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Abstract

Analytical solutions of laminated composite shells with embedded actuating layers are
presented in this study. The actuating layers are used to control natural vibration of laminated
composite shell panels. The first order shear deformation theory (FSDT) and higher order
shear deformation theory (HSDT) for shells are used to represent the shell kinematics and
equations of motion. The exact solution for symmetric laminated shells with embedded
actuating layers under simply supported boundary conditions is obtained using the Navier
solution procedure. Negative velocity feedback control is used. The parametric effect of the
position of the magnetostrictive layers, material properties and control parameters on the
vibration suppression are investigated in detail. It is found that (i) the shortest vibration
suppression  time  is achieved by placing the actuating layers farthest from the neutral axis
(ii) using thinner smart material layers leads to better vibration attenuation characteristics
and, (iii) the vibration suppression time is longer for a lower value of the feedback control
coefficient. For thicker shells HSDT predicts larger amplitude of vibration and longer
vibration suppression time as compared to FSDT predictions.

Keywords : Composite material,  Higher order shear deformation, Vibration suppression,
Shell

Nomenclature

A31, A32, = magnetostrictive coefficients

B31, B32, C31, C32

α , β = positive real number

α1, α 2 = surface metrics

ε1, ε2, ε6, = total strains

γ4 , γ5

ε1
0, ε2

0, ε6
0, = strains from classical shell theory

γ4
0, γ5

0, 

ε1
1, ε2

1, ε6
1, = strains from HSDT

γ4
1 , γ5

1 , ε1
2 , ε2

2 , ε6
2

ξ 1 , ξ2 , ζ = orthogonal curvilinear co-ordinates

λ = eigen value

λ0 = arbitrary constant

φ1 , φ2 = rotational displacements

νm = Poissons ratio of magnetostrictive material

ρ( K ) = density of kth layer
ρm = density of magnetostrictive material
σ1, σ2, τ4, = stress components
τ5, σ6

ωd = damping frequency
a = length of the shell
b = breadth of the shell
bc = coil width
C (t) = control gain

dk = material constant

dA1 , dA2 = elementary areas across the thickness
   of the shell
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ds = square of the distance on the middle surface
dS = square of the distance
e31
(k), e32

 (k), = magnetostr ictive   mater ial proper ties

e36
(k)    of kth layer

g1, g2 = tangents to ξ 1, ξ 2
h = thickness of the shell
hl = thickness of each composite layer
hm = thickness of magnetostrictive layer
kc = magnetostrictive coil constant
m, m1, = positive integers

m2, n
nc = number of coil turns
q = uniformly distributed load in the transverse

   direction
r = position vector on the middle surface
rc = coil radius
t = suppression time
z = thickness co-ordinate
[ ]0 = contribution due to classical shell theory

[ ]M = contribution due to magnetostrictive layer
Aij, Bij, Dij, = stiffness coefficients of composite material

Eij, Fij, Hij

C1, C2 = constants which depend on thickness of the

   shell
Em = Youngs modulus of magnetostrictive material
H = magnetic field intensity
I = coil current intensity
I1, I2, I3, = moment of inertia

I4, I5, I6, I7
I
_

i, J
_

i, = terms which depend on inertia terms
i = 1, 5
L1, L 2, L 3 = lame coefficients
M1, M2, M6= moments applied on the edges of the shell

M M = moments due to the magnetostrictive layer
N = number of layers assumed for computation
N1, N2, N6 = forces applied on the edges of the shell

N M = forces due to the magnetostrictive layer
Q1, Q2 = shear forces applied on the edges of the shell
K1, K2 = shear forces

Qij
 (k) = stiffness coefficients of kth layer

R = position vector of arbitrary point

R1, R2 = principal radii of curvature of the middle
   surface of the shell

Rn = positive real number
Sij, Cij, Mij = coefficients of stiffness, damping and mass

   matrices
S
_
 ij = coefficients of solution matrix

TS = suppression time ratio
Wmax = maximum amplitude in transverse direction
Zm = transverse location of magnetostrictive layer

   in the shell

 Introduction

A  number of materials have been used in sensor/ac-
tuator applications. Piezoelectric materials, magnetostric-
tive materials, shape memory alloys, and
electro-rheological fluids have all been integrated with
aerospace structures to make smart structures. Among
these materials piezoelectric, electrostrictive and magne-
tostrictive materials have the capability to serve as both
sensors and actuators. Piezoelectric materials exhibit a
linear relationship between the electric field and strains for
low field values (up to 100V/mm). This relationship is
nonlinear for large fields, and the material exhibits hyster-
esis [1]. Further, piezoelectric materials show dielectric
aging and hence lack reproducibility of strains, i.e. a drift
from zero state of strain is observed under cyclic electric
field applications [2].

Crawley and Luis [3] demonstrated the feasibility of
using piezoelectric actuators for free vibration reduction
of a cantilever beam. Baz, et al. [4] investigated vibration
control using shape memory alloy and carried out their
characterization. Choi et al., [5] demonstrated the vibra-
tion reduction effects of electro rheological fluid actuators
in a composite beam.

