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Abstract

The parametric dynamic stability of a pinned-pinned asymmetric sandwich beam resting on
a Pasternak foundation with viscoelastic core, subjected to an axial pulsating load is investi-
gated. The effects of thickness ratio of two elastic layers (h31), elastic modulus ratio(E3/E1),
the ratio of modulus of the shear layer of Pasternak foundation to the Youngs modulus of elastic
layer (Gs/E1), the ratio of length of the beam to the thickness of the elastic layer (lh1), the  ratio
of in phase shear modulus of the viscoelastic core to the Youngs modulus of the elastic layer
(G2/E1), the  ratio of thickness of Pasternak foundation to the length of beam (δ/l), coreloss
factor (η) the ratio of thickness of viscoelastic layer to that of elastic layer (h21) on the
non-dimensional static buckling load are considered. In addition to these the effects of the
above parameters on the regions of parametric instability have been studied.

Keywords: Parametric dynamic stability, Viscoelastic core, Sandwich beam, Pasternak foun-
dation, Coreloss factor and Modulus ratio

Nomenclature

Ai = (i=1,2,3) areas of cross section of a
    3-layered beam, i = 1 for top layer

B = width of beam

c = h1 + 2h2 + h3

Ei = (i=1,2,3)Young’s modulus

G2 = in-phase shear modulus of the
    viscoelastic core

G2
 ∗ = G2 (1+jη), complex shear modulus

    of core

Gs = modulus of the shear layer of a
     Pasternak foundation

g∗ = g (1+jη), complex shear parameter

g = shear parameter

2hi = (I=1,2,3) thickness of the ith layer
    i = 1 for top layer

h12 = h1/h2

h31 = h3/h1

Ii (i=1,2,3) = second moments of area of cross
    section about a relevant axis,
    i = 1 for top layer

J = √⎯⎯⎯− 1
K = modulus of spring in a Pasternak

    foundation

l = beam length

lh1 = l/h1

m = mass/unit length of beam

Pl = non-dimensional amplitude for the
    dynamic loading

t = time
to = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ m l 4 ⁄ (E1 I1 + E3 I3)

t
_

= t ⁄ to , non-dimensional  time

u (x,t), U1 (x,t) = axial displacement at the middle
    of the top layer of the beam

w (x,t) = transverse deflection of beam

w′ = ∂ w
∂ x
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w′′ = ∂
2 w
∂ x2

Y = geometric parameter

w
__

= wl
..
w = ∂

2 w
__

∂  t
_
 2

w
__

 ′′ = ∂
2 w
__

∂  x
_

 2

Ui, x = 
∂Ui
∂ x

 (here i = 1, 3)

x
_

= xl
δ = thickness of the shear layer of a

    Pasternak foundation

η = coreloss factor

ρi = density of ith layer

[φ] = a null matrix

ω = frequency of forcing function

ω = ωto, non dimensional frequency ratio

Introduction

Many investigators have studied the vibrations and
stability of beams on elastic foundations. The problem of
beams on elastic foundations occupies an important place
in modern structural and foundation engineering. The
static case has been studied extensively and the subject is
covered in great depth in Hetenyi’s book [1]. For the
dynamic case, most works have been done within the
scope of elementary Bernoulli-Euler beams on elastic
foundation. Usually, the subgrade is replaced either by a
winkler foundation [2] or by a homogeneous, isotropic
semi-infinite elastic continuum [3]. However, Kerr [4] and
Soldini [5] have shown that there is a large class of
foundation materials occurring in engineering practice,
the behavior of which can not be represented by these two
models. In an attempt to find a physically close and
mathematically simple representation of an elastic foun-
dation for these materials, Pasternak [6] proposed a foun-
dation model consisting of a winkler foundation with shear
interactions. This  may  be accomplished by connecting
the ends of the vertical springs to a beam consisting of
incompressible vertical elements, which deforms only by
transverse shear. The steady state response and the stabil-

ity boundaries of a variable cross-section beam on an
elastic foundation were obtained by Ahuja and Duffield
theoretically and experimentally [7]. The effects of rotary
inertia, shear deformation and foundation constants on the
natural frequencies of a Timosenko beam with various end
conditions were studied by Wang and Stephens [8].

A finite element model was developed by Abbas and
Thomas to study the dynamic stability of hinged-hinged
and fixed-free Timosenko beams on Winkler foundation
[9]. The effect of an elastic foundation on the natural
frequencies, static buckling loads and regions of dynamic
instability of Timosenko beams were investigated by Yok-
oyama [10].

