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Abstract

A single-elastic beam model is being developed based on Eringens nonlocal elasticity and
Timoshenko beam theory. Nonlocal parameter takes into account the small scale effects in the
analysis of nano-size structures. Derived herein is a decoupled sixth-order nonlocal governing
differential equations for the frequency and stability analysis of nano-scale short beams. The
effect of shear deformation is thereby included in the small scale analysis. A Differential
Quadrature (DQ) approach is being applied and its elaborate method of solution is illustrated.
The higher order DQ approach is found to be a good numerical technique for the convenient
and rapid solution of the aforementioned nonlocal problems. Frequency and buckling results
for various scale-based nonlocal parameters are shown. Effect of number of interpolation
points on the accuracy of the results is also investigated. It is seen that there is a significant
effect of aspect ratio and nonlocal parameter on the nonlocal frequency and buckling loads
of nano-scale beams. Also, the present study could open up a new approach of solution
technique for the analysis of nano-scale structures based on nonlocal Timoshenko theory.
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Introduction

For modern advancement of aerospace technologies,
the understanding and development of nanotechnology
becomes indispensable. Nanotechnology promises for fu-
ture aerospace applications the following assets: high
strength, low weight composites, improved electronics
and displays, variety of physical sensors, and multifunc-
tional materials with embedded sensors, large surface area
materials and novel filters and membranes for air purifi-
cation, nanomaterials in tires and brakes, etc. Thus from
both experimental and theoretical research communities,
nano-scale structures such as nanobeams [1], nanorings
[2], nanoribbons [3], nanoplates [4], and nanotubes [5-6]
(CNTs) have gained considerable attention. The nanos-
tructures possess much superior mechanical, electrical,
electronic and thermal properties as compared to the con-
ventional structural materials. Advanced area of novel
applications of these nanotechnology based structures in
aerospace field is foreseen in the coming years [7]. For
example, the superior strength and low weight of fuller-
enes (CNTs) may open the frontier to space travel by
drastically decreasing the cost of launch to orbit.

Since experiments at the nanoscale are extremely dif-
ficult and molecular dynamic (MD) simulations remain
prohibitively expensive for large-sized atomic system,
continuum models continue to play an essential role in the
study of micro/nano scale structures. Size-dependent con-
tinuum based methods are thus getting increasing attention
in modeling small sized structures as it offers much faster
analyses than molecular simulations for systems of engi-
neering interest. The most reportedly used theory for
analyzing nano-scale structures is the nonlocal elasticity
theory [8-9].

In nonlocal elasticity theory the stress at a point is
defined as a function not only of strain at that point
(classical local mechanics) but also a function of the strain
at all other points in the body [9]. The contribution of
forces between atoms and the effect of internal and exter-
nal lengths are being included in the formulation. Recently
there has been growing interest for application of nonlocal
continuum mechanics especially in the field of wave
propagation, fracture mechanics, dislocation mechanics,
and micro/nano technologies etc.
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Nonlocal elasticity theory holds an important area of
research for the future structural developments and design
in modern aerospace and aeronautical field. This is due to
the fact that small-size structures such as CNT, micro/nano
sensors and actuators which are being applied in aerospace
structures (CNT-reinforced composite [10], MEMS /
NEMS devices (smart structures)) could not be accurately
analysed by local (classical) theory. The local classical
mechanics theory is assumed to be as scale free theory.
Experiments and atomic simulation have shown that there
is a significant size effect in mechanical properties when
the dimensions of these structures become small. Apply-
ing nonlocal theory to such small structures could lead to
correct prediction of mechanical behaviors.

The importance of nonlocal elasticity theory motivated
the scientific community to explore the accurate bending,
vibration, buckling, and behavior of micr/nano scale struc-
tures. Various nonlocal elasticity work are found in Ped-
dieson et al. [11], Sudak [12], Wang et al. [13], Lu et al.
[14], Reddy [15] and Pradhan and Murmu [16].

The present paper proposes a differential quadrature
formulation for dynamic and stability analysis of nano-
scale beams which includes Timoshenko beam theory and
Eringens nonlocal variables. These formulations will be
important in the application and analysis of nonlocal theo-
ries in structural studies for small-size analysis (CNT in
CNT-reinforced composites). Recently Murmu and Prad-
han [17] reported the use of differential quadrature method
for the buckling analysis of nano-sized beams supported
on Winkler foundation.

The Differential Quadrature Method (DQM) is a sim-
ple and efficient technique for solving partial differential
equations as reported by Bellman and Casti [18] and
Bellman et al. [19]. DQ researchers have successfully
applied this method in solving various engineering prob-
lems [20-24]. Recently, Pradhan and Murmu [23] applied
DQ method for vibration of functionally graded beams. In
the DQM a smaller number of interpolation points are
adequate to yield reasonably accurate results. This is be-
cause all uniform or non uniform interpolation points are
used to represent the each-order derivation of the function
at each point. Thus accurate numerical solutions are ob-
tained by employing few interpolation points. The present
numerical technique is successfully applied in the analysis
of beams, plates and shells. The present authors have
shown the suitability and convenience of using the DQ
method for analysis of nonlocal vibration and buckling
problems ([16], [17], and [25]). However the previous

works were limited to nonlocal DQ Euler-Bernoulli beam
theory.

