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Abstract

In the present article bending, vibration and buckling analyses of a tapered beam using
Eringen non-local elasticity theory is being carried out. The associated governing differential
equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko
beam theories are considered in the analyses. Present results are in good agreement with those
reported in literature. Non-local analyses for tapered beam with simply supported - simply
supported (SS) , clamped - simply supported (CS) and clamped - free (CF) boundary conditions
are conducted and discussed. It is observed that the maximum deflection increases with
increase in non-local parameter value for SS and CS boundary conditions. Further, vibration
frequency and critical buckling load decrease with increase in non-local parameter value for
SS and CS boundary conditions. Non-local parameter effect on deflection, frequency and
buckling load  for CF supports is found to be opposite in nature to that of SS and CS supports.
In case of thick beams non-local structural response is observed to be sensitive to length to
thickness ratio.

Keywords: non local theory, Rayleigh-Ritz method, tapered beam, bending, buckling, vibra-
tion, and boundary conditions

Nomenclature

ai = arbitrary constant
A, A(x) = areas of cross section
b = width of beam
E = modulus of elasticity
G = modulus of rigidity
h, h0, h1 = heights of beam
I, I(x) = moments of inertia
k = shape factor
L = length of beam
M = bending moment
ni = integer value
N = axial load
P = concentrated load
Pcr = critical buckling load
Tmax = maximum kinetic energy

ui = displacement

U = strain energy due to bending 
VE = work done by external force 

VS = potential energy due to shear 

w = transverse deflection of beam

ω = natural frequency
ΠP = total potential energy
ρ = density of material
σxx = bending stress

εxx = bending strain

τxz = shear stress

εxz = shear strain

ϕ(x) = rotation due to shear
μ = nonlocal factor
m0, m2 = mass inertias

Introduction

Most classical continuum theories are based on hyper
elastic constitutive relations which assume that the stress
at a point is a function of strain at that point. On the other
hand, the non-local continuum mechanics assumes that the
stress at a point is a function of strains at all points in the
continuum. Such theories contain information about the
forces between atoms, and the internal length scale is
introduced into the constitutive equations as a material
parameter. The non-local theory of elasticity has been used
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to study lattice dispersion of elastic waves, wave propaga-
tion in composites, dislocation mechanics, fracture me-
chanics, surface tension on fluids, etc. Work on nonlocal
elasticity is introduced by Eringen [1-3] and Eringen and
Edelen [4]. Peddieson et. al [5] employed nonlocal contin-
uum model in nanotechnology. Pin et. al [6] employed a
nonlocal beam model in carbon nanotubes. Reddy [7]
applied nonlocal theories and reported bending, buckling
and vibration results of beams. Wang et. al [8] applied
nonlocal continuum mechanics and conducted static
analysis of micro- and nano-structures. Heireche et. al. [9]
employed nonlocal elasticity and studied sound wave
propagation in single-walled carbon nanotubes. Zhou [10]
studied free vibration of tapered beams. Maalek [11] in-
vestigated shear deflections of tapered timoshenko beams.
Ece et. al [12] reported vibration response of variable cross
section beam. Ganesan and Zabihollah [13-14] conducted
parametric study on vibration of tapered beams. They
employed higher order finite element analysis. Reddy [15]
found relation between bending solutions of classical and
shear deformation beam theories. Reddy and Wang [16]
also discussed relationship between solutions of the clas-
sical and shear deformation plate theories. Liew et. al [17]
studied free vibration and buckling of shear-deformable
plates based on meshfree method. Brown and Stone [18]
employed Rayleigh-Ritz method and studied composite
materials. Leissa [19] reported historical bases of
Rayleigh-Ritz method. Shames and Dym [20] reported
energy and finite element methods for various structural
mechanics problems. Reddy and Pang [21] reported non
local continuum theories for beams.