The main parametric resonances of a tapered Can-
tiliver beam lying on a Pasternak foundation and having a
thermal gradient was addressed by Kar and Sujata [11].
The same authors studied the parametric instability of
Timosenko beams resting on a variable Pasternak founda-
tion [12]. The influence of the elastic foundation stiffness
and the shear layer constant on buckling loads of a column
on a biparametric foundation was investigated by Pan-
telides [13]. The effects of viscoelastic supports at the ends
on the dynamic stability of an asymmetric sandwich beam
were studied by Ghosh [14], which is the research work
of the main author of this paper. The same author has also
studied the effects of asymmetry on a rotating sandwich
beam [15].

Since till now no work has been done for the investi-
gation of the effect of Pasternak foundation on the dy-
namic stability of an asymmetric sandwich beam, in the
present work studies of the parametric instability of a
pinned-pinned asymmetric sandwich beam with viscoe-
lastic core and resting on a Pasternak foundation has been
done, which is the new contribution of this paper. The
effects of the various system Parameters on the static
buckling loads as well as on the parametric instability of
the system are being studied.

Formulation of the Problem

A viscoelastic sandwich beam of length l, resting on a
Pasternak foundation is shown in Fig.1. The beam is
capable of oscillating in the xz plane on the application of
an external pulsating load.

The top layer of the beam is made of an elastic material
of thickness 2h1 and Young’s modulus E1. The core is
made of a linearly viscoelastic material with a shear modu-
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lus  G2
∗ = G2 (1 + jη), where G2 is the in-phase shear

modulus, η is the core loss factor and j = √⎯⎯⎯ −1 . The bottom
layer is of thickness 2h3 and Young’s modulus E3. The
foundation is comprised of equal and closely placed ver-
tical springs with a spring constant K(N/m/m2), supporting
a shear layer of thickness δ, with a shear modulus Gs. The
beam is subjected to a pulsating axial load
P(t)  =  P0 + P1  cos ω t at x = l.

The following assumptions are made for obtaining the
equations of motion.

• The beam transverse deflection is small, and is the same
everywhere in a given cross section.

• The metallic layers obey Euler-Bernoulli assumptions
of beam theory.

• The layers are perfectly bonded so that displacements
are continuous across the interfaces.

• Rotary inertia effects in the layers are negligible.

• Damping in the viscoelastic core is predominantly due
to shear.

• Bending and extensional effects in the core are ne-
glected.

The expressions for potential energy, Kinetic energy
and work done are as follows :

V  =  12 E1 A1 ∫  
0

 1
U1, x

 2  dx  +  12 E3 A3 ∫  
0

 1
U3, x

 2  dx

+  12 (E1 I1 + E3 I3 )  ∫  
0

 1
w, x

 2  dx  +  12 G 2
 ∗ A2  ∫  

0

 1
γ2

 2 dx

+  12 Gs b δ  ∫  
0

 1
w′2 dx  +  kB

2   ∫  
0

 1
 w2  dx ,

T  =  12 m  ∫  
0

 1
 w, t

 2  dx   and

Wp  =  12  ∫  
0

 1
 P (t) w, x

 2   dx

where U1 and U3 are the axial displacements in the top

and bottom layers, wt  =  ∂w
∂t

 , w, x  =  ∂w
∂x

 and γ2 is the

shear strain in the middle layer given by

γ2  =  
U1 − U3

2h2
 − 

cw, x
2h2

U3 is eliminated using the Kerwin’s assumption [16].
The application of the extended Hamilton’s principle.

δ  ∫  
t1

 t2
( T − V + Wp ) dt  =  0 leads to the following non-di-

mensional equations of motion.

w
__

, tt
__ + (1 + Y ) w

__
, xxxx
____ − 

⎛

⎜

⎝

⎜

⎜
 32 

G
s

E
1
 δl   
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 3

1 + ⎛
⎝
E

3
 ⁄ E1⎞⎠

 h
31
 3  − P

_
 ( t
_
 )
⎞

⎟

⎠

⎟
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  w
__
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 xx
__

+ 32 kl
E

1
  

l
h1
 3

1 + ⎛
⎝
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 ⁄ E1⎞⎠
 h

31
 3   w

_
  +  Y 

2h
 2

c   γ
2 , xxx

___  =  0 (1)
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1
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1
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2 , xx
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2
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Where

w
__

, x
_
 x
_
 x
_
 x
_  =  ∂

 4
 w
__

∂ x
_ 4  , w

__
 , x
_
 x
_  =  ∂

 2
 w
__

∂ x
_

 2  , γ
2 , x

_
 x
_
 x
_  =  

∂
 3

 γ
 2

∂ x
_

 3  , γ
2 , x

_
 x
_  =  

∂
 2

 γ
 2

∂ x
_

 2  .