Thus, in this present work, the DQ technique is being
applied to nonlocal dynamic and stability beam problems
considering both nonlocal elasticity and Timoshenko
beam theory. The effect of shear deformation in nano-
sized beams is thereby highlighted in the analysis. Single
decoupled governing sixth-order differential equation for
frequency and stability analysis of nano-scale Ti-
moshenko beams is derived using Eringens nonlocal elas-
ticity theory. Differential Quadrature (DQ) approach is
being applied and its analogous nonlocal Timoshenko DQ
formulations are presented. The present higher-order DQ
method is found to be a good numerical approach for the
convenient and rapid solution of the nonlocal problems
dealing with nanostructures. The effects of (i) number of
DQ grid points, (ii) aspect ratio and (iii) nonlocal parame-
ter on the accuracy of the nonlocal vibration and buckling
results of nanobeams are investigated and discussed. Fi-
nally the use of present nonlocal Timoshenko beam model
in the vibration and buckling analysis of CNT is shown.

Nonlocal Elasticity Theory

In nonlocal elasticity theory, the stress field at a point
x in an elastic continuum depends on strains at all other
points of the body as mentioned by Eringen [9]. This is in
accordance with atomic theory of lattice dynamics and
experimental observations on photon dispersion. The most
general form of the constitutive equation for nonlocal
elasticity involves an integral over the whole body. Thus,
the nonlocal stress tensor α  at a point x for a linear,
homogenous body is expressed as

α  =  ∫  
V

 H ( | x′ − x | , φ ) t (x′ ) d X ′ (1)

The terms t (x) and  H ( | x′ − x | , φ ) are the classical
stress at point x and the nonlocal modulus, respectively.
The nonlocal modulus can be thought of attenuation func-
tion which incorporates into the constitutive equations the
nonlocal effects at the reference point x produced by local
strain at the source x′. | x′ − x |represents the distance in
Euclidean form. The parameter φ is a material constant.
The constant φ  depends on the internal (e.g. lattice pa-
rameter, granular size, distance between C-C bonds) and
external characteristics lengths (e.g. wavelength). The
macroscopic stress t at a point x in a Hookean solid is
related to the strain at the point by the generalized Hookes
law
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t (X)  =  C (X)  :  ε (X) (2)

C is the fourth-order elasticity tensor; and : denotes the
double dot product. Eqs. (1) and (2) define the nonlocal
constitutive behavior of a Hookean solid.

As solving of integral constitutive Eq. (1) is difficult,
a simplified equation of differential form is used as a basis
of all nonlocal constitutive formulation [9]

⎛
⎝1 − φ 2 l2 ∇2⎞

⎠ σ  =  t ,     φ  =  
e0a

l (3)

where ∇2 is the Laplacian operator, e0 is a constant for
adjusting the model in matching some reliable results by
experiments or other models. The parameter e0 is esti-
mated such that the relations in Eqn (3) of the model could
provide satisfied approximation of atomic dispersion
curves of plane waves with those of atomic lattice dynam-
ics. The other parameters a and l denotes the internal and
external characteristic lengths, respectively. The internal
characteristic lengths a include lattice parameter, granular
size, or molecular diameters.

For the case of one-dimensional structures such as a
small scale beam, the Laplacian operator is reduced to one
dimensional form and the strains in the y and z directions
are negligible. For a beam structure, the sizes in thickness
and width are much smaller than the size in length. Hence
a uniaxial stress state is established in the one dimensional
nonlocal theory. Thus the nonlocal constitutive relation
for the macroscopic stress is given as Reddy [15]

σxx  −  (e0 a)
2  

∂
2 σxx

∂x2   =  E εxx (4)

τ (x)  −  (e0 a)
2  ∂

2 τ(x)

∂ x2   =  G γ (x) (5)

where E and G are the Young’s modulus and shear modu-
lus, respectively, and γ is the shear strain. Thus, the scale
coefficient (e0a) in the modeling will lead to small-scale
effect on the response of structures in nano-size. In the
limit when the effects of strains at points other than x are
neglected, one obtains local or classical theory of elasticity
from the nonlocal elasticity theory.

The importance of the term small scale coefficient or
nonlocal parameter, (e0a) can be found in Murmu and

Pradhan [17]. The nonlocal parameter is defined as (e0a),
(e0a)2, (e0a/L) or  (e0a/L)2  according to the suitability of
the formulations as reported in various papers. Here L is
the characteristic length. The inclusion of the nonlocal
scale coefficient in the above equation takes into account
the effects of "scale-factor", usually smaller size. The
nonlocal parameter or scale coefficient transforms the
classical local equation into a nonlocal mechanics equa-
tion. Classical continuum elasticity, which is a scale free
theory, cannot predict the size effects. At nanometer
scales, size effects often become prominent. Both experi-
mental and atomistic simulation results have shown a
significant "size-effect" in mechanical properties when the
dimensions of these structures become small. As the
length scales are reduced, the influences of long-range
inter-atomic and intermolecular cohesive forces on the
static and dynamic properties tend to be significant and
cannot be neglected. These observations are extensively
documented by experimentalist. The classical theory of
elasticity being the long wave limit of the atomic theory
excludes these effects. Thus the traditional classical con-
tinuum mechanics would fail to capture the small scale
effects when dealing in nano structures. The small size
analysis using local theory over predicts the results. Thus
the consideration of nonlocal scale coefficient (e0a) is
necessary for correct prediction of micro/nano structures
[9]. Nonlocal theory considers long-range interatomic in-
teraction and yields results dependent on the size of a
body. It is also reported in the paper of Chen et al. [26] that
the nonlocal continuum theory based models are physi-
cally reasonable from the atomistic viewpoint of lattice
dynamics and Molecular Dynamics (MD) simulations. It
should be noted that when the nonlocal scale coefficient
(e0a)  is zero, the equation (4-5) reduces to that of classical
mechanics one.