The tapered beams are increasingly being used in
engineering applications, such as turbine blades, helicop-
ter blades and yokes, robot arms and satellite antennas.
Here stiffness of the structure is varied along the length of
the beam. Nonlocal analysis of tapered beams is important
and little information is available in the literature. Thus in
the present work authors have attempted to carry out
nonlocal analyses of tapered beams with various boundary
conditions. This work includes bending, buckling and
vibration of the beams.

Formulation

Nonlocal Theory

The stress field at a point x in an elastic continuum
depends on the strain field at the point (hyper elastic case)
as well as strains at all other points of the body. Eringen
[3] attributed this fact to the atomic theory of lattice
dynamics and experimental observations on phonon dis-

persion. Thus, the non-local stress tensor σ at point x is
expressed as an integral form over the body

σ  =  ∫  
V

 K ( | x
 /  −  x | , τ )  t ( x

 / ) dv (x /
) (1)

where t is the classical, macroscopic stress tensor at point
x /in the body and the nonlocal kernel function
K ( | x /  −  x | , τ ) which brings the influence of strain at
distant points x / to the stress at x. ( | x /  −  x | ) is the
distance in Euclidean norm. τ is a material constant that
depends  on internal and external characteristic lengths
such as the lattice spacing and wavelength, respectively.
The macroscopic stress ‘t’ at a point x in a Hookean solid
is related to the strain ε at the point by the generalized
Hook’s law

t (x)  =  C (x)  :  ε (x) (2)

where C is the fourth-order elasticity tensor and : denotes
the double-dot product. The constitutive Eqs. (1) and (2)
together define the non-local constitutive behaviour of a
Hookean solid [7]. Further, Eqn.(1) represents the
weighted average of the contributions of the strain field of
all points in the body to the stress field at a point. This
represents the integral constitutive relations in an equiva-
lent differential form as

(1 − τ 2 l 2 ∇ 2 ) σ = t , τ  =  
e0 a

l (3)

where e0 is a material constant. a and l are the internal and
external characteristic lengths, respectively. Using Eqs.
(2) and (3), stress resultants are expressed in terms of the
strains in different beam theories. In the local theory the
relation of stress resultants and strains are represented as
linear algebraic equations. While in non-local theory the
relation of stress resultants and strains are represented as
differential equations. For homogeneous isotropic beams
the non-local behavior is assumed to be negligible in the
thickness direction. The constitutive relation for macro-
scopic stress take the special relation for beams

σxx  −  μ 
∂

 2 σxx

∂ x 2   =  E εxx , σxz  −  μ 
∂

 2 σxz

∂ x 2   =  2G εxz (4)

where μ  =  e0
 2 a 2 .

The axial forcestrain relation is given by
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N  −  μ ∂
 2 N
∂ x 2   =  E ε xx

 0 (5)

where N  =  ∫  
A
σ xx dA . The x-axis is considered along the

geometric centroid of the beam. In Euler-Bernoulli beam
theory, the constitutive relation is given by

M E  −  μ ∂
 2 M E

∂x 2   =  E I κ E (6)

where κ E  =  − ∂
 2 w E

∂x 2  and M E  =  ∫  
A

z σ xx dA .

The superscript ‘E’ denotes the quantities associated with
EulerBernoulli beam theory. In case of the Timoshenko
beam theory we have additional M Tand Q Tterms. The
constitutive relation is given as

M
 T

 − μ ∂
 2

 M
 T

∂x
 2  = E I κ

 T
 , Q

 T
 − μ ∂

 2
 Q

 T

∂x
 2  = G A K

s
 γ

 T (7)

where Q  =  ∫  
A
σ xz dA . Ks denotes the shear  correction

factor . K T = ∂φ
T

∂ x
 and γ T = d w T

d x  + φ T .

The superscript ‘T’ denotes the quantities associated
with the Timoshenko beam theory [7]. 

In the present work deflections, natural frequencies
and critical loads for uniform and tapered beams (Fig.1)
with various boundary condition are calculated. The mo-
ment of inertia and cross section area are changing along
the beam axis.

