and the neural predicted values of q
.
 for the

training data are plotted in Fig.8. In addition, the neural

predicted values of q
.
 on the unseen data (100 data points

after 180) are also plotted in the same figure. The root

mean square values of the estimated derivatives on the

training data, as the training proceeds, are shown in Fig.9

with respect to the iteration number. It can be observed

from Fig.9 that around 5500 iterations are required for the

convergence. The estimated values of the derivatives are

plotted in Fig.10. The neural predicted, reconstructed, and

actual values of q
.
 are plotted in Fig.11. The data points,

plotted after 180 in Fig.11 correspond to the reconstructed

values of the output on the unseen data (untrained) along

with the neural predicted and actual ones. Moreover, in

Table-2 : Stability and Control Derivatives of the X-31A Aircraft, Estimated Using the Equation Error Method

(EEM), Neural Partial Differential (NPD), and Stabilized Output Error (SOEM) Methods, from the Digitized

Flight Data

Parameters NV [4] EEM SOEM NPD

EST RSTD (%) EST RSTD (%) AVG STD RSTD (%)

q
.
o - -0.350 8.518 -0.326 1.5765 -0.351 - -

q
.
α - 0.251 57.094 0.111 19.2785 0.252 0.002 0.620

q
.
q - -0.473 9.296 -0.471 6.4214 -0.475 0.003 0.620

q
.
δe - -7.504 1.8444 -7.170 1.0799 -7.526 0.047 0.620

CLα 3.057* 2.661* - - - - - -

CLδe 1.354* 0.863* - - - - - -

Cmα 0.119* 0.217* - 0.238 - - - -

Cmq -1.650* 0.137 - -0.871 - - - -

Cmδe -0.571* -0.467* - -0.5-4 - - - -

(NV = Nominal Value; AVG = Average; STD = Standard Deviation; RSTD = Relative Standard Deviation; EST = Estimated; 

* = from Reference [4])
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Fig.12, the reconstructed values of q
.
 obtained using the

derivatives from the neural partial differential approach

and the stabilized output error approach are plotted. The

curve for the stabilized output error approach does not

match at the peak values. Also, its match on the unseen

data is also poor as compared to the neural derivatives

based reconstructed values. This gives more confidence in

the neural approach. It can be observed in Fig.10 that small

oscillations in the values of the derivatives are present.

This is due to the effect of the coefficients in the polyno-

mial corresponding to the higher degree terms which are

quite small; therefore, these coefficients do not affect the

estimates except increasing the standard deviation by

small amount. Thus, results from the real flight data also

confirm the theoretical developments of the last section.

Two more cases are considered for assessing the effect

of the noisy input and output data on the parameter esti-

mates. The data is simulated by adding Gaussian white

noise with zero mean to the data for the linear case in the

first example. The standard deviations of the noise for two

different cases are shown in Table-3. The noise generated

is eliminated whenever the absolute value lies beyond the

3σ range, where σ is the standard deviation of the noise.

The results of neural partial differential approach along

with the other methods are presented in Tables-4 and 5. It

can be observed that as the noise level increases, the

performance of the neural network deteriorates, which was

theoretically predicted earlier. However, if all the inputs

are set to zero then the estimates (AVG(0)) improve

slightly, which is due to the elimination of the terms of

higher degree and of the same degree from the other

variables. The estimates obtained by setting all the input

variables to zero in the neural partial differential approach

are better than those obtained using the equation error

method. However, in this case the relative standard devia-

tion is not available. Thus, it can be observed that the

estimates from the neural partial differential approach get

slightly biased and this is true for the equation error

method also. The stabilized output error approach also

produces biased results, as shown in Tables-4 and 5.

Moreover, the relative standard deviation for the stabilized

output error method is higher than that for the neural

method. It can be concluded that although the neural

partial differential approach produces biased results for

the noisy data set, the estimates are better than those from

the stabilized output error approach. In the stabilized

output error case, Zq needs to be fixed to the nominal/ac-

tual value for processing rest of the derivatives. The cases,

Table-3 : Standard Deviation of the Noise to be

Added to the Different Input and Output Variables

(STD (1) = Standard Deviation for the Less Noisy

Data Set, STD (2) = Standard Deviation for the

More Noisy Data Set)

Variables STD (1) STD (2)

w 0.01 m/s 0.05 m/s

q 0.001 rad/s 0.005 rad/s

δe 0.001 rad 0.005 rad

w
.

0.001 m/s
2

0.005 m/s
2

q
.