For a specific material or structure, the corresponding
nonlocal parameter (e0a) can be estimated experimentally
or approximated by matching the dispersion curves of
plane waves with those of atomic lattice dynamics. A
value of 0.39 was used by Eringen [9] for e0. Sudak [12]
used the length of C-C bond equal to 0.142 nm for CNT
stability analysis as internal characteristic length ‘a’.
Wang and Hu [27] used strain gradient method to propose
an estimate of the value around e0=0.288. Wang et al. [28]
suggested a value of e0a=0.7 nm for the application of the
nonlocal theory in estimation of stiffness of CNTs based
on the compression studies. Generally for the analysis of
carbon nanotubes the nonlocal scale coefficients e0a  are
taken in the range of 0 - 2 nm. Still contemporary research
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is going on to find the exact values of nonlocal parameters
for various nano level structural problems.

Research efforts are undergoing these days to bring in
the scale effects within the formulation by modifying the
traditional classical mechanics. These other scale based
theories include micromorphic theory, microstructure the-
ory, micropolar theory, Cosserat theory, modified couple
stress theory etc.

Formulation

Nonlocal Timoshenko Beam Theory

According to Timoshenko beam theory, the displace-
ment field at any point is written as:

u1  =  u (x , t)  +  z ψ (x , t)

u2  =  0

u3  =  w (x , t) (6)

where, x is the longitude coordinate, z is the coordinate
measured from the mid-plane of the beam, ψ is the rotation
of the cross section (Fig.1). The term u and w are the axial
and transverse displacements of the point (x, 0) on the
mid-plane (i.e., z = 0) of the beam. The nonzero strains
according to Timoshenko beam theory are expressed as:

ε (x)  =  ∂ u
∂ x

  +  z ∂ ψ
∂ x

(7)

γ (x)  =  ∂ w
∂ x

  +  ψ (8)

For establishing the dynamic equations of the beam,
resultant axial force, the bending moment and the shear
force are determined as

N  =  ∫  
A

σ
xx

  d A ,      M  =  ∫  
A

z σ
xx

  d A ,     Q  =  ∫  
A

τ
xz

 d A

(9)

where σxx is the normal stress, τx z is the transverse shear
stress and A is the cross sectional area of the beam. Using
Eqns. (4-5) and Eqns. (7-8) and Eqn. (9) one obtains the
nonlocal Timoshenko constitutive relations

M  −  (e0 a)
2  ∂

2 M

∂x2   =  E I  ∂ ψ
∂ x

(10)

Q  −  (e0 a)
2  ∂

2 Q

∂x2   =  G A K  ⎛⎜
⎝

∂ w
∂ x

 + ψ⎞
⎟
⎠

(11)

where K is the shear correction factor used to compensate
for the error due to constant shear stress assumption. I
represents the moment of area of the cross section. Note
that the bending moment and shear force given in Eqns.
(10) and (11) reduces to that of the local (classical) Ti-
moshenko model when the nonlocal scale coefficient,
(e0a) is set to zero.

 
Now consider a beam element of length dx which is

axially loaded. The dynamic equation for the beam ele-
ment of nonlocal bending moment and shear force is
written as:

∂ Q
∂ x

 dx  −  P ∂
2 w

∂ x2  dx − ρ A ∂
2 w

∂ t 2
 d x  =  0 (12)

Qdx  −  ∂M
∂ x

 dx  +  ρ I  ∂
2 ψ

∂ t 2
 d x  =  0 (13)

Eliminating Q first from Eqns. (12-13) and using (10-
11) would lead to explicit relation of nonlocal bending
moment and nonlocal shear force

M = E I  ∂ ψ
∂ x

  +  (e
0
a)

2
  
⎛
⎜
⎝

⎜
⎜
P ∂

2
 w

∂ x
2   +  ρ A  ∂

2
 w

∂ t
2   +  ρ I  ∂

3
 ψ

∂ x ∂t
 2

⎞
⎟
⎠

⎟
⎟

(14)

Q = K A G  ⎛⎜
⎝
ψ  +  ∂ ψ

∂ x
⎞
⎟
⎠
  +  (e

0
a)

2
  
⎛
⎜
⎝

⎜
⎜
P ∂

3
 w

∂ x
3   +  ρ A  ∂

3
 w

∂ x ∂t
2

⎞
⎟
⎠

⎟
⎟
(15)

Again substituting the Eqns (14) and (15) into Eqns
(12) and (13) one obtains nonlocal Timoshenko beam
model

K A G  ∂
∂ x

 ⎛⎜
⎝
ψ  +  ∂ w

∂ x
⎞
⎟
⎠
  +  (e

0
a)

2
  
⎛
⎜
⎝

⎜
⎜
P ∂

4
 w

∂ x
4   +  ρ A  ∂

4
 w

∂ x
 2

 ∂t
2

⎞
⎟
⎠

⎟
⎟

−  P ∂
 2

 w

∂ x
2   −  ρ A ∂

 2
 w

∂t
2   =  0 (16)

E I  ∂
 2 ψ

∂ x 2
 − K A G  ⎛⎜

⎝
ψ + ∂ w

∂ x
⎞
⎟
⎠
 − ρ I  ∂

 2 ψ
∂ t2

 + (e0a) 2  ρ I  ∂ 4 ψ
∂ x 2 ∂t 2

 = 0

(17)
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Eqns. (16) and (17) are the consistent basic equations
of the nonlocal Timoshenko beam model based on the
constitutive relations (4) and (5). For the convenience and
generality, the above nonlocal equations are decoupled to
single sixth-order differential equation. These equations
will be useful for deriving proper DQ models. In the
present formulation the rotary inertia terms are neglected.