An ideal actuator, for distributed embedded applica-
tion, should have high energy density, negligible weight
and point excitation with a wide frequency bandwidth.
Terfenol-D, a magnetostrictive material, has the charac-
teristics of being able to produce strains up to 2000 μm and
the energy density as high as 25000 Jm-3 in response to a
magnetic field. Goodfriend and Shoop [6] reviewed the
material properties of Terfenol-D with regard to its use in
vibration isolation. Bryant et al. [7] presented experimen-
tal results of a magnetostrictive Terfenol-D rod used in
dual capacity of passive structural support element and an
active vibration control actuator. Friedmann et al. [8] used
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magnetostrictive material Terfenol-D in high speed heli-
copter rotors and studied the vibration reduction charac-
teristics. Anjanaappa and Bi [9,10] investigated the
feasibility of using embedded magnetostrictive mini ac-
tuators for smart structure applications, such as vibration
suppression of beams. A self-sensing magnetostrictive
actuator design based on a linear model of magnetostric-
tive transduction for Terfenol-D was developed and ana-
lyzed by Pratt and Flatau [11]. Eda et al. [12] and Krishna
Murty et al. [13,14] proposed magnetostrictive actuators
that take advantage of the ease with which the actuators
can be embedded and remote excitation capability of
magnetostrictive particles as actuators for smart struc-
tures. Reddy [15], Reddy and Barbosa [16], Pradhan et al.
[17], Marfia et al. [18] and Reddy and Liu [19] presented
finite element formulations and analytical solutions for
simply supported boundary conditions of laminated com-
posite beams and plates with embedded active layers.

Reddy [20-23] reported higher order theory and its
effects on composite materials. Lee and Guo [24] studied
non-linear vibration suppression of a composite panel.
Song et al. [25] presented a review article about vibration
control of civil structures using smart materials. Pradhan
[26] studied vibration suppression of FGM (Functionally
Graded Material) structures. Zhang and Shen [27] re-
ported vibration suppression of laminated plates with pie-
zoelectric fiber-reinforced composite layers. However,
there is very little information is available on higher order
shear deformation studies of smart composite shells.

In the present study vibration control of smart compos-
ite shells is studied using the higher order shear deforma-
tion theory. Exact solutions are developed for simply
supported doubly curved composite shells with embedded
magnetostrictive layers. This closed form solution exists
for the shells. A simple negative velocity feedback control
is used to actively control the dynamic response of the
structure through a closed loop control. Numerical results
of vibration suppression effect for various locations of the
magnetostrictive layers, material properties, and control
parameters are presented. Influence of HSDT on the thick
composite shells is also investigated.

Theoretical Formulation

Kinematic Description

Figure 1a contains a differential element of a doubly
curved shell element with constant curvatures along two
coordinate directions ( ξ1, ξ2), where ( ξ1, ξ2, ζ) denote

the orthogonal curvilinear coordinates such that ξ1 and
ξ2 curves are the lines of curvature on the middle surface
(ζ = 0). Thus, the doubly curved shell panel considered
here, the lines of the principal curvature coincide with the
coordinate lines. The values of the principal radii of cur-
vature of the middle surface are denoted by R1 and R2. The
position vector of a point ( ξ1, ξ2, 0) on the middle surface
is denoted by r, and the position of an arbitrary point
( ξ1, ξ2, ζ) is denoted by R (Fig.2). The square of the
distance ds between points ( ξ1, ξ2, 0) and
( ξ1 + dξ1, ξ2 + dξ2, 0) is determined by

(ds)2 = d r . d r  =  α1
2 (d ξ1)

2 + α2
2 (d ξ2)

2 (1)

in which d r = g1 d ξ1 + g2 d ξ2 the vectors g1 and g2

(gi = ∂r
∂ξi

) are tangent to the ξ1 and ξ2 coordinate lines and

α1 and α2 are the surface metrics

α1
2  =  g1 . g1,     α2

2  =  g2 . g2 (2)

The square of the distance dS between ( ξ1, ξ2, ζ) and
( ξ1 + dξ1, ξ2 + dξ2, ζ + dζ) is given by

(dS)2 = d R . d R  =  L1
2 (d ξ1)

2 + L2
2 (d ξ2)

2 + L3
2 (d ζ)2

(3)

in which dR  =  ⎛⎜
⎝

∂R
∂ξ1

⎞
⎟
⎠
 d ξ1 + ⎛⎜

⎝

∂R
∂ξ 2

⎞
⎟
⎠
 d ξ2 + ⎛⎜

⎝

∂R
∂ζ
⎞
⎟
⎠
 dζ and

L1, L2 and L3 are the Lame’ coefficients

L1  =  α1  ⎛⎜
⎝
1 +  ζR1

⎞
⎟
⎠
 ,   L2  =  α2  ⎛⎜

⎝
1 +  ζR2

⎞
⎟
⎠
 ,   L3 = 1 (4)

Displacement Field

We assume the following form of the displacement
field that is consistent with the assumptions of a thick shell
theory as explained in Reddy and Liu [19].

u
_

1 (ξ1, ξ2, ζ, t)  =  
L1
α1

 u1 (ξ1, ξ2, t)