The moment equation for Euler-Bernoulli non-uni-
form beam theory is written as

M
 E

 = − E I (x) ∂
 2

 w

∂ x
 2  + μ ⎡⎢

⎣

∂
∂ x

 ⎛⎜
⎝
N

  E
 ∂ w
∂ x

⎞
⎟
⎠
 − q + m

 0
 ∂

 2
 w

∂ t
 2  − m

 2
 ∂

 4
 w

∂ x
 2

 ∂ t
 2
⎤
⎥
⎦

(8)

while moment equation Timoshenko non-uniform beam
theory is expressed as

M
 T

 = E I (x) ∂ φ
∂ x

 + μ ⎡⎢
⎣

∂
∂ x

 ⎛⎝N
  T

 ∂ w
∂ x

⎞
⎠ − q + m

 0
 ∂

 2
 w

∂ t
 2  − m

 2
 ∂

 4
 w

∂ x
 2

 ∂ t
 2
⎤
⎥
⎦
(9)

Shear force is written as

Q
 T

 = GA(x) K
s
 ⎛⎜
⎝
φ + ∂w

∂ x
⎞
⎟
⎠
 + μ ∂

∂ x
 
⎡
⎢
⎣

⎢
⎢
− q + ∂

∂ x
 ⎛⎜
⎝
N ∂ w
∂ x

⎞
⎟
⎠
 + m

 0
 ∂

 2
 w

∂ t
 2

⎤
⎥
⎦

⎥
⎥

(10)

Bending

Flexural response of the beams are computed by em-
ploying Rayleigh-Ritz method. Strain energy for bending
is expressed as

U  =  1
2 E  ∫  

0

 L M 2

I (x)
 dx (11)

Beam flexural equation is written as

M  =  − E I(x) d
 2 w

d x 2 (12)

Putting (12) in (11)

U  =  12  ∫  
0

 L
E I(x) 

⎛
⎜
⎝

⎜
⎜
d 2 w

d x 2

⎞
⎟
⎠

⎟
⎟
 dx (13)

Strain energy due to shear force is written as

Vs  =  1
2 G  ∫  

0

 L
 Q 2

A (x)
 dx (14)

Work done by uniformly distributed load (UDL) is ex-
pressed as

VE  = − ∫  
0

 L
q w dx (15)

Fig.1  A Schematic Diagram of Tapered Beam with Simply
Supported - Simply Supported Boundary Conditions
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Total potential energy for the Euler-Bernoulli beam
with UDL is expressed as

Π  p  =  U + VE (16)

where U is strain energy due to bending. VE is the work
done by external force. For purely bending analysis
N E = 0  m0 = 0 and m2 = 0  are incorporated in Eqn (8).
Equation (8) is rewritten as

M E  =  − E I(x) ∂
 2 w

∂ x 2  + μ ( − q) (17)

Strain energy for bending

U  =  1
2 E ∫  

0

 L
 (M

  E
)
 2

I (x)
 dx (18)

Work done by UDL is expressed as

V E  =  − ∫  
0

 L
q w dx (19)

In Rayleigh-Ritz Method the component of approxi-
mate displacement w is approximated as functions con-
taining a finite number of independent parameters, These
parameters are determined such that the total potential
energy computed on the basis of the approximate displace-
ments is a minimum.

For a given structural system, w is assumed as

w = a 1 u 1 (x) + a 2 u 2 (x) + ............ + a n u n (x) (20)

where a 1 , a 2 ..... a n are the linear independent parame-
ters and u 1 , u 2 ..... u n are  the continuous functions of the
co-ordinate x. u 1 , u 2 ..... u n satisfy all the kinematics
boundary conditions for all values of the constant
a 1 , a 2 ..... a n.The total potential energy is a function of
a 1 , a 2 ..... a n .

When the system is in equilibrium,

∑ 
i = 1

n

  ∂ Π
∂ ai

  ∂ ai  =  0 (21)

Eqn. (21) is satisfied only if

∂ Π
∂ a1

  =  0    ∂ Π
∂ a2

  =  0    .......... ∂ Π
∂ an

  =  0 (22)

From Eqn. (22)  a 1 , a 2 ..... a n are determined. Incorpo-
rating a 1 , a 2 ..... a n in Eqn.(20) approximate displace-
ment is determined.