EI ∂
 4

 w

∂ x
 4  + m ∂

 2
 w

∂ t
 2  − m EI

KAG ∂
 4

 w

∂ x
 2

 ∂t
 2 + P ∂

 2
 w

∂ x
 2  − PEI

KAG ∂
 4

 w

∂ x
 4

+ (e
0
 a)

2
 
⎛
⎜
⎝

⎜
⎜
− m ∂

 4
 w

∂ x
 2

 ∂t
 2 + m EI

KAG ∂
 6

 w

∂ x
 4

 ∂t
 2 − P ∂

 4
 w

∂ x
 4  + PEI

KAG ∂
 6

 w

∂ x
 6

⎞
⎟
⎠

⎟
⎟
  =  0

(18)

EI ∂
 4

ψ

∂ x
 4  +  m ∂

 2
ψ

∂ t
 2   −  m EI

KAG ∂
 4

ψ

∂ x
 2

 ∂t
 2  +  P ∂

 2
ψ

∂ x
 2  −  PEI

KAG ∂
 4

ψ

∂ x
 4

+ (e
0
 a)

2
 
⎛
⎜
⎝

⎜
⎜
− m ∂

 4
ψ

∂ x
 2

 ∂t
 2  +  m EI

KAG  ∂
 6

ψ

∂ x
 4

 ∂t
 2  −  P ∂

 4
ψ

∂ x
 4  +  PEI

KAG  ∂
 6

ψ

∂ x
 6

⎞
⎟
⎠

⎟
⎟
  =  0

(19)

Assuming the solution of the above equations as

w (x , t)  =  W (x) eiω t,     ψ (x , t)  =  Ψ (x) eiω t (20)

Where W is the amplitude of deflection of beam,  ω is the
frequency and i  =  √⎯⎯⎯−1 .

Substitution the Eqn. (20) in Eqns. (18) and (19) yields the
following set of equations:

EI d
 4

W

d x
 4   +  m ω

2
W  −  m E I ω

 2

K A G   d
 2

W

d x
 2   +  P d

 2
W

d x
 2   −  PEI

KAG  d
 4

W

d x
 4

+  (e
0
 a)

2
 
⎛
⎜
⎝

⎜
⎜
− m ω

2
  d

 2
W

dx
 2  + m E I ω

 2

K A G   d
 4

W

d x
 4  − P d

 4
W

d x
 4  + PEI

KAG  d
 6

W

d x
 6

⎞
⎟
⎠

⎟
⎟
  =  0

(21)

EI d
 4

ψ

d x
 4  +  m ω

2
W  −  m E I ω

 2

K A G   d
 2

ψ

d x
 2  +  P d

 2
ψ

d x
 2  −  PEI

KAG  d
 4

ψ

d x
 4

+  (e
0
 a)

2
 
⎛
⎜
⎝

⎜
⎜
− m ω

2
  d

 2
ψ

dx
 2  + m E I ω

 2

K A G   d
 4

ψ

d x
 4 − P d

 4
ψ

d x
 4 + PEI

KAG  d
 6

ψ

d x
 6

⎞
⎟
⎠

⎟
⎟
  =  0

(22)

If the shear deformation effect is neglected, it leads to
dynamic equation based on nonlocal Euler-Bernoulli
beam theory [17].

EI d
 4

W

d x
 4  + (e0 a)

2
 
⎛
⎜
⎝

⎜
⎜
− m ω

2
  d

 2
W

dx
 2  − P d

 4
W

d x
 4

⎞
⎟
⎠

⎟
⎟
 + P d

 2
W

d x
 2  + m ω

 2
W = 0

(23)

It should be noted that when the scale coefficient (nonlocal
parameter) term (e0 a)2 is set equal to zero, the nonlocal
differential equations reduces to local (classical) differen-
tial equations.

The sixth-order derivative term appears in Eqns. (21)
and (22) due to application of axial compressive load. In
the present case only Eqn. (21) will be used. As analytical
solutions of Eqn. (21) are difficult to obtain, a differential
quadrature (DQ) approach has been undertaken for the
solution. The DQ approach may be easy and useful for
analyzing more complex problems such as CNTs with
higher order theories. The nonlocal differential quadrature
(N-DQ) formulation is proposed hereinafter

Differential Quadrature and Solution Procedure

In the differential quadrature method (DQM), deriva-
tives (appearing in partial differential equation) of a func-
tion with respect to a space variable at a given interpolation
point is approximated as a weighted linear summation of
function values at all chosen interpolation points.

d nF

d x n  |x = x
i
  =  ∑ 

j = 1

N

 Cij
 (n)  F (xj ) (24)

where N represents the number of grid points. Thus, DQM
transforms the governing differential equation into a set of
equivalent simultaneous equations. This is done by replac-
ing the derivative term with equivalent weighting coeffi-
cients. For example, the first order derivative is equivalent
to a weighting coefficient matrix

d
d x  ≡  [C ]x

(1) (25)
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In this manner, the original governing differential equa-
tion is transformed into a set of distinct simultaneous
algebraic equations. The implementation of this DQM
technique depends on how accurately the weighting coef-
ficient matrix is computed and the interpolation points
(grid points) are distributed in the domain. The weighting
coefficients of first order Cij are expressed as [25].