+ ζφ1 (ξ1, ξ2, t) − c1ζ
3 
⎛
⎜
⎝

⎜
⎜
φ 1 + 

∂u3
α1 ∂ξ1

⎞
⎟
⎠

⎟
⎟
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u
_

2 (ξ1, ξ2, ζ, t)  =  
L2
α2

 u2 (ξ1, ξ2, t)

+ ζφ2 (ξ1, ξ2, t) − c1ζ
3 
⎛
⎜
⎝

⎜
⎜
φ 2 + 

∂u3
α1 ∂ξ2

⎞
⎟
⎠

⎟
⎟

u
_

3 (ξ1, ξ2, ζ, t)  =  u3 (ξ1, ξ2, t) (5)

where

1
∂xi

  =  1
αi

 1
∂ ξi

 (i = 1, 2) (6)

(u
_

1, u
_

2, u
_

3)  are the displacements of a point (ξ1, ξ2, ζ)
along the (ξ1, ξ2, ζ) coordinates; and (u1, u2, u3) are dis-
placements of a point (ξ1, ξ2, 0) on the mid surface of the
shell. Substituting equation (5) into strain-displacement
relations for the third-order shear deformation theory, one
obtains

⎧

⎨

⎩

⎪
⎪

⎪
⎪

ε1

ε2

ε6

⎫

⎬

⎭

⎪
⎪

⎪
⎪

 = 

⎧

⎨

⎩

⎪
⎪

⎪
⎪

ε1
0

ε2
0

ε6
0

⎫

⎬

⎭

⎪
⎪

⎪
⎪

 + ζ  

⎧

⎨

⎩

⎪
⎪

⎪
⎪

ε1
1

ε2
1

ε6
1

⎫

⎬

⎭

⎪
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⎪
⎪

 + ζ3  

⎧

⎨

⎩

⎪
⎪

⎪
⎪

ε1
2

ε2
2

ε6
2

⎫

⎬

⎭

⎪
⎪

⎪
⎪

⎧

⎨

⎩

⎪

⎪

γ4

γ5

⎫

⎬

⎭

⎪

⎪
 = 

⎧

⎨

⎩

⎪

⎪

γ4
0

γ5
0

⎫

⎬

⎭

⎪

⎪
 + ζ2  

⎧

⎨

⎩

⎪

⎪

γ4
1

γ5
1

⎫

⎬

⎭

⎪

⎪
(7)

where

⎧

⎨

⎩

⎪
⎪

⎪
⎪

ε1
0

ε2
0

ε6
0

⎫

⎬
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⎪
⎪

 = 

⎧

⎨

⎩
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⎪
⎪
⎪

⎪
⎪
⎪
⎪

∂u1
∂x1

 + 1
R1

 u3

∂u2
∂x2

 + 1
R2

 u3

∂u2
∂x1

 + 
∂u1
∂x2

⎫

⎬

⎭

⎪
⎪
⎪
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⎪
⎪
⎪
⎪

⎧
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⎪
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⎪
⎪
⎪
⎪

⎪
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⎪

∂φ1
∂x1
∂φ2
∂x2

∂φ2
∂x1
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∂φ1
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⎫

⎬

⎭

⎪
⎪
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⎪
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⎪
⎪
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⎪
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⎪
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⎫

⎬

⎭

⎪
⎪

⎪
⎪

 =  − C1 

⎧

⎨

⎩

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪

∂φ1
∂x1

 + 
∂

2u3

∂x1
2

∂φ2
∂x2

 + 
∂

2u3

∂x2
2

∂φ2
∂x1

 + 
∂φ1
∂x2

 + 2 
∂

2u3
∂x1∂x2

⎫

⎬

⎭

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪

⎧

⎨

⎩

⎪
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γ4
0

γ5
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⎫

⎬

⎭

⎪

⎪
 =  

⎧

⎨

⎩

⎪
⎪

⎪
⎪

φ2 + 
∂u3
∂x2

φ1 + 
∂u3
∂x1

⎫

⎬

⎭

⎪
⎪

⎪
⎪

⎧

⎨

⎩

⎪

⎪

γ4
1

γ5
1

⎫

⎬

⎭

⎪

⎪
 =  − C2 

⎧

⎨

⎩

⎪
⎪

⎪
⎪

φ2 + 
∂u3
∂x2

φ1 + 
∂u3
∂x1

⎫

⎬

⎭

⎪
⎪

⎪
⎪

(8)

and (φ1, φ2) are rotations of a transverse normal line about
the ξ2 and ξ1 coordinate axes, respectively.

