
THERMAL POSTBUCKLING ANALYSIS OF THIN UNIFORM SQUARE PLATES ON

WINKLER FOUNDATION - EFFECT OF USE OF GREEN’S

STRAIN-DISPLACEMENT RELATIONS

Abstract

A new simple formulation is developed in this paper, to predict the realistic thermal postbuck-

ling behavior of the square plates, on Winkler foundation. If the plate is subjected to a uniform

temperature rise, and also undergoes large deflections, mechanical equivalent inplane com-

pressive, and tensile loads are developed, with the condition of the inplane immovability of the

normal edge displacements of the plate. The nature of the distribution of these inplane

compressive and tensile loads are similar, but have different magnitudes, which act along the

x- and y- directions of the plate. The use of the Green’s nonlinear strain-displacements

relations, which do not impose any restriction on the magnitude of the large deflections, to

predict the realistic thermal postbuckling loads. The thermal postbuckling results of the plates

obtained from this formulation, are validated indirectly, as the corresponding results are not

available in the literature, with those of the columns without the elastic foundation. For the

non-zero values of the foundation parameter, the present numerical results of the plates, with

respect to the central deflection, show the proper physical trends of the nonlinearity, and

demonstrate the simplicity of the present formulation.

Keywords: Thermal buckling; Thermal post-buckling; Square plate; Column; Winkler foun-

dation; Green’s strain-displacement relations

Notation

a = Length of the sides of the square plate

A = Area of cross-section of the column

b = Central deflection of the square plate

C = Inplane rigidity of the plate, 
E t

(1 − v
 2)

D = Flexural rigidity of the plate, 
E t

3

12 (1 − v
 2)

E = Young’s modulus of the material of the plate or

    column

K = Stiffness per unit area of the elastic (Winkler)

    foundation

L = Length of the column

P = Bi-axial compressive load per unit length

    produced in the plate due to ∆T

Pb = Thermal buckling load per unit length of the

     plate; thermal buckling load of the column
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Pc = Axial compressive load produced in the column

    due to ∆T

Ppb = Thermal postbuckling load per unit length of the

    plate; thermal postbuckling load of the column

Px = Compressive load per unit length produced

    in the x- direction of the plate due to ∆T

Py = Compressive load per unit length produced

    in the y- direction of the plate due to ∆T

r = Radius of gyration of the cross-section of the column

SR = Slenderness ratio of the column, 
L

r

t = Thickness of the plate

u = Inplane displacement of the plate in the

    x- direction or axial displacement of the column

v = Inplane displacements in the y- direction of the plate

∆T = Temperature rise

To = Stress free temperature

Tx
u

= Tensile load per unit length induced in the

    x- direction due to the nonlinearity in u;

    also denoted as Tu per unit length

Ty
v

= Tensile load per unit length induced in the

    y- direction due to the nonlinearity in v;

    also denoted as Tv per unit length

w = Lateral deflection of the square plate or the column

wx = Admissible function for w in the x- direction

    of the plate

wy = Admissible function for w in the y- direction

    of the plate

α = coefficient of linear thermal expansion

Tx
w

= Tensile load per unit length induced in the 

    x- direction due to the nonlinearity in w;

    also denoted as Tw per unit length

Ty
w

= Tensile load per unit length induced in the 

     y- direction due to the nonlinearity in w;

     also denoted as Tw per unit length

εx , εy = Inplane strains in x- and y- directions of the

     plate, respectively

v = Poisson’s ratio of the material of the plate or

    the column

Introduction

Simple analytical formulas are derived in this paper, to

predict the thermal buckling and postbuckling behavior,

of the thin uniform simply supported (s-s-s-s) or clamped

(c-c-c-c), square plates on the elastic (Winkler) foundation

[1]. The terminology of s-s-s-s or c-c-c-c used here, means

that all the edges of the square plate are either simply

supported or clamped, respectively. The postbuckling load

is an important input to the structural engineers/re-

searchers, working in many fields of engineering, with the

aim of obtaining an efficient design of the plates, subjected

to high temperature from the stress free temperature.

When the normal inplane edge displacements of the plate,

are immovable, the mechanical equivalent of the compres-

sive loads, in the x- and y- directions, due to the high

temperature, are developed in the plate. At the same time,

if the plate undergoes large deflections, the inplane tensile

loads are induced, in the x- and y- directions. For the

plates, the nature of the distribution of these compressive

mechanical and the tensile loads are similar but differ in

the magnitude. In the square plate, the compressive me-

chanical or tensile loads are equal in the x- or y- directions.

