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Abstract

Nonlinear free and forced vibration characteristics of composite square plates either sup-
ported at four corner points or point supported at the middle of its edges as well as corners
are investigated here using different high precision plate bending finite elements. It is observed
that, higher order interpolation polynomial for the transverse displacement helps the plate
bending finite elements to converge for the linear vibration frequencies. However, convergence
for large amplitude vibration problems depends on the interpolation polynomials for in-plane
displacements as well as transverse displacement. In general, the hardening nonlinearity (i.e.,
the increase of nonlinear frequency with vibration amplitude) of point supported plates is less
than those of immovable simply supported plates.
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Introduction

The increased utilization composite plates and shells
in different engineering structures have attracted the atten-
tion of many researchers to investigate their vibration
characteristics. It is observed from the existing literature
[1-4] that the nonlinear dynamics of simply supported and
clamped plates have received considerable attention of the
researchers. However, flexural vibration characteristics of
point supported composite plates have been sparsely
treated in the literature even though such plates find wide
application in civil, aerospace, automotive and marine
applications.

Few analytical and numerical studies on the linear
vibration frequencies of point supported isotropic [5-11]
and composite [12-16] plates are available in the literature.
Fan and Cheung [5] used spline finite strip method, Narita
[6], Kim and Dickinson [7] and Kitipornchai et al. [8]
employed Ritz method in combination with Lagrange
multiplier approach, Gorman [9] applied superposition
method, while, Raju and Amba-Rao [10] and Utjes et al.
[11] employed finite element method to study the linear
vibration frequencies of corner supported isotropic plates.
Recently, Cheung and Zhou [12] used static beam function
approach, Zhou et al. [13] used finite layer method, Zhou
and Ji [14] followed Levys solution procedure, Narita and
Hodgkinson [15] applied Ritz method, while Setoodeh

and Karamani [16] used finite element method to study the
vibration frequencies of composite plates with corner sup-
port or internal point support. However, all the above
works deals with the vibration behavior of point supported
rectangular plates using linear theory.

Nonlinear dynamics of plate like structures is a com-
plex phenomenon involving both flexural vibration and
in-plane strain. This stiffness interaction between the in-
plane and bending degrees of freedoms are generally
expressed through von Karman’s strain-displacement as-
sumptions. The nonlinear analysis of point supported
plates involving high stress regions near the localized
supports due to the in-plane deformation of the waiving
edges is further complicated. However, the nonlinear
flexural vibration analysis of point supported rectangular
plate is not yet commonly available in the literature.

In the present paper, nonlinear vibration characteristics
of point supported rectangular isotropic and composite
plates are studied using different high-precision plate-
bending finite elements developed by the authors [17-19]
over the years. Two different types of support conditions
are considered, i.e., (a) the plate are supported at four
corner points and (b) the plate is point supported at four
corners as well as at the middle of four edges. The flexural
motion of the plate is assumed to be harmonic and the
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in-plane movement is assumed to be periodic (with a
constant period of vibration). The nonlinear matrix ampli-
tude equation is obtained by employing Galerkin’s
method [20] to study the free and forced vibration charac-
teristics of point supported isotropic and composite plates.

Finite Element Formulations

The displacement components at a generic point (x, y,
z) of a shear deformable rectangular plate can be expressed
as

u (x , y , z)  =  u0 (x , y)  +  z φx
v (x , y , z)  =  v0 (x , y)  +  z φy
w (x , y , z)  =  w0 (x , y) (1)

Here, u0 , v0 , w are the mid-surface displacements;
φx and φy are the nodal rotations. Following von
K a′ r m a′ n strain-displacement relation, the in-plane and
shear strains can be written as
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Here, ( ) , x and ( ) , y  represent the partial differentiation
with respect to x and y. The membrane ⎧