φ1  =  − 
∂u3
∂ ξ1

,     φ2  =  − 
∂u3
∂ ξ2

(9)

Constants C1 and C2 are defined as

C1  =  4
3h2,  C2  =  3C1 (10)

Constitutive Relations

Suppose that the shell is composed of N orthotropic
layers stacked on each other, with each layer principal
material 1 axis oriented at an angle θk from the shell x1
coordinate in the counterclockwise sense. The stress-strain
relations of the kth lamina, whether structural layer or
actuating/sensing layer, in the shell coordinate system are
given as
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⎧

⎨

⎩

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

σ
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σ
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τ
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τ
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σ6

⎫
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⎭

⎪
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⎪
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⎪
⎪
⎪
⎪

(k)

 = 

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢
⎢
⎢

Q
__
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Q
__
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0

0

Q
__

16

   

Q
__
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Q
__
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0

0

Q
__
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0

0

Q
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Q
__
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0

   

0

0

Q
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Q
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0

   

Q
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Q
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0

0

Q
__

66

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥

 (k)

  

⎧

⎨

⎩

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

ε
1

ε
2

γ
4

γ
5

ε
6

⎫

⎬

⎭

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

k

 − ζ  

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

e
_
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e
_

32

0
0

e
_

36

⎫

⎬

⎭

⎪
⎪
⎪

⎪
⎪
⎪

(k)

 H

(11)

where Q
_

 ij
 are the transformed stiffnesses and Qij

 (k) are the
lamina stiffnesses referred to the principal material coor-
dinates of the  kth lamina.

Q
__

11  =  Q
11

 cos
4
 θ + 2 (Q12 + 2Q

66
) sin

2
 θ cos

2
 θ + Q22 sin

4
 θ

Q
__

12  =  (Q
11

 + Q22 − 4Q
66
) sin

2
 θ cos

2
 θ + Q12 (sin

4
 θ + cos

4
 θ)

Q
__

22  =  Q
11

 sin
4
 θ + 2 (Q

12
 + 2Q

66
) sin

2
 θ cos

2
 θ + Q

22
 cos

4
 θ

Q
__

16 = (Q
11

 − Q
12

 − 2Q
66
) sin θ cos

3
 θ + (Q

12
 − Q

22
 + 2Q

66
) sin

3
 θ cos θ

Q
__

26 = (Q
11

 − Q
12

 − 2Q
66
) sin

3
 θ cos θ + (Q

12
 − Q

22
 + 2Q

66
) sin θ cos

3
 θ

Q
__

66 = (Q
11

 + Q
22

 − 2Q
12

 − 2Q
66
) sin

2
 θ cos

2
 θ + Q

66
 (sin

4
 θ + cos

4
 θ)

Q
__

44 = Q44 cos2 θ + Q55 sin2 θ

Q
__

45 = (Q55 − Q44)  cos θ  sin θ

Q
__

55 = Q55  cos2 θ  +  Q44  sin2 θ (12)

and

Q11 = 
E1

1 − ν12 ν21
,   Q12 = 

ν12 E2
1 − ν12 ν21

,   Q22 = 
E2

1 − ν12 ν21

Q66  =  G12 ,     Q44  =  G23 ,     Q55  =  G13 (13)

The superscript k on Qij , θ, as well as on the engineer-
ing constants E1 , E2 , ν12 and so on are omitted for brev-
ity. In equation (11), H denotes the intensity of the

magnetic field and e
_

ij are the magnetostrictive material
coefficients.

e
_

31  =  e31 cos2 θ + e32 sin2 θ

e
_

32  =  e32 cos2 θ + e31 sin2 θ

e
_

36  =  (e31 − e32) sin θ  cos θ (14)

Feedback Control

A velocity feedback control is used in the present
study. In the velocity feedback control, the magnetic field
intensity H is expressed in terms of coil current
I (ξ1, ξ2, t)

H (ξ1, ξ2, t)  =  kc I (ξ1, ξ2, t) (15)

Current  I is related to the transverse velocity u
.
3 compo-

nent as

I (ξ1, ξ2, t)  =  c (t) 
∂u3
∂ t

(16)

where kc is the magnetic coil constant and is related to the
number of coil turns nc  coil width  bc, and coil radius rc

kc  =   
nc

√⎯⎯⎯⎯⎯⎯ bc
2 + 4 rc

2 (17)

The parameter c(t) is known as the control gain.

Equations of Motion

The governing equations of motion is being derived
from the dynamic version of the principle of virtual work
for the laminated shell. By integrating the displacement
gradients by parts and setting the coefficients of
δu1, δu2, δu3, δφ1 and δφ2 to zero separately (the moment
terms in the first two equations are omitted) we get

∂N1
∂x1

  +  
∂N6
∂x2

  =  I
_
1 
∂

2u1

∂t2
  +  I

_
2  
∂

2
φ1

∂ t2
  −  I

_
3  
∂

2u3

∂t2
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∂N6
∂x1

  +  
∂N2
∂x2

  =  J
_
1 
∂

2u2

∂t2
  +  J

_
 2  
∂

2
φ2

∂ t2
  −  J

_
 3  
∂

2u3

∂t2

∂Q
1

∂x
1

 + 
∂Q

2
∂x

2
 − C

2
 
⎛
⎜
⎝

⎜
⎜

∂K1
∂x

1
 + 

∂K
2

∂x
2

⎞
⎟
⎠

⎟
⎟
 + C

1
 
⎛

⎜

⎝

⎜

⎜

∂
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2  + 2 

∂
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 ∂x

2
 + 

∂
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2
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2

⎞

⎟

⎠
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⎟

− 
N1
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 − 
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_
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∂
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_
 5  
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where

(Ni, Mi, Pi) = ∑ 
k = 1

N

      ∫ 
ζ k

ζ k+1

  σi
 (k) (1, ζ , ζ 3

) d ζ (i = 1, 2, 6)
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) d ζ
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The inertia terms are defined as

(I
1
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2
, I

3
, I

4
, I5, I

7
)  =  ∑ 

k = 1

N

      ∫ 
ζ k
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  ρ
 (k)
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, ζ
 3

, ζ
 4

, ζ
 6
) d ζ

(21)

where ρ(k) being the density of the kth layer and N is the
number of layers in the laminate.