Cij
 (1)

  =  
M (x

i
)

(x
i
 − x

j
)  M (x

j
)
 ;  i ,  j = 1 , 2 , … , N ;   i  ≠  j (26)

The term M (xi) is defined as

M (xi)  =  Π
j = 1

N
  (xi − xj ) ;     i  ≠  j (27)

and when i = j

C
ij
 (1)

  =  C
ii
 (1)

  =  −  ∑ 
k = 1

N

 C
ik
 (1)

 ;   i  =  1 , 2 , … , N ;   i  ≠  k ;   i  =  j ;

(28)

To obtain the weighting coefficients for the second,
third and fourth order derivatives, the matrix multiplica-
tion procedure [17] is implemented: Similarly, second,
third, and fourth, fifth and sixth order partial derivative are
expressed in a matrix form as

          d
 2

d x
 2  ≡  [C]

x
 (2)

   ≡  [C]x
 (1)

  [C]
x
 (1)

        d
 3

d x
 3  ≡  [C]

x
 (3)

   ≡  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

      d
 4

d x
 4  ≡  [C]

x
 (4)

   ≡  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

    d
 5

d x
 5  ≡  [C]

x
 (5)

   ≡  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

d
 6

d x
 6  ≡  [C]

x
 (6)

   ≡  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

  [C]
x
 (1)

(29)

For convenience and generality, the following nondi-
mensional variables are introduced in the present nonlocal
analysis:

X  =  xL ,   Ω2  =  m ω 2 L 4

E I  ,   P
_
  =  P L 2

E I  ,

S  =  E I

K A G L 2 ,   α  =  
e0 a

L (30)

where L represent the length of the beam in nanosize. Here
the terms EI represent the bending rigidity of the beam.

Using Eqn. (30) into (21) we arrive at governing
equation in nondimensional form:

d
 4

W

d X
 4  +  Ω

 2
W

i
  −  Ω

  2
 S

 2
  d

 2
W

d X
 2  +  P

_
 d

 2
W

d X
 2  −  P

_
 S

 2
 d

 4
W

d X
 4

+  α
 2

  
⎛
⎜
⎝

⎜
⎜
− Ω

 2
 d

 2
W

d X
 2  +  Ω

  2
S

 2
 d

 4
W

d X
 4  −  P

_
 d

 4
W

d X
 4  +  P

_
 S

 2
 d

 6
W

d X
 6

⎞
⎟
⎠

⎟
⎟
  =  0

(31)

Using Eqns. (31) and (24) the associated nonlocal
differential quadrature (N-DQ) governing equations are
expressed as:

DQ Nonlocal Timoshenko Model for Nano-scale
Beams:

∑ 
j = 1

N

C
ij

 (4)
  W

j
 + Ω

 2
W

i
 − Ω

 2
 S

 2
 ∑ 
j = 1

N

 C
ij

 (2)
 W

j
 + P

_
 ∑ 
j = 1

N

C
ij

 (2)
 W

j
 − P

_
 S

 2
 ∑ 
j = 1

N

C
ij

 (4)
 W

j

+ α
2
 
⎛

⎜

⎝

⎜

⎜
− Ω

 2
 ∑ 
j = 1

N

C
ij

 (2)
  W

j
 + Ω

 2
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DQ Nonlocal Euler-Bernoulli Model for Nano-scale
Beams:
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(33)

Where the deflection matrix W is expressed as

Wi  =  ⎡
⎣
W1  W2  W3  …  WN − 1  WN⎤

⎦
 T (34)
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The term α in the Eqns. (32) and (33) takes care of the
small size effects for nano -scale beams.

Nonlocal Boundary Conditions

The simply supported boundary conditions for nano-
size beams at the two ends (x = 0, L) are specified by

w  =  0 (35)

M  =  E I ∂ψ
∂ x

  +  (e
0
a)

 2
  
⎛
⎜
⎝

⎜
⎜
P ∂

 2
w

∂ x
 2  +  ρ A ∂

 2
w

∂ t
 2   +  ρ I ∂

 3
ψ

∂ x ∂ t
 2

⎞
⎟
⎠

⎟
⎟

(36)

It should be noted that M is the nonlocal bending moment
and not the classical bending moment. Using the assump-
tions that Ψ  =  d W ⁄ dx, and using Eqn. (30) we have 

⎡
⎢
⎣
1  +  α 2 P

_
  +  α 2 ρ I L 2

E I  ω 2⎤
⎥
⎦
  d

 2W

d X 2  +  α2 Ω 2 W  =  0

(37)

However, it is interesting to note that for simply sup-
ported boundary condition, the boundary equations for the
classical beam model and nonlocal beam models are same.
This is in view of W = 0 at the boundaries. Consequently
the nonlocal effects are neglected there (Ref. [17] and
[25]). Thus the boundary conditions reduces to

W  =  d
 2W

d X 2  =  0      at     X  =  0 , 1 (38)

These nonlocal boundary conditions can be incorpo-
rated within the formulation during the determination of
weighting coefficients. The weighting coefficients are up-
dated as C

_
 1 , C

_
 2 , C

_
 3 , C

_
 4 , C

_
 5 , C

_
 6. Details of the procedure

can be seen in Pradhan and Murmu [23]. This DQ ap-
proach is known as MWCM method. The present article
thus brings out the simplicity and generality of employing
DQ approach in the field of nonlocal continuum mechan-
ics. Thus the updated governing DQ equations incorporat-
ing boundary conditions is expressed as:

Updated DQ Nonlocal Timoshenko Model
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Updated DQ Nonlocal Euler-Bernoulli Model
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It should be noted that a single governing DQ equation
is sufficient to represent the behavior of nano-size beams.
Immense use of DQM in classical mechanics for complex
problems is reported in literature. The DQ formulation
used over here will be useful while obtaining quick solu-
tions for complex problems in nanomechanics. One exam-
ple is that of dealing with short tapered nano-cantilevers
[29] and also with higher-order theories. DQ can be thus
useful tool for dealing problems in computational
nanomechanics.

For obtaining the frequency and critical buckling
loads, Eqns. (39) and (40) can be easily transformed into
an Eigen- value problem (using matrices from Eqn. (29)).