⎨
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⎩ M ⎫⎬⎭ and shear ⎧⎨⎩ Q ⎫⎬⎭ stress resultants may be expressed as
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where [A] , [B], [D], and [S] are extensional, extension-
bending, bending, and shear stiffness coefficients respec-
tively. Following standard procedure, the governing
equation for the nonlinear flexural vibration of a compos-
ite plate under transverse harmonic pressure q0 sin θ t may
be written as
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Here, M and K, are the mass and linear stiffness matrix
respectively, N1 and N 2 are nonlinear stiffness matrices
linearly depends on transverse displacement w; N 3 is
quadratic nonlinear matrix. Subscript ‘m’ and ‘b’ corre-
sponds to membrane (u0, v0) and bending (w , φx , φy )
components of the degrees of freedom and the correspond-
ing mass and stiffness matrices.

Solution Procedure

The displacement components for the nonlinear vibra-
tion of composite plates under transverse harmonic pres-
sure q0 sin θ t are assumed to be of the form
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Now, substituting the assumed solution into the gov-
erning equation (4) and taking the weighted residual [20]
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equation is obtained
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Free Flexural Vibration

In the case of free flexural vibration (q0  =  0) , the
matrix amplitude equation (6) is solved iteratively using
the following high precision plate bending elements to
study the nonlinear vibration frequencies of point sup-
ported isotropic and composite plates.

Nonlinear Forced Vibration Under Transverse Har-
monic Pressure

For the case of forced vibration under transverse har-
monic load q0 sin θ t (θ is in the vicinity of linear vibration
frequency ωL), the above matrix amplitude equation is
solved to obtain the steady-state flexural vibration ampli-
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T
 (the maximum nodal displacements) of

isotropic and composite plates corresponding to non-di-
mensional excitation frequency θ/ωL and load parameter
q0

Element 1: This is a 16-node plate bending element with
five degrees of freedom per node namely u0 , v0 , w , φx ,
and φy. The cubic polynomial shape functions employed
to describe the field variables are expressed as follows:
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Here, ci are constants and are expressed in terms of
nodal displacements in the finite element discretization.
The shear correction factor is taken as 5/6. Assumed strain
fields are employed to overcome shear locking [17].

Element 2: Here, shear strains are taken as independent
degrees of freedom and the nodal rotations are expressed
as φx = − w, x + γxz (x , y) and φy = − w, y + γyz (x , y). A
four nodded plate bending element [18] with ten degrees
of freedom namely u0 , v0 , w , w, x , w, y , w, xx , w, xy ,
w, yy , γxz and  γy z are employed here. The displacement
components u0 , v0 , w , γxz and γy z are expressed as
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This element is free from shear locking phenomenon
and all the stiffness and mass matrices are evaluated using
full integration scheme.

Element 3: This is a similar four node plate bending
element with 14 degrees of freedom per node with the
following modified interpolation polynomials for
u0 , v0 , w , γxz and γyz [19] :
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This element is also free from shear locking phenome-
non and all the stiffness and mass matrices are evaluated
using full integration scheme. This element has been suc-
cessfully employed in Ref. [19] to study the nonlinear
stability analysis of composite skew plates involving
stress concentration at the corners.

Results and Discussion

Large amplitude free flexural vibration characteristics
of point supported (Fig.1) square composite plates of
length "a" and thickness "h" are studied here. The material
properties, unless specified otherwise, used  in the present
analysis are

EL
 ⁄ ET = 40.0 , GLT

 ⁄ ET = 0.6, GTT
 ⁄ ET = 0.5,

vLT = 0.25 , ET = 1.00000.0 and ρ = 1.0.