Laminate Constitutive Equation

Using equations (7) and (11) in equation (19) we get
the following constitutive equations for the actuator em-
bedded laminate
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where the laminate stiffness coefficients
(Aij, Bij, Dij, Eij, Fij, Hij for i,j = 1, 2, 6) are defined by

(A
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ij
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(24)

and the laminate stiffness coefficients (Aij, Dij, Fij for i,j =
4, 5) are defined by
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and m1, m2, ... denote the layer numbers of the magne-
tostrictive or any actuating/sensing layers.

Analytical Solution

The equations of motion (18) can be expressed in terms
of (u1, u2, u3, φ1, φ2)  displacements by substituting for
the force and moment resultants from Eqs. (22,23). One
can derive the equations of motion for homogeneous lami-
nates.

Exact solution for the partial differential equations
(18) on arbitrary domains and for general boundary con-
ditions is not possible. However, for simply supported
shells whose projection in the x1, x2-plane is a rectangle
and for a lamination scheme of antisymmetric cross-ply or
symmetric cross-ply type equations (18) are solved ex-
actly. The Navier solution exists if the following
stiffnesses are zero [23].
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Ai6 = Bi6 = Di6 = Ei6 = Fi6 = Hi6 = 0   (i = 1, 2)   and

A45 = D45 = F45 = 0 (30)

The simply-supported boundary conditions for the
higher order shear deformation theory (HSDT) are as-
sumed to be
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(31)

where  a  and b denote the lengths along x1 and x2 direc-
tions,  respectively.  The  boundary  conditions in equa-
tion (31)  are  satisfied  by  the  following  expansions
(Reddy [21]).

u1 (x1, x2, t)  =  ∑ 
n = 1

∞

   ∑ 
m = 1

∞

  Umn (t)  cos α x1  sin β x2
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  Ymn (t)  sin α x1  cos β x2

(32)

Substituting equation (32) into equations of motion (18)
we obtain
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Where Sij,  Cij and  Mij (i, j = 1,2, ... 5) are written in
equations (39-41) in the appendix. For vibration control,
we assume q = 0 and seek solution of the ordinary differ-
ential equations  in the following form

U
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X
m n

 (t)  =  X
0
e
λ t

,  Ym n
 (t)  =  Y

0
e
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Substituting equation (34) into equation (33), for a non-
trivial solution we obtain the result
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where

S
_

ij = Sij + λ Cij + λ2 Mij ( for   i, j = 1, 2, 3, 4, 5 ) (36)

This equation gives five sets of eigenvalues. The low-
est one corresponds to the transverse motion. The eigen-
value can be written as λ =  − α + i ωd, so that the damped
motion is given by

u3 (x1, x2, t)  =  1
ωd

e− α t  sin  ωd t  sin 
n π x1

a   sin 
n π x2

b
(37)

In arriving at the last solution, the following boundary
conditions are used:

u1 (x1, x2, 0) = 0,   u. 1 (x1, x2, 0) = 0,   u2 (x1, x2, 0) = 0,

u
.
2 (x1, x2, 0) = 0,   u3 (x1, x2, 0) = 0,   u

.
3 (x1, x2, 0) = 1,

φ1 (x1, x2, 0) = 0,   φ
.
1 (x1, x2, 0) = 0,   φ2 (x1, x2, 0) = 0,

φ
.
2 (x1, x2, 0) = 0 (38)

Results and Discussion

Numerical results are obtained using the formulation
presented here and the results are obtained for natural
frequencies, magnetostrictive damping coeffcients. The
suppression time required to reduce vibration amplitudes
to one-tenth of undamped values is calculated. The maxi-
mum amplitude occurs at the center of the shell panel for
simply supported shells. Various lamination schemes are
considered to show the influence of the position of the pair
of magnetostrictive layers from the neutral plane on the
amplitude suppression time. Also, a time ratio relation
between the thickness of the layers and the distance to the
neutral plane of the laminated composite shell is obtained.
All values of the composite material and structural con-
stants are tabulated and both damped and undamped fre-
quencies are presented in the figures.