Similarly beam bending deflections are computed by em-
ploying Rayleigh-Ritz method for the Timoshenko beam.
Total potential energy for Timoshenko beam with UDL is
expressed as

Π  p  =  U  + VS  +VE (23)

For bending analysis of Timoshenko beam
N T =  ,  m 0 = 0  and m 2 = 0  are put in Eqn. (9) and we
get

M T  =  − E I(x) ∂φ
∂ x

 + μ ( − q) (24)

Strain energy for bending is

U  =  1
2 E ∫  

0

 L
 (M

 T
)
 2

I (x)
 dx (25)

For bending analysis N = 0 and m0 = 0. q is independent
of x . Putting these values in Eqn. (10) we get

Q T  =  GA (x) Ks 
⎛
⎜
⎝
φ + ∂ w

d x
⎞
⎟
⎠

(26)

Strain energy due to shear force is

VS  =  1
2 G  ∫  

0

 L
 (Q

 T
)
 2

A (x)
  dx (27)

work done by UDL is written as

VE  =  − ∫  
0

 L
 q w dx (28)

In Timoshenko beam approximate displacement w and
rotation φ are functions containing a finite number of
independent parameters. These parameters are determined
so that the total potential energy computed on the basis of
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the approximate displacements is a minimum. w and φ are
expressed as

w = a1 u1 (x)  +  a2 u2 (x)  +  ..........  +  an un (x)

φ = b1 v1 (x)  +  b2 v2 (x)  +  ..........  +  bn vn (x) (29)

where a1 , a2 ..... an and b1 , b2 ..... bn are linear inde-
pendent parameters and u1 , u2 ..... un and v1 , v2 ..... vn are
the continuous functions of the co-ordinate x. All the
kinematics boundary conditions for all value of the con-
stant a1 , a2 ..... an and b1 , b2 ..... bn are satisfied. The
total potential energy is a function of a1 , a2 ..... an and
b1 , b2 ..... bn. System is in equilibrium implies

∑ 
i = 1

n

  ∂ Π
∂ ai

  ∂ai  =  0  and   ∑ 
i = 1

n

  ∂ Π
∂ bi

  ∂bi  =  0 (30)

Eqn.(30) is satisfied for arbitrary values of ∂ai , ∂bi.
Thus

∂ Π
∂ a1

  =  0     ∂ Π
∂ a 2

  =  0     .......     ∂ Π
∂ an

  =  0

∂ Π
∂ b1

  =  0     ∂ Π
∂ b 2

  =  0     .......     ∂ Π
∂ bn

  =  0 (31)

 From Eqn.(31) a1 , a2 ..... an and b1 , b2 ..... bn are
determined and  putting these values in Eqn.(29) we get
approximate displacement w and rotation φ.

Vibration

Vibration frequencies of the beams are computed by
employing Rayleigh-Ritz method. Total potential energy
for Euler-Bernoulli beam is expressed as

Π  P  =  VMAX  −  TMAX (32)

where VMAX  and TMAX  are total maximum strain energy
due to bending and maximum kinetic energy, respectively.
Kinetic energy is written as

T  =  12  ∫  
0

 l
 ⎛⎜
⎝

dw (x , t)
dt

⎞
⎟
⎠

 2

  dm  =  12  ∫  
0

 l
 ⎛⎜
⎝

dw (x , t)
dt

⎞
⎟
⎠

 2

  ρ A (x) dx

(33)

where dm  =  ρ A(x). The maximum kinetic energy can be
obtained by assuming a harmonic variation
w(x , t)  =  w(x) cos ωt. Maximum kinetic energy is ex-
pressed as

Tmax  =  ω
2

2   ∫  
0

 L
ρ A (x) w2 (x) dx (34)

For vibration analysis in Eqn. (8) q = 0 and N = 0 are
considered and Eqn. (8) is rewritten as