The mechanical/thermal postbuckling phenomenon of the

plate is discussed in the works of Timoshenko and Gere

[2], Ziegler and Rammerstorfer [3], Rao et al.[4], and Rao

and Raju [5].

It is well known that the plate, when subjected to the

critical mechanical/thermal load, suddenly collapses, and

this load is the buckling load, which is obtained by using

the inplane linear strain-displacement relations. Contrary

to the popular belief of the engineering community that

the premature structural failure of the plate takes place,

even before reaching the failure strength of the material of

the plate, at the onset of buckling. However, the plates still

have some additional load carrying capacity above its

buckling load, and the sum of the additional and the

buckling loads is denoted as the mechanical/thermal post-

buckling load. This additional load arises, because of the

inplane stretching of the plate, due to the large lateral

deflections, wherein the inplane strain-displacements con-

tain not only the linear terms 
du

dx
 and 

dv

dy
 , but also the

non-linear terms, 
1

2
 




du

dx




2

 and 
1

2
 




dv

dy




2

 corresponding to

the inplane displacements u and v, and the nonlinear terms

1

2
 




dwx

dx





2

 and 
1

2
 




dwy

dy





2

 corresponding to the lateral de-

flection w. The subscripts x- and y- used for the lateral

deflection w, represent the directions of the Cartesian

coordinate system of the plate, respectively. In the theo-

retical analysis, to obtain the mechanical/thermal buckling

loads of the plate, it is sufficient to consider only the linear

terms in the strain-displacement relations.  However, the

mechanical/thermal postbuckling behavior of the plate is

obtained, by using the Green’s nonlinear strain-displace-

ment relations.
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Many researchers [3 to 8] contributed, to the study of

the mechanical/thermal postbuckling of plates, by consid-

ering the simpler von-Karman nonlinear strain-displace-

ment relations, which are applicable when deflections are

moderately large. In this simpler von-Karman nonlinear

theory, the nonlinear inplane displacements are ignored

compared to the nonlinear lateral deflection, based on the

relative magnitudes. Whereas, both the nonlinearities in

the inplane displacements and the lateral deflections,

which appear in the Green’s nonlinear strain-displacement

relations, have the same order of magnitude, and the use

of which give a realistic solution of the mechanical/ther-

mal postbuckling problem of the plates. The present sim-

ple formulas for the thermal postbuckling of square plates

are derived by using the Green’s nonlinearity, which is

valid irrespective of the magnitude of the lateral deflec-

tion. However, care has to be taken that the large postbuck-

ling lateral deflections of the plates (and also of the other

structural members), do not interfere with the functional

requirements of the structural systems.

It is to be noted that a little work is available in the

literature, to study the mechanical/thermal postbuckling

behavior of the plates, by using the Green’s nonlinear

strain-displacement relations. It is also shown in the avail-

able work on the topic of the mechanical/thermal post-

buckling, that the thermal postbuckling gives the

additional compressive load carrying capacity, by an order

of magnitude higher when compared to the same in the

mechanical postbuckling [7, 9]. Hence, in the present

study, the emphasis is given on the derivation of the simple

analytical formulas to evaluate the realistic thermal post-

buckling load of the plates, on the Winkler foundation, by

using the Green’s nonlinear strain-displacement relations,

which are valid even for the large deflections. These

simple formulas can directly be used with ease, without

going for the complex mathematical analysis, by the prac-

ticing engineers and researchers, for the specified central

deflection of the square plate. The effect of elastic foun-

dation, in terms of the foundation parameter, on the ther-

mal postbuckling behavior of the square plate, is clearly

brought out, from the numerical results of thermal post-

buckling of the square plates, presented in this paper.

Green’s Nonlinear Strain-Displacement Relations

In the present formulation, the Green’s nonlinear

strain-displacement relations, applicable to the thin plates

are expressed [10], in the Cartesian x- and y- coordinate

system, as 

ε
x
  =  

du

dx
 + 

1

2
  




  




dw
x

dx





2

  +  




du

dx




2

  +  




dv

dx




2 



(1)

and

ε
y
  =  

dv

dy
 + 

1

2
  




  




dw
y

dy





2

  +  




du

dy




2

  +  




dv

dy




2 



(2)