The material properties used are same as those used in
[17]. The shell of arc lengths 1 m each is considered. The
composite lamina material properties are listed in Table-1.
Magnetostrictive material properties (for Terfenol-D ma-
terial) are assumed to be 

Em = 26.5 GPa,    νm = 0.0,    ρm = 9250  kg − m−3,

dk  =  1.67−8 mA−1 ,    c (t) rc = 104

kc
 ⁄ rc is assumed as 1. Magnetostrictive constants are

calculated as

e31
(k)  =  e32

(k)  =  Em  ∗  dk
 ⁄ ( 2 (1 + νm ) )

The numerical values of various materials and struc-
tural constants (e.g. moment of inertia, magnetostrictive
material constants) based on different lamination schemes
and material properties (CFRP, Graphite-Epoxy (Gr-Ep)
(AS), Glass-Epoxy (Gl-Ep), Boron-Epoxy (Br-Ep)) are
listed in Tables 2-5. Numerical values of such constants
based on classical and first order shear deformation theory
are available in references [17, 26]. One needs to compare
the values of these constants and debug the developed
computer code.

Magnetostrictive  damping  coeffcients and natural
frequencies for CFRP lamination schemes are listed in
Tables 6-11. hl , hm and h represent the thickness of each
composite layer, thickness of magnetostrictive layer and
total thickness of the shell, respectively.

Tables-6 and 7 show the influence of the position of
the magnetostrictive layer (in the ζ = z-direction) from the
neutral axis and the influence of the lamination scheme on
the damping of amplitude of vibration for the fundamental
mode, (u3)max  ≡  wc (maximum transverse deflection of
the shell panel). The value of α [see Eq. (37)] increases
when the magnetostrictive layer is located farther away
from the neutral axis, indicating faster vibration suppres-
sion. This is due to the larger bending moment created by
actuating force in the magnetostrictive layers. This effect
can also be seen from Fig.3a-3e. Fig.4 contains a superpo-
sition of the results of [m/0/90/0/90]s, [0/m/90/0/90]s and
[0/90/m/90]s lamination schemes. It is also observed from
Fig.4 that [m/0/90/0/90]s has has the maximum vibration
suppression and thus the lowest frequency. Present results
also show that the vibration suppression time decreases
very rapidly as mode number increases. Fig.5 shows the
transient response of modes 1 and 3 for a ten layered
[0/90/m/0/90]s laminate. Figs.6a-6d show the transient
response of modes 1, 3, 5 and 7, respectively, for a ten
layered [0/90/m/0/90]s laminate. It can be observed that
attenuation favors the higher modes. This is clearly seen
in Fig.5, where modes 1 and 3 are superposed and it is
obvious that mode 3 attenuates at a significantly faster
rate.

FEBRUARY 2010 VIBRATION CONTROL OF COMPOSITE THICK SHELLS 29



In this study, the vibration suppression time is defined
as the time required to reduce the uncontrolled vibration
amplitude to one-tenth of its initial amplitude. Numerical
simulations are carried out to estimate the vibration sup-
pression time ratio (suppression time divided by the maxi-
mum suppression time) as the distance between the
magnetostrictive layers and the neutral axis are varied.
Parametric studies involving different lamination

schemes, layer thickness and control gain values were
carried out. Results are presented in Tables 6-10. Gener-
ally, the maximum suppression time is realized when the
magnetostrictive layer is closest to the neutral axis of the
shell. As a result of the normalization, Tables 8-9 show
that the suppression time ratio does not change with the
intensity of control gain of the magnetic field.

Table-1 : Material Constants of Various Composite Materials
Material E11  [GPa] E22  [GPa] G13  [GPa] G23  [GPa] G12  [GPa] ν12 ρ  [kg m−3]
CFRP 138.6 8.27 4.96 4.96 4.12 0.26 1824

Gr-Ep (AS) 137.9 8.96 7.20 6.21 7.20 0.30 1450
Gl-Ep 53.78 17.93 8.96 3.45 8.96 0.46 1900
Br-Ep 206.9 20.69 6.9 4.14 6.9 0.30 1950

Table-2 : Coefficients for Different Laminates and Materials
Material Laminate Zm m F11 Nm3 H11 Nm5

 (10-5)
D11 Nm

(104)
F12 Nm3

(10-2)
H12 Nm5

(10-7)
CFRP [0/90/0/90/m]s 0.0005 0.132 0.257 0.768 0.270 0.482

[0/90/0/m/90]s 0.0015 0.132 0.257 0.776 0.267 0.481
[0/90/m/9/90]s 0.0025 0.06 0.116 0.357 0.013 0.025
[0/m/90/0/90]s 0.0035 0.128 0.257 0.707 0.202 0.394
[m/0/90/0/90]s 0.0045 0.068 0.104 0.527 0.088 0.101

Gr-Ep [0/90/m/0/90]s 0.0025 0.123 0.250 0.685 0.315 0.588
Gl-Ep [0/90/m/0/90]s 0.0025 0.06 0.116 0.357 0.131 0.024
Br-Ep [0/90/m/0/90]s 0.0025 0.187 0.379 0.103 0.730 0.014

Table-3 : Coefficients for Different Laminates and Materials
Material Laminate D12 Nm