Y  =  
E1 A1 C 2

D ( 1 + α )
(3)

is the non-dimensional geometric parameter with
α  =  ( E1 A1 ) ⁄ ( E3 A3 ) and D = E1 l1 + E3 l3.

Equation (2) can be simplified as

2 h2 Y
c  γ2 , xx

__  −  
2  g∗ Y h2 γ2

c  + Y w
_
, xxx
___  =  0 (4)

The following are the associated boundary conditions
to be satisfied at x

_
 = 0 and x

_
 = 1.

(1 + Y ) w
__

,
 xxx
___  +  Y 

2 h
2

c  γ
2 , xx

__  +  
⎡

⎢

⎣

⎢

⎢
 P
_
 ( t
_
 ) − 

3 G
s
 δ l

h1

3

2 E
1
 l (1 + E

31
 h

31

3
 )

⎤

⎥

⎦

⎥

⎥
 w
__

, 
x
_  =  0

(5)
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or w
__

  =  0 (6)

(1 + Y ) w
__

, xx
__  +  Y 

2 h2
c  γ2 , x

_  =  0 (7)

or  w
__

, x
_  =  0 (8)

and  
2 h2

c  γ2 , x
_  +  w

__
, xx
__  =  0 (9)

or  γ2  =  0 (10)

In the above, γ2 is the shear strain in the core layer,
x
_
 = x ⁄ l , t

_
 = t ⁄t0 ,

t0  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ m l 4 ⁄ (E1 I1  +  E3 I3)  ,

h31  =  h3
 ⁄ h1 , h21  =  h2

 ⁄ h1  =  1 ⁄ h12

Also  P
_

  =  P
_
 0
+

P
_

 1
  cos ω

__
  t
_
 , P
_

 0   =  P0 l2 ⁄ (E1 I1 + E3 I3) ,

w
__

, x
_  =  ∂ w

__

∂ x
_  ω
__

  =  ω t0  and w
__

, t
_  =  ∂ w

__

∂ t
_   etc.

Finally, g∗  =  
G2
∗  l h1

 2  ( 1 + E 31 h 31 )
4 E 3  h 21  h 31

 is the complex

shear  parameter, g∗  =  g ( 1 + jη ) , g being the shear
parameter.

Approximate Solution

Solutions of Equations (1) and (2) are assumed in the
form

w
__

 (x
_
 , t
_
 )  =  ∑ 

i = 1

i = p

 wi ( x
_
 )  fi ( t

_
 ) (11)

γ
_

2 (x
_
 , t
_
 )  =  ∑ 

k = p + 1

k = 2p

  γk ( x
_
 )  fk ( t

_
 ) (12)

where p and q areto be suitably chosen for conver-
gence. Here wi and γk are the shape functions and fi and
fk are the generalized coordinates. wi and γk are to be so

chosen to satisfy as many boundary conditions 5 to 10 as
possible [13]. For the present case this is done by choosing
wi = sin ( i π x

_
 ) and γ k

_  =  cos  ( k
_
 π x
_
 ), k

_
  =  k  −  p ,

which fulfills the requirements.

Substituting above equations in equations (1) and (4)
as usee of the general Galerkin method [17] yields the
following matrix equations of motion in the generalized
coordinates.

[ M ] ⎧⎨⎩ Q
..
1 ⎫⎬⎭ + ⎡

⎣
k11⎤⎦

 ⎧⎨⎩ Q1 ⎫⎬⎭ + ⎡
⎣
k12⎤⎦

 ⎧⎨⎩ Q2 ⎫⎬⎭ = ⎧⎨⎩ 0 ⎫⎬⎭ (13)

⎡
⎣
k21⎤⎦

 ⎧⎨⎩ Q1 ⎫⎬⎭ + ⎡
⎣
k22⎤⎦

 ⎧⎨⎩ Q2 ⎫⎬⎭ = ⎧⎨⎩ 0 ⎫⎬⎭ (14)

where ⎧⎨⎩ Q1 ⎫⎬⎭ = ⎧⎨⎩ f1 , ............. , fp ⎫⎬⎭
T (15)