For the square plate considered in this study, the ex-

pressions for the inplane displacements u and v, in the x-

and y- directions are similar. Fig.1 shows a schematic

diagram of a square plate, where the Cartesian x- and y-

coordinate system is used, on the elastic foundation. The

edges are denoted by (1), (2), (3) and (4), where the two

edges(1) and (2) are opposite and the two other opposite

edges (3) and (4) are opposite, as shown in Fig.1. The

lateral boundary conditions of the plate are, either all the

edges simply supported (s-s-s-s) or clamped (c-c-c-c),

where ‘s’ and ‘c’ denote simply supported and clamped

edges. The boundary conditions on the inplane displace-

ments are, u = 0 on the edges (1) and (2), v = 0 on the edges

(3) and (4) of the inplane boundary conditions, as shown

in Fig.1. The derivatives 
dv

dx
 and 

du

dy
 become zero, as the

inplane displacements v and u that arise due to the Pois-

son’s effect, are constants along the x- and y- axes, respec-

tively. Consequently, the Green’s nonlinear

strain-displacement relations given in Eqs.(1) and (2) are

simplified, as

ε
x
  =  

du

dx
 + 

1

2
  




  




dw
x

dx





2

  +  




du

dx




2 



(3)

and

ε
y
  =  

dv

dy
 + 

1

2
  




  




dw
y

dy





2

  +  




dv

dy




2 



(4)

Equations (3) and (4), are further simplified, by ne-

glecting the nonlinear terms 




du

dx




2

 and 




dv

dy




2

 , based on

the relative magnitudes, when compared to the magni-

tudes of the nonlinear terms 




dwx

dx





2

 and 




dwy

dy





2

. As such,

Eqs.(3) and (4) can be written, as
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ε
x
  =  

du

dx
 + 

1

2
  




dw
x

dx





2

(5)

and

ε
y
  =  

dv

dy
 + 

1

2
  




dw
y

dy





2

(6)

These Eqs.(5) and (6), are popularly known as the

von-Karman nonlinear strain-displacement relations. Be-

cause of the simplicity of these nonlinear strain-displace-

ment relations, many geometric nonlinear formulations

are developed, as mentioned earlier. However, the von-

Karman geometric nonlinear formulations have a limita-

tion that these relations are applicable, when the lateral

deflections are moderately large, as the nonlinear terms

containing the inplane terms are neglected. However, if

the lateral deflections are large and do not fall under the

category of ‘moderately large’, and to predict the realistic

thermal postbuckling behavior, the Green’s nonlinear

strain-displacements, given in Eqs.(3) and (4), have to be

used.

Equivalent Mechanical Bi-Axial Compressive Loads

Due to Temperature Rise

The inplane bi-axial mechanical equivalent of the

compressive loads developed in the square plate, due to

the immovable inplane normal edge displacements. These

uniform compressive loads Px and Py per unit length are

evaluated, by using the linear inplane strain-displacement

relations, of the two-dimensional problems in both the x-

and y- directions, respectively, which are given by

ε
x
  =  

∂u

∂x
  −  α ∆ T (7)

ε
y
  =  

∂v

∂y
  −  α ∆ T (8)

Equations (7) and (8) are applicable if both the me-

chanical, and thermal strains produced in the square plate,

when the temperature rise ∆T from its stress free tempera-

ture. From the conditions imposed on the inplane displace-

ments, as the normal edge inplane displacements of the

square plate are not allowed to move in its plane, and since

in the present study, as the temperature rise ∆T only is

considered, and the applied mechanical loads are zero, the

inplane displacement field for u (x, y) or v (x, y) is a null

field. As a result, the partial derivatives 
∂u

∂x
 and 

∂v

∂y
 in

Eqs.(7) and (8), become zeros and in the following

Eqs.(9), (10), (12) and (13), the terms containing these

partial derivatives do not exist for the uniform thin square

plate. By following the similar argument for the uniform

columns, which are much simpler one-dimensional prob-

lems, when compared to the two-dimensional square

plates. The end axial displacements of the columns are

restrained to move axially, and consequently the deriva-

tive 
du

dx
 becomes zero, as such the term 

du

dx
 does not exist

in the following Eq.(14) applicable for the uniform col-

umns. 

It is to be noted that the sign convention followed in

this paper is that all the compressive inplane loads are

treated as positive and a negative sign is not explicitly

included in the equations representing these compressive

loads. The negative sign is implicitly included in all the

compressive loads and is not shown in the equations that

give the compressive loads.

Based on the aforementioned explanation, the com-

pressive loads Px and Py , in the x- and y- directions, are

developed in the square plate, due to the temperature rise

∆T from the stress free temperature To, obtained from

Eqs.(7) and (8), can be written, as

P
x
  =  

E t

(1 −v
2
)
  

ε

x
 + v ε

y



(9)

and

P
y
  =  

E t

(1 −v
2
)
  

ε

y
 + v ε

x



(10)

Because of the symmetries involved in the square

plate, the following relation is obtained, as

P
x
  =  P

y
  =  P (11)

By substituting Eqs.(7) and (8), in Eqs.(9) and (10), the

following equation is obtained, as

P
y
  =  P

y
  =  

E t

(1 −v
2
)
  (1 + v ) α ∆ T (12)

where the loads Px and Py are uniform compressive loads.