Here, E, G, v and ρ are Young’s modulus, shear
modulus, Poisson’s ratio and density. Subscripts L and T
represent the longitudinal and transverse directions re-
spectively with respect to the fibers. All the layers are of
equal thickness. The boundary conditions considered here
are:

Simply supported plate :

u0 = v0 = w = 0  along the  edges

4-point supported plate :

u0 = v0 = w = 0 at four corner nodes

8-point supported plate :

u0 = v0 = w = 0 at middle of edges as well as corner nodes

Before studying the nonlinear behavior of point sup-
ported plates, the efficiency of different plate bending
elements for the non-dimensional linear vibration frequen-
cies ( ω

__
  =  ω a2 ⁄ √⎯⎯⎯⎯⎯⎯⎯ρ h ⁄ D0  , ) D0  =  E1 h3 /  12∗ ( 1 − υ12 υ21 )

of a corner supported thin square angle-ply [450/-450/450/-
450/450] composite plate is studied in Table-1 along with
the available analytical solutions of Cheung and Zhou [12]
and they match very well. It is observed from Table-1 that
all the three elements employed here have good conver-
gence property in calculating linear frequencies and thus
a 6x6 mesh of element 1 and 10x10 mesh of element 2 and
element 3 are adequate to model the full plate for the linear
analysis of corner supported plates. Further, the non-di-
mensional linear frequencies ( ω

__
  =  ω a2 ⁄ π 2 h √⎯⎯⎯⎯⎯ρ ⁄ ET  )

of a thin square symmetric cross-ply [00/900/00/900/00]
plate point supported at corners or point supported at the
mid-node of the edges as well as corners are studied with
different plate bending elements and the converged fre-
quencies are presented in Table-2.

Now, the convergence of different plate bending ele-
ments for the nonlinear frequency ratios (ωNL

 ⁄ ωL) of
simply supported and corner supported thin (a/h = 100)
isotropic square plates are examined in Table-3. The non-
linear frequencies of simply supported plates are studied
by different investigators, while the nonlinear frequencies
of corner supported plates are not available in the litera-
ture. Eigenvalue equation (6) is solved iteratively (q0 = 0)
for different amplitude (w/h) of vibration and a detailed
convergence study is carried out for the nonlinear frequen-
cies. It can be observed from Table-3 that, similar to linear
frequencies, the nonlinear frequencies also converge well
for simply supported plates and a 6x6 mesh of element 1
and 10x10 mesh of elements 2-3 are adequate to model the
full plate. However, even if, the convergence is monotonic
for the corner supported plate, the rate of convergence for
nonlinear frequencies is very slow. This is attributed to the
localized in-plane stresses at the corners due to waiving of

Fig.1  The Point Supported Square (a x a) Plate of
Thickness h. Point Supports are Encircled

(a) Point Supported at the Corners
(b) Point Supported at the Corners as well as the Mid-edges
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the edges in the in-plane directions as observed in Fig.2,
where the nonlinear mode shapes for a simply supported
and point supported isotropic plate are plotted. It is ob-
served here that the complete cubic polynomial shape
functions for the in-plane displacements (u0, v0) helps the
elements 1 and 3 to converge faster than element 2 with
lower order interpolation polynomial for in-plane dis-
placements (u0, v0) and fifth order polynomial for trans-

verse displacement (w). It may be noted further that for the
case of thin plates (a/h = 100) the nonlinear frequencies
obtained from a 20x20 mesh of element 3 with a total
degree of freedom of 6174 is almost near to the corre-
sponding values obtained from a 16x16 mesh of element
1 with a total degree of freedom of 12005. Hence element
3 performs better for thin plates (a/h = 100). It is further
observed from Table-3 that the hardening non-linearity in

Table-2 : Non-dimensional Linear Frequency of Square Cross-ply  [00/900/00/900/00] Composite Plates
(a/b = 1, a/h = 1000, ω

__
  =  ω a2 ⁄ π 2 h √⎯⎯⎯⎯⎯ρ ⁄ ET  )

Mess
Size (dof)

Modes
1 2 3 4 5 6

Supported at Four Corners
Element 1 6 x 6 (1805) 0.64594 0.97768 1.42595 2.52801 3.1821 3.96606
Element 2 10 x 10 (1210) 0.64599 0.97772 1.42613 2.52804 3.18262 3.96563
Element 3 10 x 10 (1694) 0.6460 0.97773 1.42616 2.52822 3.18295 3.96623
Supported at the Corners and Mid-node of the Edges
Element 1 6 x 6 (1805) 1.72827 3.18617 3.27993 3.99993 5.44687 5.88163
Element 2 10 x 10 (1210) 1.72702 3.18262 3.19069 3.92774 5.45099 5.80377
Element 3 10 x 10 (1694) 1.72688 3.18295 3.19068 3.92756 5.45231 5.80507