(103)
F22 Nm3

(10-1)
H22 Nm5

 (10-6)
D22 Nm

(104)
F66 Nm3

(10-2)
H66 Nm5

(10-7)
CFRP [0/90/0/90/m]s 0.179 0.529 0.721 0.454 0.515 0.919

[0/90/0/m/90]s 0.170 0.515 0.717 0.526 0.526 0.923
[0/90/m/9/90]s 0.153 0.529 0.727 0.424 0.592 0.973
[0/m/90/0/90]s 0.127 0.272 0.336 0.289 0.800 1.290
[m/0/90/0/90]s 0.921 0.368 0.583 0.318 0.128 2.530

Gr-Ep [0/90/m/0/90]s 0.191 0.533 0.738 0.426 0.939 1.621
Gl-Ep [0/90/m/0/90]s 0.792 0.381 0.613 0.277 0.116 2.025
Br-Ep [0/90/m/0/90]s 0.443 0.853 0.123 0.657 0.916 1.578
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In all the numerical simulations the suppression time
ratio is given by hm

 ⁄ (2 zm), where hm is the thickness of
the magnetostrictive layer and zm is the distance between
the magnetostrictive layer and the mid-plane of the shell.
The normalized suppression time is denoted as Ts.

From Figs.3-4, it is observed that the damping in-
creases as the magnetostrictive layers are moved away
from the neutral axis. From Tables 6-10, we examined the
variation of the time ratio with respect to the distance of
the magnetostrictive layer from the neutral axis for various
lamination schemes and magnetostrictive layer thick-

Table-4 : Coefficients for Different Laminates and Materials
Material Laminate D66 Nm

(103)
F44 Nm3

(10-2)
H44 Nm
 (103)

A44 Nm-1

(108)
F55 Nm3

(10-2)
D55 Nm5

(103)
CFRP [0/90/0/90/m]s 0.349 0.621 0.419 0.662 0.621 0.419

[0/90/0/m/90]s 0.386 0.630 0.452 0.662 0.630 0.452
[0/90/m/9/90]s 0.459 0.690 0.518 0.662 0.690 0.518
[0/m/90/0/90]s 0.568 0.879 0.618 0.662 0.879 0.618
[m/0/90/0/90]s 0.715 1.317 0.750 0.662 1.317 0.750

Gr-Ep [0/90/m/0/90]s 0.670 0.863 0.629 0.797 0.912 0.647
Gl-Ep [0/90/m/0/90]s 0.801 0.686 0.551 0.761 0.984 0.661
Br-Ep [0/90/m/0/90]s 0.655 0.681 0.530 0.707 0.830 0.585

Table-5 : Coefficients for Different Laminates and Materials
Material Laminate I1 kgm-2

(102)
I3 kg
(10-3)

I5 kgm2

(10-8)
I7 kgm4

(10-13)
-B31
(102)

-C31
(10-4)

CFRP [0/90/0/90/m]s 0.331 0.157 0.228 0.407 0.044 0.022
[0/90/0/m/90]s 0.331 0.187 0.237 0.410 0.133 0.332
[0/90/m/9/90]s 0.331 0.246 0.291 0.451 0.221 1.438
[0/m/90/0/90]s 0.331 0.335 0.460 0.708 0.310 3.872
[m/0/90/0/90]s 0.331 0.454 0.852 1.717 0.398 8.165

Gr-Ep [0/90/m/0/90]s 0.331 0.246 0.291 0.451 0.221 1.438
Gl-Ep [0/90/m/0/90]s 0.331 0.246 0.291 0.451 0.221 1.438
Br-Ep [0/90/m/0/90]s 0.331 0.246 0.291 0.451 0.221 1.438

Table-6 : Suppression Time Ratio for Different CFRP Laminates of Total
Thickness  h = 10mm; hl = 1mm and hm = 1mm

Laminate Zm (m) -α ±ωd Wmax (mm) t at Wmax/10 Ts

[0/90/0/90/m]s 0.0005 1.318 214.522 4.612 1.764 1.000
[0/90/0/m/90]s 0.0015 3.954 215.376 4.507 0.591 0.337
[0/90/m/9/90]s 0.0025 6.590 212.563 4.477 0.362 0.215
[0/m/90/0/90]s 0.0035 9.226 205.508 4.539 0.283 0.152
[m/0/90/0/90]s 0.0045 11.864 191.557 4.745 0.205 0.117
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nesses. When one compare the Tables-7 and 10 one can
observe that the convergence rate of the maximum ampli-
tude is faster in thinner magnetostrictive layer. Thus a
relatively thinner magnetostrictive layer leads to better
attenuation characteristics.

Vibration frequencies for the thin and thick shells are
obtained using FSDT and HSDT and listed in Table-11.
For an a/h ratio of 10 HSDT predicted 23 per cent larger
amplitude Wmax as compared to FSDT. Vibration suppres-
sion results are shown in Fig.7. It is observed that for

thicker shells HSDT predicts larger amplitude of vibration
and longer vibration suppression time as compared to
FSDT predictions. This is attributed to the fact that HSDT
include the shear deformation component more appropri-
ately.