From Eq.(12), which is applicable for the square plates the

NOVEMBER 2014 THERMAL POSTBUCKLING ANALYSIS OF THIN SQUARE PLATES 285



following expression for the uniform compressive load P

per unit length, which is the same, in the x- and y- direc-

tions, is obtained by

P  =  
E t α ∆ T

(1 − v )
(13)

For the uniform column, which is used for the purpose

of the validation of the present formulation, the mechani-

cal equivalent of the axial compressive load Pc, is devel-

oped due to the temperature rise ∆T from its stress free

temperature To. The expression for the compressive load

Pc is directly obtained from Eq.(7), as

P
c
  =  E A α ∆ T (14)

Admissible Functions for Lateral Deflection of

Square Plates

The lateral deflection w in the x- and y- directions are

given by the exact admissible trigonometric functions,

given by Leissa [11], as 

w  =  b sin 




Π x

a




   sin 





Π y

a





(15)

for the s-s-s-s square plate, and

w  =  
b

4
  



1 −  cos 

2 Π  x

a




   



1 −  cos 

2 Π y

a





(16)

for the c-c-c-c square plate, respectively.

The components of the lateral deflection w in the x-

and y- directions, can be written independently, without

loss of rigor, by following Rao et al. [4], as

w
x
  =  b sin 





Π x

a





(17)

in the x- direction, and

w
y
  =  b sin 





Π y

a





(18)

in the y-direction, for the s-s-s-s square plate, and 

w
x
  =  

b

2
  



1 −  cos 

2 Π  x

a





(19)

in the x- direction, and 

w
y
  =  

b

2
  



1 −  cos 

2 Π  y

a





(20)

in the y- direction, for the c-c-c-c square plate, respec-

tively. It is interesting to note that in the present simple

formulation, the admissible functions for the inplane dis-

placements are not required, as the formulation is based

on the tensile loads induced in the x- and y- directions,

because of the nonlinearities involved corresponding to

the derivatives of the inplane displacements u and v, which

can be expressed in terms of the derivatives of the lateral

deflection w of the square plate, as given by Dym [9].

Logical Steps to Evaluate Thermal Postbuckling

Load

If the square plate is subjected to a uniform tempera-

ture rise, a bi-axial mechanical equivalent of the compres-

sive load P per unit length is developed, which is the same

in both the x- and y- directions. If the temperature increases

further, the compressive load also increases, and at a

particular temperature, which is the critical temperature,

this bi-axial compressive load reaches the thermal buck-

ling load Pb. Further increase of the temperature above the

critical temperature, the square plate starts to undergo the

lateral deflection w. If the increase in the temperature is

much higher than the critical temperature, then the mag-

nitude of the lateral deflection becomes significantly

larger. Consequently, the use of the Green’s nonlinear

strain-displacement relations to obtain the realistic ther-

mal postbuckling behavior of the square plate contains the

nonlinear terms, in the lateral deflection w and the inplane

displacements u (or v), in both the x- and y- directions,

apart from the usual linear terms, respectively. These

nonlinear terms  induce the inplane tensile loads Txw
 and

Txu
 in the x- direction, and Tyw

 and Tyv
 per unit length in

the y- direction, as a result of the inplane stretching of the

plate, because of the large lateral deflection w. In the

present study, because of the symmetries existing in the

square plate, these tensile loads can be written as

Txw
 = Tyw

 = Tw  and Txu
 = Tyv

 = Tu = Tv = Tu ,v . As such,

the derivation of the ratio of the  thermal postbuckling and

buckling loads presented here are the same, by considering

either the x- or y- directions of the square plate, respec-

tively. Hence, in the formulation the tensile loads Tw and

Tu are derived corresponding to the x- direction only,

without using the suffix ‘x’ explicitly, for the sake of

simplicity in writing the tensile loads Tw and Tu, including

the bi-axial compressive load P. It is to be noted that the

induced tensile loads Tw and Tu because of the inplane
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stretching, due to large lateral deflection increases the

thermal compressive load carrying capacity of the plate,

beyond its thermal buckling load Pb. The increased com-

pressive load is the thermal postbuckling load Ppb, of the

square on the elastic foundation.