Nonlocal Timoshenko beam model for frequency analysis
(P
_
  =  0) :

[K]  ⎧
⎨
⎩ W ⎫

⎬
⎭  =  Ω 2  ⎧

⎨
⎩ W ⎫

⎬
⎭ (41)

Nonlocal Timoshenko beam model for buckling analysis
(Ω  =  0) :

[K]∗  ⎧
⎨
⎩ W ⎫

⎬
⎭  =  P

_
  ⎧

⎨
⎩ W ⎫

⎬
⎭ (42)

Where [K] and [K]∗ are cumulative matrix for nonlocal
vibration and buckling beam models. The size of K matrix
is in the order of (N-2) x (N-2).

Here the displacement matrix is given as:

Wi  =  ⎡
⎣
W2  W3  W4  …  WN − 2  WN − 1⎤

⎦
 T (43)

In the present analysis two types of grid points are
taken. The grid points are obtained based on uniformly
distributed points and Chebyshev-Gauss-Lobatto Points
[24]:
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(Xi)uniform  =  (i − 1)
(N − 1)

 ;     i  =  1 , 2 , … , N (44)

(X
i
)
Cheby−Gauss−Lobatto

 = 12 ⎛⎜
⎝
1 − cos  (i − 1)

(N − 1)
 π⎞

⎟
⎠
 ;   i = 1 , 2 , … , N

(45)

Results and Discussions

DQ Nonlocal Frequency Analysis

Nondimensional frequencies for different nonlocal pa-
rameters are determined by employing the DQ approach.
The nonlocal parameter here is defined as (e0a ⁄ L). Here
L denotes the length of the nanobeam (such as length of
single-walled carbon nanotubes). We consider L as the
external characteristic length scale. The importance of
nonlocal parameter can be seen in the earlier section. Here
it should be noted that the nonlocal parameter (e0a ⁄ L) has
been normalized. Even when the dimensionless frequen-
cies are introduced (which are non-dimensionalised with
respect to length, bending rigidity and mass), the scale
effects are still in attendance within the present nonlocal
theory in nondimensional form. These scale-effect obser-
vations will be illustrated soon.

Frequency parameter √⎯⎯Ω  determined from the present
DQ approach are compared with the nonlocal elasticity
based frequency results of that of Lu et al. [14]. Nondi-
mensional frequencies (eigen-values) for the first four
different modes of vibrations (m=1, 2, 3 and 4) are deter-
mined in the present analysis. The present results are
shown for the nonlocal Euler-Bernoulli beam model. Fig.2
shows the variation of √⎯⎯Ω  with nonlocal parameter
(e0a ⁄ L). Nonlocal parameter values of 0.0, 0.2, 0.4, 0.6,
and 0.8 are assumed. Similar range of values was consid-
ered by Lu et al. [14]. The results are plotted for nonlocal
pinned-pinned boundary conditions. Here it should be
noted that the local boundary condition and nonlocal
boundary  conditions  are  same. The figure shows that
with increase of nonlocal parameter there is reduction in
value of natural frequency. This reduction of frequencies
is attributed to the small-scale effects. The decreasing
effect with nonlocal parameter is highly pronounced for
higher modes. In addition, the present DQ results are
found to be agreeing excellently with the analytical results
of Lu et al. [14].

Effect of Grid Points on Nonlocal Frequency Solution

Two types of DQ grid points are tested for the fre-
quency solution of the nano-size beams. The grid points
are the uniform grid points given by Eqn. (44). Non-uni-
form grid points are represented Gauss-Chebyshev-Lo-
batto points given by Eqn. (45). Error percentage is
defined as 100 X (present result-Reddy [15] /Reddy [15]).
Fig.3 shows the variation of error percentage with parame-
ter μ  =  (e0a ⁄ L)2. Nonlocal parameter values μ 0.0, 0.01,
0.02, 0.03, 0.04, 0.05 and 0.06 are assumed here. The
present results are shown for first modes of vibration (m =
1). Plots for both uniform and nonuniform grid points are
shown. The figure shows that the error percentage is
independent of nonlocal parameters. Both uniform and
nonuniform grid points show reliable results for the analy-
sis of fundamental frequency. However, for the second
mode of vibration, the use of uniform grid points and
nonlocal Euler-Bernoulli model yield errors in DQ result
for low nonlocal parameter values. This trend is shown in
Fig.4. The error percentage using uniform grid points
gradually decreases till a nonlocal parameter value of 0.04.
This implies that uniform grid points could be used after
a certain nonlocal parameter value. Also it is clear that
nonlocal second mode of frequency results with nonuni-
form grid points is independent of nonlocal parameter.
This shows that nonuniform grid points are good option
for nonlocal frequency analysis.

Effect of Boundary Conditions on Nonlocal Fre-
quency solution

The variation of nondimensional frequency parameter
√⎯⎯Ω  with nonlocal parameter is dependent on the boundary
conditions. Fig.5 shows the variation of frequency pa-
rameter for simply-supported and cantilever boundary
conditions. It is clearly seen that the boundary condition
effects are opposite in nature. Unlike the frequency vari-
ation for simply supported - simply supported boundary
conditions, the variation for cantilever beam is opposite in
nature. There is a gradual increase in nondimensional
frequency with the increase of nonlocal parameter. Thus
the effect of small size effect on the frequency response is
good for clamped-free boundary condition as it increases
the natural frequency. Similar behavior with clamped-free
boundary conditions for nonlocal buckling analysis is also
observed in Murmu and Pradhan [17].
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DQ Frequency Solution Based on Nonlocal Ti-
moshenko Beam Theory

