
LARGE DEFLECTION ANALYSIS OF RHOMBIC SANDWICH PLATES
WITH ORTHOTROPIC CORE

Gora Chand Chell*, Subrata Mondal** and Goutam Bairagi+

Abstract

This paper represents nonlinear analysis of rhombic sandwich plates with orthotropic core
under uniform load. Banerjee’s hypothesis [1] involving a new form of energy expression in
the total potential energy of the system has been employed. As a consequence the differential
equation is decoupled keeping intact its nonlinear character. The aim of the present study is
to analyze the nonlinear behaviour of rhombic sandwich plates with orthotropic core under
uniform load for different skew angles. The results have been obtained both for movable and
immovable edges from a single cubic equation. Numerical results (central deflection vs. load)
have been computed and compared with known results for square sandwich plates only. Results
for different skew angles are believed to be new.

Nomenclature

E = Young’s modulus
q, q0 = uniform load
v = Poisson’s ratio
a = size of the plate
t = face thickness
h = core thickness
Gxz = shear modulus in xz plane
Gyz = shear modulus in yz plane
u, v, w = displacement in x, y, z direction respectively
λ = constant depending on the Poisson’s ratio

    of the plate materials
Im = first invariant of average face strain
θ = skew angle
r = uu - ul

s = vu - vl

r, s = components of the in plane displacement of u and v

Introduction

Nonlinear analysis of sandwich plate is interesting to
design engineers for their wide application in the practical
field. Important papers in this field are due to Chien and
Chen [2], where the authors successfully carried out the
analysis on the effect of initial stresses of nonlinear vibra-
tion of laminated plates on an elastic foundation. Non-
linear partial differential equation based on Mindlin plate
theory are derived for nonlinear vibration of laminated
plates.

It is well known that a good number of  structural
design utilizes sandwich type construction in the fabrica-
tion of major structural components . A high strength to
weight ratio is achieved by combining a relatively thick
light weight core with two thin high strength faces. The
problem of large deflection of sandwich plates has been
investigated by several authors, among which works of
Reissner [3], Wang [4], Hoff [5] and Eringen [6] need
special mention. Reissner [3] presented an exact analysis
of finite deflection of sandwich plates. Wang [4] gave a
general theory of large deflections of sandwich plates and
shells. Hoff [5] and Eringen [6] each developed a theory
of bending and buckling of sandwich plates. All these
investigations are, however, confined to rectangular sand-
wich plates under mechanical loading only. Kamiya [7]
employed Berger’s well known technique to solve non-
linear problems of sandwich plates using a new set of
governing equation with a correction factor. This work has
been restricted to a particular plate geometry.

Dutta and Banerjee [1] offered a simple approach to
investigate nonlinear static as well as dynamic behaviours
of sandwich plates. Later Ray, Dutta and Banerjee [8]
quite elegantly investigated the nonlinear thermal behav-
iours of sandwich plates.

Dumir [9] and Dumir and Bhaskar [10] worked on
nonlinear analysis of rectangular plates on elastic founda-
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tions. Civalek [11] presented geometrically nonlinear
analysis of shells.

Some more interesting papers on sandwich structure
could be located [12-15] where nonlinear analyses have
been carried out elegantly and these papers are attractive
to design engineers.

Interesting papers on sandwich plates with orthotropic
core are due to Yeh and Chen [16], Wu and Yu [17], Silva
and Hunt [18] and Chakrabarti, Mukhopadhyay and Bera
[19].

Yeh and Chen [16] carried out finite element dynamic
analysis of orthotropic rectangular sandwich plates with
an electro rheological fluid core layer. The finite element
method and Hamilton’s principle are employed to derive
the finite element equations of motion for the orthotropic
sandwich plate. Wu and Yu [17] used a simple approach
to obtain the natural frequencies for rectangular corru-
gated-core sandwich plates with all edges simply sup-
ported. Silva and Hunt [18] worked on interactive
buckling analysis for sandwich structures with orthotropic
core. Chakrabarti, Mukhopadhyay and Bera [19] pre-
sented nonlinear stability of a shallow unsymmetrical
heated orthotropic sandwich shell of double curvature
with orthotropic core.

Dutta and Banerjee [20] carried out the analysis of
large deflections of sandwich plates with orthotropic core.
Chell, Mondal and Bairagi [21] analyses large deflection
of rhombic sandwich plates placed on elastic foundation.
Literature on large deflection analysis of skew sandwich
plates demands special attention because of their wide
application in space industry. So far it is known that no
paper could be located where nonlinear analysis of skew
sandwich plates with orthotropic core has been investi-
gated.

The aim of the present study is to use a set of uncoupled
differential equations in oblique coordinates to analyze
nonlinear behaviours of rhombic sandwich plates with
orthotropic core under uniform loading using Banerjee’s
Hypothesis [1]. To obtain the central deflection (w0/h) vs
load (q0a4/Eh4) Galerkin technique has been used. Nu-
merical results thus obtained for different skew angles
have been plotted in graph. Results have been compared
with the results obtained by Dutta and Banerjee [20] for
square sandwich plates only. The numerical results of the
non-linear behaviours for different skew angles of rhom-

bic sandwich plates with orthotropic core are believed to
be new.

Governing Equation

We consider a rhombic sandwich plate as shown in
Fig.1a with an orthotropic core as well as isotropic upper
and lower faces of identical thickness; while the faces
respond to the bending and membrane action of the plate,
the core is assumed to transfer only shear deformation.
Moreover the thickness of upper and lower faces is suffi-
ciently thin in comparism with core thickness (h>>t) to
ignore a variation of shear in the thickness direction of the
faces.