It is to be noted that the tensile loads Tw and Tu are

independent, and the thermal postbuckling and buckling

loads Ppb and Pb are dependent on the elastic foundation,

where the stiffness of the elastic foundation is K per unit

area. Because of the nature of the tensile loads Tw and

Tu , the total tensile load induced in the square plate is

(Tw + Tu ).  The relation between the thermal postbuckling

and buckling loads Ppb and Pb, and the total tensile load

(Tw + Tu ) , can be written, as

P
pb

  =  P
b
  + T

w
  +  T

u
(21)

In the nondimensional form, Eq.(21) can be written, as

λ
pb

  =  λ
b
 + λ

T
w

 + λ
T

u

(22)

or

λ
pb

λ
b

  =  1  + 

λ
T

w

λ
b

 + 

λ
T

u

λ
b

(23)

The nondimensional parameters given in Eq.(23) are

defined, as

λ
pb

  










 =  

P
pb

 a
2

π
 2

 D










 ,  λ

b
  










 =  

P
b
 a

2

π
 2

 D










  ,

λ
T

w

  










 =  

T
w

 a
2

π
 2

 D










  and    λ

T
u

  










 =  

T
u
 a

2

π
 2

 D










 .

The tensile load parameters λTw
 and λTu

 do not de-

pendent on the elastic foundation parameter

γ  



 =  

K a
4

π 4
 D




 and the thermal buckling load parameter

λb depend on the elastic foundation parameter

λ .

Evaluation of Tensile Loads Induced Due to Inplane

Stretching

The tensile loads Tw (or λTw
 ) and Tu (or λTu

 ) ,  which

are induced in the square plate, corresponding to the

nonlinear terms in the lateral deflection w and the inplane

displacement u, because of the use of the Green’s non-

linear strain-displacement relations, are obtained using the

following procedure. If the normal inplane edge displace-

ment at x = 0 of the square plate is immovable, and the

condition of the immovability on the inplane normal edge

displacement at the opposite edge x = a is relaxed, the

inplane normal outward (positive x-direction) displace-

ment uo of the edge at x = a, which is developed due to an

applied inplane uniform tensile load Tw per unit length

acting at the edge x = a, can be obtained [12], as

u
o
  =  

T a

t E
(24)

The inplane normal edge inward (negative x- direc-

tion) displacement ui at x = a, due to the large deflection

w is obtained, following the procedure given by Woi-

nowsky-Krieger [13], as

u
i
  =  

1

2
  ∫  

0

a

 


dw

dx




2

  dx (25)

To make the edge x = a immovable, which is the initial

condition that is specified on the immovability of the

normal edge inplane edge displacements, the relation ui =

uo on the magnitudes of uo and ui is used. Then, the tensile

load Tw induced in the square plate due to the inplane

stretching caused because of the large lateral deflection w,

as

T
w

  =  
E t

2 a
  ∫  

0

a

 




dw

dx




2

  dx (26)

Following a similar procedure, used to evaluate Tw as

given in Eq.(26), the tensile load Tu per unit length induced

in the square plate due to the nonlinear inplane term

corresponding to u, is evaluated by using the relation

du

dx
  =  

1

2
  




dw

dx




2

 given by Dym [9], as

T
u
  =  

E t

8 a
  ∫  

0

a

 




dw

dx




4

  dx (27)
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It is to be noted that in the present simple formulation,

which is based on the uniform tensile loads induced in the

plate due to large lateral deflections, an explicit evaluation

of the inplane displacement u or v, where u = v for the

square plate, is not required [6]. The evaluation of the

inplane displacement field of u (or v) is difficult, if not

impossible [8], when compared to choosing the lateral

deflection field of w, which is readily available [11].

Hence, in the present simple formulation, the uniform

tensile load Tu or Tv, where (Tu = Tv) for the square plate,

and the nonlinear terms 




du

dx




2

 or 




dv

dy




2

 , where









du

dx




2

  =  




dv

dy




2



 , for the square plate, are evaluated by

using the relation 
du

dx
 = 

1

2
 




dw

dx




2

 or 
dv

dy
 = 

1

2
 




dw

dy




2

 given by

Dym [9], is used to obtain the nonlinear term as 




du

dx




2

 as

1

4
  


dw

dx




2

 or 




dv

dy




2

 as 
1

4
 




dw

dy




2

 , and as such the expression

for the uniform tensile load Tu in Eq.(27) is obtained, by

using the admissible function chosen for the lateral deflec-

tion w. In a similar way the uniform tensile load Tv can be

evaluated by replacing the integrand 




dw

dx




4

 by 




dw

dy




2

 in

Eq.(27). Because of the symmetries involved in the square

plate, all the quantities corresponding to the x- direction

of the plate only are considered in the present study, and

even if the y- direction is considered in the analysis, the

required quantities will be the same, obtained by consid-

ering the x- direction.