Conclusions

Analytical solution for simply supported composite
shells with smart material layers embedded in them is
presented in this study. The third-order shell theory is used

Table-7 : Suppression Time Ratio for Different CFRP Laminates,
 h = 44mm; hl = 5mm and hm = 2mm

Laminate Zm (m) -α ±ωd Wmax (mm) t at Wmax/10 Ts

[0/90/0/90/m]s 0.001 1.536 1084.358 0.919 1.502 1.000
[0/90/0/m/90]s 0.006 9.216 1079.978 0.912 0.252 0.168
[0/90/m/9/90]s 0.011 16.901 1070.491 0.910 0.143 0.095
[0/m/90/0/90]s 0.016 24.627 1057.490 0.911 0.065 0.095
[m/0/90/0/90]s 0.021 32.519 1015.837 0.936 0.075 0.050

Table-8 : Suppression Time Ratio for Control Gain (104) for Different Locations of Magnetostrictive
Layers in  CFRP Laminated Shell,  h = 50mm; hl = 5mm and hm = 5mm

Laminate Zm (m)
C (t) rC = 104

-α ±ωd Wmax (mm) t (s) Ts

[0/90/0/90/m]s 0.0025 6.376 1067.206 0.928 0.366 1.000
[0/90/0/m/90]s 0.0075 19.115 1057.390 0.919 0.126 0.344
[0/90/m/9/90]s 0.0125 31.832 1038.613 0.918 0.074 0.202
[0/m/90/0/90]s 0.0175 44.575 1012.998 0.922 0.051 0.139
[m/0/90/0/90]s 0.0225 57.648 940.434 0.963 0.042 0.115

Table-9 : Suppression Time Ratio for Control Gain (103) for Different Locations of Magnetostrictive
Layers in  CFRP Laminated Shell,  h = 50mm; hl = 5mm and hm = 5mm

Laminate Zm (m)
C (t) rC = 103

-α ±ωd Wmax (mm) t (s) Ts

[0/90/0/90/m]s 0.0025 0.638 1067.224 0.936 3.616 1.000
[0/90/0/m/90]s 0.0075 1.912 1057.561 0.943 1.207 0.334
[0/90/m/9/90]s 0.0125 3.183 1039.096 0.958 0.727 0.201
[0/m/90/0/90]s 0.0175 4.457 1013.968 0.978 0.522 0.144
[m/0/90/0/90]s 0.0225 5.765 942.181 1.039 0.402 0.111
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to study vibration suppression characteristics. The analyti-
cal solution is based on the Navier solution procedure. The
velocity feedback control is used. The smart material used
in this study to achieve vibration suppression of laminated
composite shells is the Terfenol-D magnetostrictive mate-
rial. The vibration suppression characteristics of lami-
nated shells are studied for a number of different cases and
the results are presented in tables and figures.

The effect of placing the smart material layer at various
laminate positions with respect to the neutral axis of the
shell has been studied. It has been found that there is
maximum vibration suppression when the smart material
layers are placed farthest from the neutral axis, which
creates larger bending by the smart material layer. It has
also been found that using thinner smart material layers
have better vibration attenuation characteristics. The ef-
fect of using different values of the control gain has also
been studied. It is observed that for a lower value of the
control gain the time taken to suppress the vibration is
longer. This is expected, as the amount of actuation done
by the smart material layer onto the composite shell is less
as the feedback value is less. For thicker shells HSDT
predicts larger amplitude of vibration and longer vibration
suppression time as compared to FSDT predictions.
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C43  =  B31 α  −  C1 C31 α

C53  =  B32 β  −  C1 C32 β (40)

M11  =  I
_
1

M12  =  0

M13  =  I
_
3 α

M14  =  I
_
2

M15  =  0

M21  =  0

M22  =  J
_
1

M23  =  J
_
3 β

M24  =  0

M25  =  J
_
2

M31  =  M13

M32  =  M23

M33  =  I
_
1  +  C1

 2 I7 (α2 + β2
)

M34  =  I
_
5 α

M35  =  J
_
5 β

M41  =  M14

M42  =  0

M43  =  M34

M44  =  I
_
4

M45  =  0

M51  =  0

M52  =  M25

M53  =  M35

M54  =  0

M55  =  J
_
4 (41)

where the magnetostrictive coefficients
A31, A32, B31, B32, C31 and C32 are defined in equation
(27).

Fig.1 Geometry and Stress Resultants of Doubly Covered Shell
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Fig.2  Laminated Shell with Embedded Magnetostrictive
Layers with an Exploded View

Fig.4  Controlled Motion at the Mid Point of Plate for
Different Lamination Schemes

Fig.3  Comparison of Uncontrolled and Controlled Motion at
the Midpoint of the CFRP Laminates for Various Locations of
Magnetrostrictive Layers, (a) 0/90/0/90/m, (b) 0/90/0/m/90,

(c) 0/90/m/0/90, (d) 0/m/90/0/90 and (e) m/0/90/0/90
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Fig.5  Comparison of Controlled Motion at the Midpoint of
the CFRP Shells for Vibration Modes n = 1 and n = 3

Fig.6  Vibration Suppression of Higher Modes at the Midpoint of the CFRP Shell (a) n = 1, (b) n = 3, (c) n = 5 and (d) n = 7
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Fig.7  Comparison of HSDT and FSDT for Various a/h Ratios  (a) 100 and  (b) 10
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