Nondimensional frequencies Ω for different nonlocal
parameters are determined by employing DQ approach
and nonlocal Timoshenko beam theory (Eqn.39). The
effect of shear deformation is included in the analysis. A
computer code is developed based on Eqn.(39). Five dif-
ferent aspect ratios, L / h are taken into consideration, viz
10, 20, 50, 70 and 100. The term ‘h’ denotes the height of
the nano beam. Shear correction factor is assumed as 5/6
in the computation. Poissons ratio of 0.3 is considered in
the analysis. The variation of nondimensional frequency
with nonlocal parameter is shown in Fig.6. The results are
plotted for nonlocal pinned-pinned boundary conditions.
Here very small values of nonlocal parameter are taken.
The nonlocal parameter is defined as μ  =  (e0a ⁄ L)2. Non-
local parameter values μ 0.0, 0.01, 0.02, 0.03, 0.04 and
0.05 are assumed here. The figure shows that with increase
of nonlocal parameter there is reduction in value of natural
frequency. Also it is seen that there is a significant effect
of aspect ratio on the nonlocal frequency results. Lower
aspect ratio leads to comparatively lower natural fre-
quency. However similar trend of reduction of nonlocal
frequencies is seen with all aspect ratio considered here.
Similar conclusions can be found in Reddy [15]. However
unlike the linear frequency behaviour for first mode, a
nonlinear behaviour is noticed for the second mode of
vibration (Fig.7).

DQ Nonlocal Buckling Analysis

Present DQ nonlocal Timoshenko beam analysis is
extended for stability analysis of nano-size beams. The
beam is assumed to be axially compressed. Critical buck-
ling load for various nonlocal parameters μ is determined
using the DQ formulation. The associated DQ formulation
is depicted in Eqn.(39). For this DQ formulation, Cheby-
shev-Gauss-Lobatto grid points (Eqn.45) are undertaken.
A nonlocal pinned-pinned boundary condition is consid-
ered here. Shear correction factor K is assumed as 5/6 in
the computation. To see the functionality of sixth-order
nonlocal DQ model, a comparison of present results and
that of literature is carried out. A plot of critical load P

_

versus nonlocal parameter μ  =  (e0a ⁄ L)2 results is shown
in Fig.8. Nonlocal parameter values μ 0.0, 0.01, 0.02, 0.03,
0.04 and 0.05 are assumed here. From the figure it is clear
that the present DQ results agree excellently with that of
Reddy [15].

Effect of Number of Grid Points on Nonlocal Buck-
ling Solution

To see the effects of grid points on the nonlocal critical
buckling load results, a convergence study is carried out.
Aspect ratios of 100 and 20 are taken for the analysis. Fig.9
shows the variation of critical buckling load results versus
number of grid points. The nonlocal parameter is taken as
0.025. The figure shows that six number of grid points are
adequate for obtaining convergent nonlocal buckling re-
sults. No significant difference in convergent behavior is
noticed for different aspect ratios. Fig.10 shows the vari-
ation of critical buckling load results versus number of
grid points for nonlocal parameter value of 0.045. The
figure also shows that six number of grid points are ade-
quate for obtaining convergent nonlocal buckling results.
This interprets that nonlocal parameter and aspect ratio
does not have much influence on the convergent behaviour
in nonlocal stability analysis.

Effect of Aspect Ratio and Modes on Nonlocal Buck-
ling Solution 

Nondimensional critical buckling load with nonlocal
parameter μ is shown in Fig.11. The results are plotted for
nonlocal pinned-pinned boundary conditions. Five differ-
ent values of aspect ratios are assumed. They are 100, 70,
50, 20 and 10. Shear correction factor K is assumed as 5/6
in the computation. The figure shows that with increase of
nonlocal parameter μ there is reduction in value of nondi-
mensional critical buckling load. Also it is seen that there
is a significant effect of aspect ratio on the nonlocal
critical buckling load. Lower aspect ratio leads to com-
paratively lower nondimensional critical buckling load.
However similar trend of reduction of nonlocal nondimen-
sional critical buckling load is seen with all aspect ratio
considered here.

Nondimensional critical buckling load with nonlocal
parameter for the second mode is shown in Fig.12. Similar
observation of behavior as that of first mode is also seen
in this case. However unlike the linear buckling behaviour
for first mode, a nonlinear behaviour is noticed for the
second mode. This shows that the buckling load consider-
ing nonlocal Timoshenko theory and second mode are
more influenced by nonlocal effects. In addition it is also
observed that the effect of aspect ratio on nonlocal buck-
ling load for second mode slightly reduces at higher non-
local parameter values (Fig.12). However, this behaviour
is unnoticeable for critical buckling load results. This
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clearly reveals the importance of nonlocal theory in me-
chanical analysis of nano-size structures.

Finally, a comparison of variation of nonlocal critical
buckling load with nonlocal parameter μ is done. Fig.13
shows the nonlocal curves using nonlocal Euler Bernoulli
theory (NL-EBT) and nonlocal Timoshenko theory (NL-
TBT). As found in classical theory, the nonlocal buckling
load results with Timoshenko beam theory (NL-TBT) are
always smaller than nonlocal Euler Bernoulli theory (NL-
EBT). This shows the importance of using (NL-TBT) for
short and stubby nano-tubes or nano-beams.

Application of Nonlocal-Timoshenko-Beam-Theory
to Single-Walled Carbon Nanotubes (SWCNT)

Carbon nanotubes (CNT) are a new form of carbon
discovered by Iijima [30]. It is configurationally equiva-
lent to two dimensional graphene sheet rolled into a tube.
Carbon nanotubes are the strongest and stiffest materials
yet discovered in terms of tensile strength and elastic
modulus respectively. They are unique nanostructures
with remarkable electronic and mechanical properties.
The CNT can be found in aerospace application as CNT
based composites imparting high strength and low weight.
They can also be potential material for nano-electronics in
aerospace application.