Under mechanical loading the governing equations for
sandwich plates with orthotropic core  in rectangular
Cartesian coordinate are given by [1],
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where  ∇  2  =  ∂ 2

∂ x 2  +  ∂ 2

∂ y 2
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For a skew plate, let us adopt a system of oblique
coordinates (x1, y1, θ) as shown in Fig.1b. Clearly x = x1
cosθ  and  y = y1 + x1 sinθ are the coordinate transforma-
tion equations. Hence the partial differential operators
become
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Putting the above transformations in Eqs. (1, 2, 3 and 4), we get the following set of differential equations :
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Analysis

Let us assume
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this form of w clearly satisfies the required simply sup-
ported edge conditions.

It is to be noted that to determine the desired solution,
w has been chosen in the form of double sine series
ensuring convergence of the solution. Double sine series
have been used following Timoshenko book [22] (Chapter
5, Page No. 105). Double sine series lead to fourier series,
the convergence of which is well known. Moreover put-
ting this form of w in the given differential equation, we

get the error function ∈ (x, y) because w = w0 sin 
π x1
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a  is not the exact solution of the differential equation.

We are now required to minimize this error by using the
well known Galerkin’s Technique.

Thus the solver of the differential equation is Galer-
kin’s Technique involving the evaluation of the above
double integrals, which is simple.

If we now integrate Eq.(8) over the entire plain area of
the plate we get
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It is to be noted that for movable edge conditions Im =   0.

Putting (9), (10), (11), (12) and (13) in Eq. (7) and
remembering the values of r and s obtained from Eq. (5)
and (6), we get the error function ∈ (x, y), Galerkin’s
Technique requires 
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Numerical Results

Tables (1 and 2) and Figs. 2 and 3 shows the results for
the central deflection parameter for different load function
of a rhombic sandwich plates with orthotropic core under

uniformly distributed load with the following dimensions
and material properties [23] :

E = 69000 x 10
6
 N/m

2

t = 0.635 x 10
-3

 m
v = 0.3
Gxz = 455 x 10

6
 N/m

2

λ = v
2
 = 0.09

Gyz = 205 x 10
6
 N/m

2

h = 1.7135 x 10
-2

 m

Table-1 : Nonlinear Analysis (Immovable Edge Conditions)

For θ = 0°
a = 0.254 m

For θ = 30°
a = 0.273 m

For θ =45°
a = 0.302 m

For θ = 60°
a = 0.359 m

q0 a
4

E h4

w0

h  (known) [20]
w0

h  (calculated)
w0

h  (calculated)
w0

h  (claculated)
w0

h  (calculated)

5 0.6813 0.6813 0.3122 0.1233 0.0324
8 0.9618 0.9618 0.4808 0.1958 0.0519

10 1.1131 1.1131 0.5832 0.2432 0.0648
12 1.2446 1.2446 0.6778 0.2896 0.0778
15 1.4148 1.4148 0.8066 0.3572 0.0971
20 1.6493 1.6493 0.9923 0.4639 0.1291
30 2.010 2.010 1.2876 0.6545 0.1921
40 2.2892 2.2892 1.5191 0.8179 0.2535
50 2.5206 2.5206 1.7109 0.9594 0.3128

Table-2 : Nonlinear Analysis (Movable Edge Conditions)

For θ = 0°
a = 0.254 m

For θ = 30°
a = 0.273 m

For θ =45°
a = 0.302 m

For θ = 60°
a = 0.359 m

q0 a
4

E h4

w0

h  (known) [20]
w0

h  (calculated)
w0

h  (calculated)
w0

h  (calculated)
w0

h  (calculated)

5 0.7566 0.7566 0.3196 0.1238 0.0325
8 1.1519 1.1519 0.5072 0.1978 0.0520
10 1.3867 1.3867 0.6293 0.2470 0.0650
12 1.6007 1.6007 0.7488 0.2960 0.0780
15 1.8882 1.8882 0.9221 0.3692 0.0974
20 2.2970 2.2970 1.1942 0.4898 0.1298
30 2.9391 2.9391 1.6761 0.7247 0.1945
40 3.4392 3.4392 2.0854 0.9493 0.2590
50 3.8530 3.8530 2.4380 1.1623 0.3231
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Numerical results have been calculated using Eq. (15)
by considering size of the plate ‘a’ as a variable and area
of the plate as constant. For θ = 0°, Eq. (15) becomes same
with Eq. (38) [20].

Conclusion

 The proposed differential equations are uncoupled and

thus simple. From the same Cubic Eq. (15) for 
⎛
⎜
⎝

w
0

h
⎞
⎟
⎠
, the

results of immovable and movable edge conditions can be
obtained. Numerical results for rhombic sandwich plates
with orthotropic core are obtained for different skew an-
gles and presented those in Tables (1 and 2). For square
sandwich plate the results are compared with those of
known results [20] and are in good agreement. The results
for the other different skew angles are believed to be
completely new. The numerical results presented in tables
for different skew angles, offer an interesting observation.
As θ increases i.e., as the plate tends towards rhombic

shape, the deflection 
⎛
⎜
⎝

w
0

h
⎞
⎟
⎠
 decreases i.e., stress decreases.

This is quite expected because with the increase of skew
angles, the plate offers more rigid structure. The effective
span of the plate is reduced as acosθ, so the centre of
gravity of the plate is nearer to the edges for which it
behaves more rigid structure and less deflected.
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Fig.1a  Sandwich Plate

Fig.1b  Skew Sandwich Plate

Fig.2  Nonlinear Analysis (Immovable Edge Conditions)

Fig.3  Nonlinear Analysis (Movable Edge Conditions)
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