⎧
⎨
⎩ Q2 ⎫⎬⎭ = ⎧⎨⎩ fp + 1 , ............. , f2p ⎫⎬⎭

T (16)

Also, Mij  =  ∫  
0

 1
 wi wi d  x

_
(17)

k11ij  =  ( 1 + Y ) ∫  
0

 1
w′′

i
 w′′

j
 d  x

_
  +  Φ  ∫  

0

 1
wi wj d  x

_

+  [ψ  −  P
_
 ( t
_
 )]  ∫  

0

 1
 w′

i
 w′

j
 d  x

_
(18)

k12jk  =  Y  ∫  
0

 1
 w′′

i
 u′

k
 d  x

_
(19)

and

k22k l  =  Y  ∫  
0

 1
 u′

k
 u′

l
 d  x

_
  +  g∗ Y ∫  

0

 1
 uk ul d  x

_
(20)

In the above,

w′
i

  =  
∂wi
∂ x

(21)

λs  =  ⎛⎜
⎝

k l
E1

⎞
⎟
⎠
 ,    Φ  =  

3 λ s lh1
 3

2 ( 1 + E31 h31
 3  )

(22)
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ψ  =  
3 G s δ lh1

 3

2 E1 l  ( 1 + E31 h31
 3  )

(23)

Also, ⎡
⎣
k21⎤⎦

  =  ⎡
⎣
k12⎤⎦

 T (24)

The equations (13) and (14) further simplified to

[ M ] ⎧⎨
⎩
 Q
..

1 ⎫⎬
⎭
 + ⎡⎢
⎣
[k] − P

_

0 [ H ]⎤⎥
⎦
 ⎧⎨
⎩
 Q1 ⎫⎬

⎭
 − P

_
1  cos ( ω

__
 t
_
 ) [ H ] ⎧⎨

⎩
 Q

1
 ⎫⎬
⎭
 = ⎧⎨

⎩
 0 ⎫⎬

⎭

(25)

where

[ k ]  =  [ k
_

 ]  −  [ k12 ] [ k22 ] −1 [ k12 ] T (26)

Hij  =  ∫  
0

 1
 w′

i
 w′

j
 d  x

_
(27)

and

[k
_

] ij = ( 1 + Y ) ∫  
0

 1
w′′

i
 w′′

j
 d  x

_
 + φ  ∫  

0

 1
w

i
 w

j
 d  x

_
 + ψ  ∫  

0

 1
w ′

i
 w ′

j
 d  x

_

(28)

Static Buckling Loads

Substitution of P
_
1   =  0 and ⎧⎨⎩ Q

..
1 ⎫⎬⎭  =  0 in (equation 25)

leads to eigenvalue problem [k] −1 [H] ⎧⎨
⎩
Q1

⎫
⎬
⎭
  =  1

P0
 ⎧⎨
⎩
Q1

⎫
⎬
⎭
 .

The static buckling loads (Po )crit for the first few modes
are obtained as the real parts of the reciprocals of the
eigenvalues of [k] −1 [H].

Regions of Instability

Referring [8] the following equations can be derived

U
..
N  +  ωN

∗2 UN  +  2 ε cos ω
__

 t
_
  ∑ 
M = 1

M = p

 bNM UM  =  0 ,

N  =  1 , 2 ............ , p (29)

Where bNM are the elements of [ B ],

ωN
∗  are the distinct eigen values of the system,

ε  =  
P
_
1

2   <  1 and

[B]  =  − [L] −1  [M] −1  [H]  [L] (30)

L is the modal matrix of [M] −1  ⎡
⎣
[k]  −  P

_
0   [H]  ⎤

⎦
.

So  ⎧⎨
⎩
Q1

⎫
⎬
⎭
  =  [L]  ⎧⎨⎩U ⎫⎬⎭ (31)

where ⎧⎨⎩U ⎫⎬⎭ is a new set of generalized coordinates.

For subsequent usages

ωN
∗   =  ωN , R  +  J ωN , I (32)

bN M  =  bN M , R  +  JbN M , I (33)

The boundaries of the region of instability of main and
combination resonances are obtained using the following
conditions by Saito and Otomi [18].