Table-1 : Convergence Study of Non-dimensional Linear Frequency ( ω
__

  =  ω a2 ⁄ √⎯⎯⎯⎯⎯⎯⎯⎯ ρ h  ⁄  D0  ) of a Corner Sup-
ported Square Angle-ply  [450/-450/450/-450/450] Composite Plate (E1 = 138, E2 = 8.96, G12 = 7.1, υ12 = 0.3)

(a/b = 1, a/h = 1000, D0 = E1h3 / 12 (1 - υ12 υ21) )
Mess 

Size (dof)
Modes

1 2 3 4 5 6

Element 1
2 x 2 (245) 4.47334 7.93027 8.88789 13.11079 21.43231 25.94171
4 x 4 (845) 4.47226 7.92203 8.88071 13.10618 21.27514 25.30575
6 x 6 (1805) 4.47207 7.92187 8.87995 13.10508 21.27119 25.29461

Element 2

4 x 4 (250) 4.47175 7.92141 8.88044 13.10484 21.26651 25.28185
6 x 6 (490) 4.47175 7.92141 8.88044 13.10484 21.26651 25.28185
8 x 8 (810) 4.47175 7.92141 8.88044 13.10484 21.26651 25.28185

10 x 10 (1210) 4.47175 7.92141 8.88044 13.10484 21.26651 25.28185

Element 3

4 x 4 (350) 4.47649 7.92847 8.89208 13.12356 21.39785 25.52658
6 x 6 (686) 4.47332 7.92365 8.88381 13.11098 21.30273 25.35382
8 x 8 (1134) 4.47271 7.92256 8.88212 13.10849 21.28377 25.31583

10 x 10 (1694) 4.47251 7.92221 8.88152 13.10791 21.27788 25.30411
Cheng and Zhou [12] 4.5076 8.0919 8.9916 13.217 21.434 25.665
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corner supported plate is less compared to simply sup-
ported plate.

Next, nonlinear frequency ratios of isotropic, cross-ply
[00/900/00/900/00] and angle-ply [450/-450/450/-450/450]

point supported (4 point and 8 point) thin (a/h =100) and
thick (a/h =10) square plates are presented in Table-4
using 20x20 mesh of element 3 (total degree of freedom
6174) and 16x16 mesh of element 1 (total degree of
freedom of 12005) respectively. It may be observed that,

Table-3 : Convergence Study of Nonlinear Frequency Ratios (ωNL / ωL) of isotropic Square Plate with Different
Elements (a/b = 1, a/h = 100)

Mess
Size (dof)

wmax / h
0.2 0.4 0.6 0.8 1.0 1.2

Simply Supported Plate
Element 1 2 x 2 (245) 1.01907 1.07425 1.16074 1.27281 1.40515 1.55339

4 x 4 (845) 1.01908 1.07425 1.16073 1.27275 1.40498 1.55302
6 x 6 (1805) 1.01909 1.07431 1.16086 1.27296 1.40527 1.5534
8x 8 (3125) 1.01911 1.07437 1.16098 1.27316 1.40556 1.55378

10 x 10 (4805) 1.01912 1.07443 1.16110 1.27335 1.40583 1.55412
Element 2 6 x 6 (490) 1.01973 1.07677 1.16589 1.28081 1.41575 1.56596

8 x 8 (810) 1.01940 1.07554 1.16340 1.27695 1.4106 1.55978
10 x 10 (1210) 1.01925 1.07499 1.16228 1.2752 1.40827 1.55696

Element 3 6 x 6 (686) 1.01847 1.07216 1.15669 1.26662 1.39677 1.54282
8 x 8 (1134) 1.01862 1.07271 1.15784 1.26849 1.39942 1.54627