0.001 rad/s
2

0.005 rad/s
2

Table-4 : Stability and Control Derivatives Estimated Using the Simple Equation Error Method (EEM), Neural

Partial Differential (NPD) Approach, and output Error Method with Artificial Stabilization (SOEM) on the

Less Noisy Data Set

Parameter NV EEM SOEM NPD

EST RSTD (%) EST RSTD (%) AVG (0) AVG RSTD (%)

Zw -1.4249 -1.4252 0.1610 -1.4498 0.4802 -1.4257 -1.4245 0.1139

Zq -1.4768 -1.4685 2.0186 -1.4768 fixed* -1.4747 -1.4733 0.1139

Zδe -6.2632 -6.2344 0.9840 -5.6560 3.1991 -6.2507 -6.2449 0.1139

q
.
w 0.2163 0.2161 0.9486 0.2565 0.9810 0.2162 0.2160 0.1066

q
.
q -3.7067 -3.7067 0.7148 -4.7024 0.8621 -3.7082 -3.7044 0.1066

q
.
δe -12.7840 -12.7626 0.4296 -14.3422 0.5695 -12.7695 -12.7563 0.1066

(NV = Nominal Value; AVG = Average; STD = Standard Deviation; RSTD = Relative Standard Deviation;

EST = Estimate; AVG (0) = Estimate when all the neural inputs are set to zero; *Zq  is kept fixed at the nominal value for process-

ing)
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where the neural partial differential approach is likely to

produce biased estimates, can be identified by the fact that

the mean square error will not decay with iteration to the

desired level. Moreover, the neural predicted force and

moment coefficients will not match with the measured

ones. However, for small noise to signal ratio, the mean

square error will be small, therefore, the estimates will be

reliable with small relative standard deviation.

In Figs. 13 to19, the plots for the more noisy data case

(STD (2)) are presented. It can be observed from Fig.14

that the actual and the neural predicted values match with

each other. This is due to relatively less effect of elevator

deflection which is quite noisy on the normal acceleration

Nz. However, in the case of q
.
 , the match is poor as shown

in Fig.17. In fact, q
.
 is majorly affected by the elevator

deflection which is highly noisy in this case, hence, the

neural predicted output gets affected by the noise in the

elevator deflection. In Fig.19, variations in the estimated

derivatives are easily visible, especially in the derivative

q
.
δe. Obviously, this is because of large noise in the input

variable δe.  All the results obtained are as per the theo-

retical deductions of the previous sections, and give more

insight into the nature of the derivatives obtained using

neural network. Thus, the neural estimates are very reli-

able and tend to get biased only when the input data to the

neural network is quite noisy.

Conclusion

Neural partial differential approach was carried out for

the estimation of the stability and control derivatives of

unstable aircraft pertaining to the longitudinal dynamics.

The test results for the unstable dynamics were generated

using the simulated and the real flight data (numerical data

was generated by digitizing the plots in the literature). The

results were compared with the conventional methods

such as the equation error and output error methods. A

thorough theoretical analysis was carried out to ascertain

quality of the estimates resulting from the neural partial

differential approach. Theoretically, it was concluded that

if the training is good, which is reflected in the small mean

square error at the end of training, then quality of the

estimates will be good yielding small relative standard

deviation and the estimates will be unbiased also. More-

over, it was proved analytically that the relative standard

deviation of the derivatives for the different inputs will be

same. The same was verified through numerical simula-

tion using the real and synthetic flight data for longitudinal

dynamics of unstable aircraft. While the inputs were

highly corrupted with noise then the estimates using the

neural partial differential approach yielded slightly biased

estimates, which was a direct consequence of poor learn-

ing indicated by large mean square error. The issue of

neural architecture to be used for the estimation was

resolved and was shown that keeping one neuron in the

first hidden layer yielded low standard deviation and the

mean square error was small at the end of the training. The

theoretical analysis presented in this paper makes the

neural partial differential approach more reliable and

widely applicable. The parameter estimation, pertaining to

the longitudinal motion, of the unstable aircraft X-31A

(open loop) from the real flight data was also reported. A

thorough analysis of the results, thus obtained, was carried

Table-5 : Stability and Control Derivatives Estimated Using the Simple Equation Error Method (EEM), Neural

Partial Differential (NPD) Approach, and output Error Method with Artificial Stabilization (SOEM) on the

Highly Noisy Data Set

Parameter NV EEM SOEM NPD

EST RSTD (%) EST RSTD (%) AVG (0) AVG RSTD (%)