Case (A) : Main Resonance

In this case, the regions of instability are given by

⎪
⎪
⎪

ω
_

2  − ω
μ , R

⎪
⎪
⎪
  <  14  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  

⎛

⎜

⎝

⎜

⎜
 
P
__

1

 2
 ( b

μ  μ , R

2
  +  b

μ  μ , l

2
 )

ω
μ , R

2   −  16 ω
μ , l

2
⎞

⎟

⎠

⎟

⎟
(34)

when damping is present and

⎪
⎪
⎪
ω
_

2  − ωμ , R

⎪
⎪
⎪
  <  14  

⎪
⎪P

_

1 bμ  μ , R
⎪
⎪

ω μ , R
(35)

For the undamped case,

For μ = 1, 2, ........, N.

Case (B) : Combination Resonance of Sum Type

This type of resonance occurs when μ ≠ v, μ, v = 1, 2,
............. , N and the regions of instability are given by :

⎪
⎪
⎪

ω
2  − 12 ( ωμ , R  +  ωv, R )⎪⎪

⎪
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<    
ω μ , I + ω v , I

 8 √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ( ω μ , I + ω v, I )

⎛
⎜
⎝

⎡
⎢
⎣√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

  P
__

 1

 2

 ω
μ , R

 ω
v, R

 ( b
μ v, R

  b
v μ , R

 + b
v μ , I

  b
μ v , I

 ) − 16ω
 μ ,I

 ω
 v, I

⎤
⎥
⎦ 
⎞
⎟
⎠

(36)
For the damped case and

⎪
⎪
⎪

ω
2  − 12 ( ωμ , R  +  ωv, R )⎪⎪

⎪
 < 

P
_

1

4   √⎯⎯⎯⎯⎯⎯⎯ bμ v, R  bv μ , R
 ωμ , R  ωv, R

(37)

For the undamped case

Case (C) : Combination Resonance of the Difference
Type

This type of resonance occurs when
μ < v , ( μ , v = 1 , 2 , ............., N ) and the regions of in-
stability are given by

⎪
⎪
⎪

ω
__

2  − 12 ( ω v, R  −  ω μ , R )⎪⎪
⎪

<    
ω μ , I + ω v , I

 8 √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ( ω μ , I + ω v, I )

√⎯⎯⎯⎯P
__

 1
 2

 ω
μ , R ω

v, R
 ( − b

μ v, R  b
v μ , R

 + b
μ v, I  bv μ , I − 16ω

 μ , i
  ω

 v, i )

(38)

For the damped case and

⎪
⎪
⎪

ω
2  − 12 ( ω v , R  −  ω μ , R )⎪⎪

⎪
 < 

P
_

1

4   √⎯⎯⎯⎯⎯⎯⎯ − bμ v, R  bv μ , R
 ωμ , R  ωv, R

(39)

for the undamped case.

Numerical Results and Discussion

Numerical results were obtained for various values of
the coreloss factor η, the non-dimensional geometric pa-
rameters, h31, lh1, h21, δ1 and the modulus ratio G2/E1,
Gs/E1 and E3/E1. For relevant values of the parameters,

results of the present study were compared with those in
Ray, K and Kar, R.C and good agreement was observed
[19]. 

Figures 1a to 1h shows the dependence of the non-di-
mension al static buckling load on the various system
parameters.

As h31 (Fig. 1a ) is increased, static buckling load
initially increases then decreases slowly for mode 1 and
rapidly for modes 2 and 3. This shows there exists an
optimum h31 for highest static buckling load under the
given values of the other parameters. For large h31, these
are seen to remain almost constant. The buckling load for
variations in E3/E1 (Fig.1b) shows a monotonically de-
creasing nature with increasing E3/E1. Here too, these
become nearly constant for large E3/E1. These static buck-
ling loads are seen to increase proportionately with Gs/E1
(Fig.1c). while(Po)crit s increase only marginally with an
increase in lh1(Fig.1d), these are almost independent of
G2/E1 (Fig.1e) except for small value of the parameter.
Where as (Po)crit s increase linearly with δ/l (Fig.1f), these
are almost independent of the coreloss factor (Fig.1g),
which is obvious because loss factor of viscoelastic layer
does not have any effect on critical buckling load and
increase non-linearly with an increase in h21 as Fig.1h
shows.

In the following, the values of the various parameters
used, unless stated otherwise, are as follows:

KI/E1 = 0.001, lh1 = 50, G2/E1 = 0.003,  Gs/E1 = 0.001,
η = 0.003, δ/I = 0.05, E3/E1 = 1.0, h21 = 0.25, h31 = 0.75,
P0 = 0.05.

Also, ωN,R is written as ωN for brevity.