Ratio of Thermal Postbuckling to Buckling Loads

The integrals involved in the expressions for the tensile

loads Tw and Tu per unit length are evaluated, from the

admissible functions taken for the lateral deflection w.

These functions, as mentioned earlier, are b sin 




Πx

a




 and

b

2
 



1 − cos 

2 Π x

a




 for  the s-s-s-s and c-c-c-c denote the

simply suppor ted and clamped edges of the square plates,

respectively. The important requirement of these func-

tions is that the central deflection of the square plate, at x

= y = 
a

2
 is b. The ratio of  

λpb

λb

 for both the s-s-s-s and the

c-c-c-c square plates is the same as given, by

λ
pb

λ
b

  =  1 + 
2.73

λ
b

 


b

t




2

 + 
5.052

λ
b
 n

2
 




b

t




4

(28)

The difference of the ratio 
λpb

λb

 between the s-s-s-s and

the c-c-c-c square plates is due to the buckling load pa-

rameters λb , which is evaluated, considering the elastic

foundation parameter γ. Eq.(28) gives the ratios of

λpb

λb

 , for  different values of the central lateral deflection

to the thickness ratio 
b

t
 and n  




 =  

a

t



 , for the square plates

considered in the present study.

Validation of Present Formulation

For the simple formulation proposed in this paper, it is

necessary to validate the numerical results in terms the

ratios of the thermal postbuckling and the buckling loads

λpb

λb

 of the square plate, considering the nonlinearities

involved in the inplane displacements and the lateral de-

flection, by using the Green’s nonlinear strain-displace-

ment relations. In the absence of any similar numerical

results in the literature, for the s-s-s-s and c-c-c-c square

plates, to the best of the authors’ knowledge, it is not

possible to directly validate the numerical results that are

obtained from the simple formulas derived. Hence, an

indirect method is used, to validate the present simple

formulation, in which the bending of the s-f-s-f, square

plate, as shown in Fig.2. The square plate, considered for

the purpose of validation, bends in the x- direction only,

where ‘f ’ represents the free edge when the bending only

is considered, without the elastic foundation (γ = 0). It is

to be noted that the boundary conditions, on the inplane

displacements u and v are the same as taken for the s-s-s-s

and c-c-c-c plates. The square plate can also be analyzed

as a uniform h-h or c-c column, where ‘h’ and ‘c’ denote

the hinged and clamped boundary conditions of the col-

umn, by suitably defining the nondimensional parameters,

involved in the h-h and c-c columns and the s-f-s-f and

c-f-c-f square plates. As the numerical results for the

thermal postbuckling are available, from the recent unique

formulation of Shirong and Changjun [15] for the uniform

column, and since a good agreement of the present numeri-

cal results of the s-f-s-f and c-f-c-f square plates are in good

agreement with those of the h-h and c-c uniform columns
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[15], the present numerical results, in the form of 
λpb

λb

 ob-

tained for the s-s-s-s and c-c-c-c square plates, are deemed

to have been validated. Hence, the present simple proce-

dure proposed in this paper, is one of the elegant indirect

methods, to validate the numerical results obtained, for the

thermal postbuckling in the form of 
λpb

λb

 of the s-s-s-s and

c-c-c-c square plates considered here, in terms of the

central deflection ratio 
b

t
.

To validate the proposed analytical formula for the

thermal postbuckling behavior of the square plate with

uniaxial loading, in the x- direction only, is considered.

The thermal compressive loading acts along the two op-

posite edges of the square plate, which are restrained to

move in the x- direction of the plate. On the other two

edges of the square plate, there are no geometric inplane

boundary conditions in the y- direction. The Green’s

strain-displacement relations, applicable for the plates, are

used to validate the proposed formulation.

Due to the large lateral deflection, the tensile loads

developed in the square plate Tw and Tu, by equating the

outward and inward axial displacements in the x- direc-

tion, following the procedure of Woinowsky-Krieger [13],

as

T
w

  =  
E t

2 a
  ∫  

0

a

 




dw
x

dx





2

  dx (29)

T
u
  =  

E t

8 a
  ∫  

0

a

 




dw
x

dx





4

  dx (30)

The one term trigonometric admissible function for the

lateral deflection w in the x- direction only is used [11], by

taking in to account of the boundary conditions on the

inplane displacements in the general formulation, as

w
x
  =  b  sin  





Π x

a





(31)

for the s-f-s-f and

w
x
  =  

b

2
  



1 −  cos 

2 Π x

a





(32)

for the c-f-c-f square plates, respectively.