Zw -1.4249 -1.4293 0.7763 -1.4750 1.4083 -1.4326 -1.4267 0.5020

Zq -1.4768 -1.3850 10.3366 -1.4768 fixed* -1.4100 -1.4040 0.5020

Zδe -6.2632 -5.9959 4.8883 -6.3995 8.0281 -6.0624 -6.0377 0.5020

q
.
w 0.2163 0.1781 5.3335 0.2245 3.0946 0.1811 0.1720 5.4034

q
.
q -3.7067 -3.2224 3.8176 -4.4482 2.5611 -3.3054 -3.1391 5.4034

q
.
δe -12.7840 -11.6367 2.1643 -13.1867 1.6719 -11.9911 -11.3880 5.4034

(NV = Nominal Value; AVG = Average; STD = Standard Deviation; RSTD = Relative Standard Deviation;

EST = Estimate; AVG (0) = Estimate when all the neural inputs are set to zero; *Zq  is kept fixed at the nominal value for process-

ing)
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out to check the accuracy of the estimates, which con-

firmed the applicability of the neural partial differential

approach to the parameter estimation problem for the

unstable aircraft. The results obtained, using the neural

approach from the simulated and real data, were compared

with the actual values as well as with the results from the

equation error and stabilized output error methods. It is

concluded that performance of the neural partial differen-

tial approach is better than the other methods and it can be

applied successfully for the parameter estimation of the

unstable aircraft.
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Fig.1 Schematic of a Feedforward Neural Network

Fig.2 The Actual and Neural Predicted Values of the Normal

Acceleration Nz  for the Simulated Linear Aircraft Model

Fig.3 Convergence of the RMS Values of the Estimated Nor-

mal Acceleration Derivatives Zδe , Zq , and Zw with Iterations

for the Simulated Linear Aircraft Model

Fig.4 Estimated Values of the Normal Acceleration Deriva-

tives  Zδe , Zq , and Zw Corresponding to Different Data

Points for the Simulated Linear Aircraft Model
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Fig.6 Convergence of the RMS Values of the Estimated Pitch

Acceleration Derivatives  q
.
δ e , q

.
q , and q

.
w with Iterations for

the Simulated Linear Aircraft Model

Fig.5 The Actual and Neural Predicted Values of the Pitch Ac-

celeration q
.
 for the simulated Linear Aircraft Model

Fig.7 Estimated Values of the Pitch Acceleration Derivatives

q
.
δ e , q

.
q , and q

.
w Corresponding to Different Data Points for

the Simulated Linear Aircraft Model

Fig.8 The Digitized (actual) and Neural Predicted Values of

the Pitch Acceleration q
.
 on the Digitized Flight Dta of the X-

31A Aircraft. Initial 180 data points are used for the training

purpose. The remaining 100 data points are unused for train-

ing and are meant for testing the performance of the neural

network.

Fig.9 Convergence of the RMS values, of the estimated pitch

acceleration derivatives  q
.
δ e , q

.
q , and q

.
α , with iterations

using 180 data points on the digitized flight data

of X-31A aircraft

Fig.10 Estimated values of the pitch acceleration derivatives,

q
.
δ e , q

.
q , and q

.
α  corresponding to different data points, of the

X-31A aircraft from the digitized flight data
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Fig.11 Plots of  q
.

  reconstructed using the estimates from the

neural partial differential approach, the actual, and neural

predicted values for the X-31A aircraft

Fig.12 Plots of  q
.

  reconstructed using the estimates from the

neural partial differential approach, the actual, and recon-

structed using the estimates from the stabilized output error

method for the X-31A aircraft

Fig.13 Simulated highly noisy motion and control variables

(data points simulated at an interval of 0.5 seconds for a dura-

tion of 11.5 seconds with total 230 points to which zero mean

white Gaussian noise is added)

Fig.14 The actual and neural predicted values of the normal

acceleration Nz on the highly noisy data set
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Fig.15 Convergence of the RMS values of the estimated nor-

mal acceleration derivatives  Zδ e , Zq , and Zw with iterations

on the highly noisy data set

Fig.16 Estimated values of the normal acceleration deriva-

tives  Zδ e , Zq , and Zw , corresponding to the different data

points, for the highly noisy data set

Fig.17 The actual and neural predicted values of the pitch ac-

celeration q
.
  for the highly noisy data set

Fig.18 Convergence of the RMS values of the estimated pitch

acceleration derivatives  q
.
δ e , q

.
q , and q

.
w  with iterations for

the highly noisy data set

Fig.19 Estimated values of the pitch acceleration derivatives

q
.
δ e , q

.
q , and q

.
w  corresponding to different data points for

the highly noisy data set
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