10 x 10 (1694) 1.01870 1.07303 1.15850 1.26957 1.40095 1.54826
Corner Supported Plate

Element 1

4 x 4 (845) 1.01134 1.04453 1.09728 1.16642 1.24863 1.3409
6 x 6 (1805) 1.01020 1.04030 1.0883 1.1515 1.2271 1.3125
8x 8 (3215) 1.00960 1.3770 1.0828 1.1423 1.2139 1.2948

12 x 12 (6845) 1.00877 1.03459 1.07603 1.13105 1.19737 1.2728
14x 14 (9245) 1.00850 1.03352 1.07372 1.12717 1.1917 1.2652

16 x 16 (12005) 1.00827 1.03263 1.07181 1.12397 1.18701 1.25891

Element 2

8x 8 (810) 1.0153 1.0597 1.1291 1.2184 1.3225 1.4371
12 x 12 (1690) 1.0135 1.0529 1.1149 1.1954 1.2899 1.3950
16 x 16 (2890) 1.0124 1.0488 1.1063 1.1813 1.2699 1.3687
20 x 20 (4410) 1.0117 1.0459 1.1003 1.1715 1.2558 1.3503

Element 3

8 x 8 (1134) 1.0099 1.0388 1.0850 1.1459 1.2189 1.3013
12 x 12 (2366) 1.0090 1.0355 1.0778 1.1339 1.2014 1.2781
16 x 16 (4046) 1.0085 1.0334 1.0773 1.1264 1.1904 1.2634
20 x 20 (6174) 1.0081 1.0319 1.0701 1.1210 1.1826 1.2529
24 x 24 (8750) 1.0078 1.0308 1.0679 1.1173 1.1774 1.2460
28 x 28 (11774) 1.0076 1.0299 1.0659 1.1140 1.1725 1.2395
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Fig.2  Non-linear First Mode Shape (w/h = 1.0) of Free Flexural Vibration of Square Plates. (a) Simply Supported Plate
(b) Point Support at Four Corners (c) Point Support at Four Corners and also at the Mid Edges

Table-4 : The Non-linear Frequency Ratios (ωNL / ωL) of Point Supported Square Plates

w/h

a/h = 100
(Result of Element 3 with 20 x 20 mesh)

a/h = 10
(Result of Element 1 with 16 x 16 mesh)

Isotropic [00/900/00/900/00] [450/-450/450/
-450/450]

Isotropic [00/900/00/900/00] [450/-450/450/
-450/450]

Supported at Four Corners
0.2 1.00808 1.00744 1.00589 1.01274 1.04388 1.05566
0.4 1.03186 1.02906 1.02335 1.04888 1.13920 1.16514
0.6 1.07010 1.06281 1.05176 1.10355 1.23897 1.15947
0.8 1.12099 1.10552 - 1.17160 1.26714 1.13579
1.0 1.18256 1.14932 - 1.24897 1.13794 1.00717
1.2 1.25287 1.18816 - 1.33260 1.13049 -

Supported at the Corners and Mid-node of the Edges
0.2 1.00765 1.00619 1.00455 1.01105 1.04277 1.06993
0.4 1.03030 1.02451 1.01801 1.04329 1.13654 1.10184
0.6 1.06705 1.05418 1.03990 1.09430 1.23028 1.29262
0.8 1.11665 1.09407 1.06949 1.16093 1.32816 1.41061
1.0 1.17760 1.14279 1.10590 1.23995 1.42289 1.50347
1.2 1.24840 1.19877 1.14822 1.32853 1.51984 1.57471
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the nonlinear frequencies are in general higher for thick
isotropic plates compared to thin ones. However, for the
case of composite plates, vibration mode changes for some
cases at higher vibration amplitude (w/h) leading to drop
in nonlinear frequencies [20] or non-convergence in peri-
odic solution.