The tensile load parameters due to the large deflection,

are expressed in the nondimensional form, as

λTw
 = 

Tw a
2

Π 2
 D

 and λTu
 = 

Tu a
2

Π 2
 D

 , by using the relation

du

dx
 = 

1

2
 




dwx

dx





2

 [9]. The ratio of 
λpb

λb

 can be written follow-

ing the general formulation, as

λ
pb

λ
b

  =  1 + 

λ
T

w

λ
b

 + 

λ
T

u

λ
b

(33)

In Eq.(33) the buckling load parameters used are cor-

responding to the h-h or c-c columns [2], without the

elastic foundation (γ = 0)and the ratios of 
λpb

λb

 are obtained,

as

λ
pb

λ
b

  =  1 + 3 




b

t




2

  +  
9 Π

2

16 n
2
 




b

t




4

(34)

for the s-f-s-f, and

λ
pb

λ
b

  =  1 + 
3

4
 




b

t




2

  +  
9 Π

 2

64 n
2
 




b

t




4

(35)

for the c-f-c-f square plates respectively.

The Eqs.(34) and (35) can be reduced to the column

problem, by using the appropriate equivalent terms as

given, by a = L ,  t = 2 √3  r and n = 
SR

2√3
 , where SR is the

slenderness ratio 
L

r
 . Based on these equivalent terms

Eqs.(34) and (35) reduce to

λ
pb

λ
b

  =  1 + 
1

4
 




b

r




2

  +  
3 Π

 2

64 SR
 2

 


b

r




4

(36)

for the h-h column, and

λ
pb

λ
b

  =  1 + 
1

16
 




b

r




2

  +  
3 Π

 2

256 SR
 2

 




b

r




4

(37)

for the c-c column, respectively.
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Numerical Results and Discussion

The square plate resting on the elastic foundation with

the foundation stiffness K per unit area, and the boundary

conditions for both the inplane displacements u and v, and

the lateral deflection w on the edges (1), (2), (3) and (4),

are shown in Fig.1. The two opposite edges (1) and (2) are

perpendicular to the x- axis and the other two opposite

edges (3) and (4) are perpendicular to the y- axis of the

square plate. The immovability condition of the inplane

displacements (Fig.1) are used to evaluate the expressions

for the tensile loads Tw and Tu induced in the square plate,

because of the inplane stretching, due to the large deflec-

tions of the plate. These tensile loads, used in this study,

are evaluated in the x- direction only, due to the symme-

tries existing in the square plate.

The thermal buckling load parameters λb of the thin

plate on the elastic foundation [4], which is required to

obtain the ratios of the thermal postbuckling and the

buckling load parameters 
λpb

λb

 ,  for several values of the

elastic foundation parameters γ that vary from 0.0, 1.0, 2.0

and 5.0, are presented in Table-1. For these values of

elastic foundation parameters considered, the phenome-

non of changing mode shapes of buckling do not exist for

the s-s-s-s and c-c-c-c thin square plates [2]. These values

of  λb are given for quickly evaluating the values of the

thermal postbuckling results of the square plate on elastic

foundation, in terms of 
λpb

λb

 , by using the tensile load

parameters λTw
 and λTu

 , the evaluation of which has been

explained in the earlier sections.

It is to be noted that the most important aspect of using

the Green’s nonlinear strain-displacement relations, to

obtain the ratios of the thermal postbuckling to buckling

loads 
λpb

λb

 of the thin plates (n = 34.6410 for the s-f-s-f and

n = 46.1880 for the c-f-c-f), are not available in the litera-

ture, to the best of the authors’ knowledge. However, if

the plate bends in the x- direction only, the s-f-s-f or the

c-f-c-f plate can be treated as the slender h-h column (SR

= 120) or the c-c column (SR = 160). It is to be noted that

the values of n taken for the s-f-s-f and c-f-c-f square plates

correspond to values of the SR of the h-h and c-c columns,

respectively. The values 
λpb

λb

 of these slender uniform

columns are readily available in the unique work of Shi-

rong and Changjun [15]. The present thermal postbuckling

results 
λpb

λb

 obtained for the thin square plates that bend in

the x- direction only and with those presented for the

columns [15] match well, for the boundary conditions

considered. These numerical results, that are presented in

Tables-2 and 3, indicate the effectiveness of the indirect

way of validation of the present numerical results. Further,

it can also be observed from these two tables, that by

properly defining the nondimensional central deflection

ratio 
b

t
 for the plates and the similar ratio 

b

r
 for the col-

umns, the indirect way of validation is successful, and

gives the same results for the ratio of 
λpb

λb

.