Figures 2 through 6 show the influence of various
parameters on the instability zones. The regions inside the
v-boundaries represent the zones of instability. If for the
change in the value of a parameter, the width of the
instability zones increases or the zone is pulled down or
shifted towards the lower excitation frequency region, the
stability of the system worsens. Otherwise if with the
change in the value of the parameter, the width of the
instability zones decreases or pulled up or shifted towards
the higher excitation frequency region or if the number of
the instability zones reduces, then the stability of the
system improves. With these above conditions the effects
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of various parameters on the dynamic stability of the
system have been analyzed as follows.

Figure 2 shows the influence of the coreloss factor
upon the regions of parametric instability. It can be seen
that increase of η improves the dynamic stability of the
system by shifting the zones upward and reducing their
areas as well as the number.

Figure 3 depicts the influence of h31 on the zones of
instability. With an increase in h31, the sizes of the stability
zones are seen to increase considerably. These are pulled
down as well as shifted towards low frequency region,
thereby worsening stability.

The effect, of lh1 upon the parametric stability of the
system is considered in Fig.4. With an increase in the
values of lhl, the instability zones move upward and shift
to the right, thereby improving the system stability. E3/E1
has a marginal effect on zones of instability of the system.
An increase E3/E1 shifts the zones to the left and moves
them up slightly. Figure is not shown. The influence of the
modulus ratio G2/E1 upon the instability zones is as fol-
lows. It can be observed that, the resonance zones move
upward and also shift to the right as G2/E1 increases.
Hence, this parameter has a stabilizing effect. Figure is not
shown.

Figure 5 depicts the effect of the modulus ratio Gs/E1
on the instability zones. A shift towards higher frequency
zones and narrowing of unstable zones are observed with
increase of Gs/E1. Thus, this parameter has a stabilizing
effect.

KI/E1 has similar effects as is evident from Fig.6. Figs.
2 to 6 also show that in all cases up to first four of ωN,R,
no of combination resonance zones of the sum type of
difference type is occuring. From the above it can be noted
that the Pasternak foundation can improve the stability of
the system.

Conclusion

In the present work an attempt has been made to show
the effect of Pasternak foundation on the non-dimensional
static buckling load as well as on the zones of instability.

From Figs.1a to 1h the obtained results are that h31 has
an optimum value for highest static buckling load. The

static buckling loads are seen to increase with the increase
of Gs / E1, δ/l and h21, whereas the static buckling load
decreases with the increase of E3/E1 but for large values
of E3/E1, no change in the buckling load occurs. Marginal
increasing in buckling load is found with the increase of
lh1 and the buckling load remains almost independent of
G2/E1.

From Figs. 2 to 6 it was found that the stability of the
system improves with increase of coreloss factor, lh1,
G2/E1, Gs/E1 and  KI /E1 and marginal effect on the zones
of instability of the system was found with increase of
E3/E1. Further it was found that the stability of the system
worsens as h31 increases. The combination resonance
zones either of sum type or of difference type do not appear
in any of the cases.
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Fig.1  System Configuration

Fig.1a Variation of ( P
_
 o )crit with h31
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Fig.1b Variation of ( P
_
 o )crit with E3/E1

Fig.1c Variation of ( P
_
 o )crit with Gs/E1

Fig.1d Variation of ( P
_
 o )crit with lh1

Fig.1e Variation of ( P
_
 o )crit with G2/E1

Fig.1f Variation of ( P
_
 o )crit with δ/l

Fig.1g Variation of ( P
_
 o )crit with η
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Fig.1h Variation of ( P
_
 o )crit with h21

Fig.2  Effect of η on the Instability Zones
[Regions of parametric instability for three values of η,

(η = 0.003, η = 0.01 and η = 0.02)]

Fig.3  Effect of h31 on the Instability Zones
[Regions of parametric instability for three values of h31,

(h31 = 0.75, h31 = 1 and h31 = 2)]

Fig.4  Effect of lh1 on the Instability Zones
[Regions of parametric instability for three values of lh1,

(lh1 = 40, lh1 = 45 and lh1 = 50)]

Fig.5  Effect of Gs/E1 on the Instability Zones
[Regions of parametric instability for three values of Gs/E1,

(Gs/E1 = 0.0005, Gs/E1 = 0.001 and Gs/E1 = 0.002)]

Fig.6  Effect of KI/E1 on the Instability Zones
[Regions of parametric instability for three values of KI/E1,

(KI/E1 = 0.001, KI/E1 = 0.01 and KIs/E1 = 0.02)]
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