In the present section we show the use of Nonlocal-Ti-
moshenko-Beam-Theory in the vibration and buckling
study of single-walled CNT (SWCNT). The effective
properties of SWCNT are taken as: Youngs modulus E =
1000 GPa, mass density ρ = 2300 kg/m3, Poissons ratio v
= 0.19 and the shear correction factor β = 0.877 is taken.
The effects of scale coefficients (nonlocal parameter) are
also illustrated in the Fig.14a-b. The scale coefficients or
the nonlocal parameter were taken as e0a = 0.0 nm, 0.5
nm, 0.1nm, 1.5nm and 2.0 nm. Note that here the dimen-
sional value of nonlocal parameter is taken. These values
were adopted because eoa should be smaller than 2.0 nm
for carbon nanotubes as described by Wang and Wang
[31]. Note that the results associated with e0a = 0.0 nm
correspond to those of the local Timoshenko beam theory
where the small-scale effect is ignored. Most single-
walled nanotubes (SWNT) have a diameter of close to
onenanometer, with a tube length that can be many thou-
sands of times longer. The diameter of the SWCNT is
assumed as 1.0 nm. And the length of the SWCNT is
assumed to be in the range of 15 nm to 40 nanometers.

The nonlocal models in the Fig.14. takes into account
the small scale effects. From this figure it is observed that
very high and small values of frequency and buckling load
are obtained for SWCNT. The frequencies are in the order
of GHz and the buckling load is in the order of nano
Newton. It is seen that with increase of length of CNT the
frequencies and the buckling load decreases. However the
nano-level effects are not seen with local model
(e0a = 0) (which neglects the scale effects). For nonlocal
model the frequencies and the buckling load are found to
be smaller. The difference for local and nonlocal model is
pronounced for small length. The reduction in frequency
and buckling load values through nonlocal model is ac-
counted for the small scale effects which fail in traditional
classical theory. Thus Nonlocal-Timoshenko-Beam-The-
ory can be important from application standpoint of nanos-
tructures and aerospace sciences.

Conclusions

Presented herein is a differential quadrature analysis
of nano size beams based on nonlocal elasticity and Ti-
moshenko beam theory. The nonlocal theory takes into
account the small scale effects in the analysis. A simplified
uncoupled sixth-order governing differential equation for
frequency and stability analysis of small-scale Ti-
moshenko beams is derived using the nonlocal elasticity.
The influence of in-plane loads on natural frequencies is
included in the formulation. DQ based frequency and
buckling results for various scale-based nonlocal parame-
ters are shown to be agreeing excellently with existing
nonlocal results. Both uniform and nonuniform grid points
show reliable results for the fundamental frequency. It is
seen that there is a significant effect of aspect ratio on the
nonlocal frequency and buckling results. However unlike
the linear buckling behaviour for first mode, a nonlinear
behaviour is noticed for the second mode. The use of
Nonlocal-Timoshenko-Beam-Theory in the vibration and
buckling study of single walled CNT is shown. It is seen
that with increase of length of CNT the frequencies and
the buckling load decreases. However the nano-level ef-
fects are not seen with local model (e0a = 0). For nonlocal
model the frequencies and the buckling load are found to
be smaller. The present study could open up a new ap-
proach of solution technique for the analysis of nano scale
structures. Thus the Nonlocal-Timoshenko-Beam-Theory
can be an important theory for analysis of nanostructures
in aerospace sciences and technologies.
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Fig.1  Coordinate System Assumed for the Nonlocal Ti-
moshenko Beam Model

Fig.2 Comparison of Fundamental Frequency Results
Obtained by DQM with that Available in the Literature.

The Results are Shwon for all the Four Modes
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Fig.3  Comparison of DQ Frequency Results forUniform and
Nonuniform Grid Points.(First Mode of Vibration)

Fig.4  Comparison of DQ Frequency Results forUniform and
Nonuniform Grid Points.(Second Mode of Vibration)

Fig.5  Comparison of Nonlocal Fundamental Frequency for
Simply-Supported and Clamped-Free Boundary Conditions

Fig.6  Variation of Fundamental Frequency with Nonlocal
Parameter μ for Various Aspect Ratios with Nonlocal

Timoshenko Model

Fig.7  Variation of Frequency (Second Mode) with
Nonlocal Parameter μ for Various Aspect Ratios

with Nonlocal Timoshenko Model

Fig.8  Comparison of DQ Buckling Results for with that
Available in the Literature (Reddy [15])
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Fig.9  Variation of Nonlocal Buckling Loads with
Number of DQ Grid Points for Different Aspect

Ratios and Nonlocal Parameter as 0.025

Fig.10  Variation of Nonlocal Buckling Loads with
Number of DQ Grid Points for Different Aspect

Ratios and Nonlocal Parameter as 0.045

Fig.11 Variation of Critical Buckling Load with Nonlocal
Parameter for Various Aspect Ratios with Nonlocal

Timoshenko Model

Fig.12  Variation of Buckling Load (Second Mode) with
Nonlocal Parameter for Various Aspect Ratios

with Nonlocal Timoshenko Model
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Fig.13  Comparison of Variation of Critical Load with
Nonlocal Parameter for Nonlocal Euler-Bernoulli Theory

and Nonlocal Timoshenko Beam Theory

Fig.14  Variation of  (a) Fundamental Frequency and  (b)  Buckling Load of CNT with the Length of CNT Computed Using
Traditional Local and Nonlocal Models
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