Now, the forced vibration characteristics of a corner
supported isotropic and cross-ply  [00/900/00/900/00]
square plate (a/h = 100) under transverse harmonic pres-
sure q0 sin θt (θ = 0.8ωL; ωL is the linear vibration
frequency) are taken-up for investigation. The forced vi-

bration amplitudes ⎧⎨
⎩
δ m , δ b

⎫
⎬
⎭

T
are obtained from the matrix

amplitude equation (6). Time history analysis with New-
mark’s time integration technique is carried out starting

from the initial condition (δ  =  ⎧⎨
⎩
δ m , δ b

⎫
⎬
⎭

T
at time t = T/4)

and the dynamic response of transverse displacement
(wc/h) at the centre are presented in Fig.3 for excitation
frequencies θ = 0.8ωL. The dynamic response is observed
to be steady-state and hence the validity of matrix-ampli-
tude equation (6) is established.

Next, the steady-state forced vibration amplitudes
(w/h) of a corner supported isotropic and cross-ply
[00/900/00/900/00] square plates under transverse har-
monic pressure q0 sin θt are studied Fig.4. The backbone
curves, i.e., the frequency-amplitude relationships, for the
case of free flexural vibration (q0 = 0), are presented in the

Fig.4 as solid line. The nonlinear forced vibration ampli-
tudes (wmax/h) under non-dimensional excitation fre-
quency (θ/ωL) are presented as scattered symbols for
various values of the non-dimensional load parameters qN
= q0a3 / D or qN = q0a3 / ETt3 for the case of isotropic and
composite plates respectively. It is observed from the
figure that, the flexural vibration amplitude (w/h) in-
creases as the excitation frequency (θ) either increases
from zero or decreases from a higher value (say, θ = 2ωL).
As the excitation frequency approaches the linear flexural
vibration frequency (ωL) of the plate from either side, the
nonlinear flexural vibration amplitude increases rapidly

Fig.3  Steady-state Dynamic Response of a Corner Supported
Square Plate Under Uniformly distributed Transverse Har-

monic Pressure q0 sin θt (θ = 0.8 ωL; a/b = 1; a/h = 100; qN
= q0a3 / D for Istropic, qN = q0a3 / ETt3 for Composites Plate)

Fig.4  Non-linear Flexural Vibration of a Corner Supported Square Plate Under Uniformly Distributed Transverse
Harmonic Pressure q0 sin θt ( a/b = 1; a/h = 100; qN = q0a3 / D for Istropic, qN = q0a3 / ETt3 for Composites Plate)
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(tangential to the backbone curves) as structural damping
is not considered in the present study. Further, the vibra-
tion at a higher excitation frequency (points on the right
side of the backbone curve) is observed to be out-of-phase
with the applied load.

Conclusions

Large amplitude free and forced vibration charac-
teristics of point supported isotropic and laminated com-
posite square plates are studied using different high
precision plate bending elements. Extensive convergence
study is carried out to evaluate the capabilities of plate
bending elements (with different interpolation polyno-
mials for the in-plane and transverse displacements) in
predicting nonlinear frequencies of point supported iso-
tropic and symmetric laminates. It is seen that although
rate of convergence of all the elements is excellent for
linear frequencies, convergence of non-linear frequencies
is slow due to high in-plane stresses at the point supports.
Plate bending elements with higher order interpolation
polynomial for both in-plane and transverse displacements
converge comparatively faster for the nonlinear analysis
of point supported thin plates. However, for the thick
plates, interpolation polynomial for the shear rotation (or
nodal rotation) plays an important role. It is observed that
the hardening non-linearity in point supported plates is
less compared to the simply supported plates. For exam-
ple, the nonlinear frequency ratio (ωNL/ωL) of a thin
isotropic square plate at a vibration amplitude equal to the
plate thickness (wmax/h = 1) is 1.40583, 1.18256 and
1.17760 for simply supported, 4-point supported and 8-
point supported boundary conditions respectively. These
results for the large amplitude vibration of point supported
composite plates are believed to be new and will serve as
benchmark for comparison in future research work.
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