Table-4 gives the numerical results of the ratio 
λpb

λb

 for

the thin s-s-s-s square plates (n = 
a

t
 = 34.6410) on the

elastic foundation. The values of the foundation parameter

γ are taken as 0.0, 1.0, 2.0 and 5.0. For these values of the

foundation parameter, the transition of the buckling mode

shapes do not exist, as deduced from the study of Ti-

moshenko and Gere [2], for the thin square plates. It can

also be observed from this table that the values of 
λpb

λb

 , de-

crease with the foundation parameter, irrespective of the

value of the central deflection ratio 
b

t
. In the absence of

the numerical results for this problem, the physical trends

of 
λpb

λb

 , namely, the nonlinearity in the ratio of 
λpb

λb

 in-

creases, with the increase in the ratio of 
b

t
. And due to the

increase of the foundation parameter, the stiffness of the

plate increases, and hence, decreases the ratio of 
λpb

λb

.

Table-1 : Thermal Buckling Load Parameters λb of

Square Plate for Various Values of Elastic

Foundation Parameters [4]

Boundary

Conditions

λf=0.0 λf=1.0 λf=2.0 λf=5.0

s-s-s-s 2.0000 2.4860 2.9874 4.4913

c-c-c-c 5.3333 5.7016 6.0819 7.2229
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The present numerical results are consistent, according

to the physical reasoning, that the increasing and decreas-

ing trends of the nonlinearity of the thermal postbuckling,

is observed for the thin s-s-s-s square plates. A similar

behavior is also observed for the thin (n = 46.1880) c-c-c-c

square plate, for which the numerical results are presented

in Table-5. These numerical results are also consistent

with the physical trends, as discussed for the thin s-s-s-s

square plates.

Conclusions

Simple formulas are derived using a relatively simple

formulation, to evaluate the realistic thermal postbuckling

behavior of thin square plates on the elastic foundation.

Though, many researchers, who used the von-Karman

nonlinearity, which is applicable for the moderately large

deflections, the Green’s nonlinearity, which does not have

any restriction on the magnitude of the lateral deflections,

is employed in the present study. The simplicity of the

present formulation is demonstrated, by evaluating the

realistic thermal postbuckling behavior, from the nondi-

mensional parameters, namely, the bi-axial tensile and the

buckling loads only, which eliminates the complex mathe-

matical treatment of the problem. The present simple

formulation is validated, by using an indirect method.

Hence, the realistic postbuckling results of the square

plates are deemed to be accurate, based on the increasing

and decreasing trends of the nonlinearities that effect the

thermal buckling load ratios, by varying the foundation

and the central deflection parameters. The authors are of

the opinion that the simple formulas developed in this

paper can be used with confidence, by the practicing

engineers and researchers working on this topic of thermal

postbuckling of the square plate, by using the Green’s

Table-3 : Validation of 
λpb

λb
 Values Obtained from Intuitive Formulation for c-f-c-f Square Plate

With c-c Column

b

r

b

t

Present Study Shirong and

Changjum [15]

Absolute Value

of % DifferenceColumn

(SR = 160)

Square Plate

(n = 46.188)

1.6211 0.4679 1.1642 1.1642 1.1638 0.0411

3.2422 0.9359 1.6574 1.6574 1.6563 0.0718

4.8634 1.4039 2.4808 2.4808 2.4816 0.0315

6.4855 1.8722 3.6368 3.6368 3.6464 0.2619

8.1056 2.3398 5.1257 5.1257 5.1604 0.6705

9.7268 2.8078 6.9535 6.9535 7.0365 1.1781

11.347 3.2755 9.1220 9.1220 9.2914 1.8228

Table-2 : Validation of 
λpb

λb
 Values Obtained from Intuitive Formulation for s-f-s-f Square Plate

With h-h Column

b

r

b

t

Present Study Shirong and

Changjum [15]

Absolute Value

of % DifferenceColumn

(SR = 120)

Square Plate

(n = 34.641)

1.3329 0.3847 1.4441 1.4441 1.4438 0.0270

2.6625 0.7685 2.7735 2.7735 2.7764 0.1017

3.9857 1.1505 4.9789 4.9789 5.0019 0.4586

5.2993 1.5297 8.0451 8.0451 8.1265 1.0006

6.6005 1.9053 11.9516 11.9516 12.1590 1.7055
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nonlinear strain-displacement relations. The authors also

postulate that for the very thin plate, where the value of n

is higher, the thermal postbuckling behavior obtained is

the same, irrespective of the use of Green’s or von-Karman

nonlinear strain-displacement relations, by critically ana-

lyzing the thermal postbuckling equation for the square

plates.
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