M E  =  − E I (x)  ∂
 2 w

∂x 2   +  μ  
⎡
⎢
⎣

⎢
⎢
m0  ∂

2 w

∂t2
⎤
⎥
⎦

⎥
⎥

(35)

Maximum value of potential energy is expressed as

Vmax  =  1
2 E  ∫  

0

 L
 (M

 E
)
2 dx

I (x)
(36)

In vibration analysis displacement w is expresses as an
approximate function of independent parameters satisfy-
ing kinematic boundary conditions. For maximum total
potential energy, we have

∂ Π
∂ ai

  =  0 (37)

After simplifying Eqn. (37) we get

∑ 
i = 1

n

  (Ai − ω 2 Di) ai = 0 (38)

where

A
i
  =  ∫  

0

 L.
 E I(x) 

⎛
⎜
⎝

⎜
⎜
d

 2
w

dx
 2

⎞
⎟
⎠

⎟
⎟
  dx  and  D

i
  =  ∫  

0

 L
 ρ A (x) w dx

We have a homogenous system of n number of equa-
tions. For a nontrivial solution the determinant of the
coefficients is equal to zero. Thus we get

| Ai − ω 2 Di |  =  0 (39)

 From Eqn. (39) frequency ω is determined. In a similar
way frequency for Timoshenko beam is computed. Total
potential energy for Timoshenko beam is expressed as

Π P  =  VMAX  +  VS  −  TMAX (40)
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VMAX , VS and TMAX  represent maximum strain energy
due to bending, strain energy due to shear and maximum
kinetic energy, respectively. Maximum kinetic energy
TMAX is expressed as in Eqn. (34). For vibration analysis
q = 0 and N = 0 are incorporated in Eqn. (9). Equation (9)
is rewritten as

M T  =  − E I (x)  ∂φ
∂x

  +  μ  
⎡
⎢
⎣

⎢
⎢
m 0  ∂

 2 w

∂t2
  +  m2  ∂

 3 φ

∂x ∂t 2
⎤
⎥
⎦

⎥
⎥
(41)

Maximum value of potential energy is

VMAX  =  1
2 E  ∫  

0

 L
 (M

 T
)
2 dx

I (x)
(42)

For vibration analysis q = 0 and N = 0 are incorporated
in Eqn.(10). Equation (10) is rewritten as 

Q T  =  GA (x) Ks  
⎛
⎜
⎝
φ  +  ∂ w

∂x
⎞
⎟
⎠
  +  μ  

⎡
⎢
⎣

⎢
⎢
m0  ∂

 2 w

∂t2
⎤
⎥
⎦

⎥
⎥

(43)

strain energy due to shear force is written as

VS  =  1
2 G  ∫  

0

 L
 (Q

 T
)
2 dx

A (x)
(44)

w and φ are approximate function with independent pa-
rameter that satisfy kinematic boundary conditions. For
maximum total potential energy

∂ Π
∂ ai

  =  0     and     ∂ Π
∂ b i

  =  0 (45)

After simplifying Eqn. (45) we get

∑ 
i = 1

n

  (Ai − ω 2 Di) ai = 0 (46)

where

A
i
  =  ∫  

0

 L
 E I(x) 

⎛
⎜
⎝

⎜
⎜

d
 2

w

dx
 2

⎞
⎟
⎠

⎟
⎟
  dx  and  D

i
 = ∫  

0

 L
(ρ A (x) w + ρ I ϕ) dx

We have a homogenous system of n number of eqns.
For a nontrivial solution the determinant of the coeffi-
cients is equal to zero. Thus we get

| Ai − ω 2 Di |  =  0 (47)

From Eqn. (47) frequency ω is determined.

Buckling

Critical buckling loads are computed by employing
Rayleigh-Ritz method. Total potential energy of the col-
umn with Euler-Bernaulli beam theory is expressed as

Π p  =  VMAX  +  VP (48)

where VMAX  is maximum strain energy for bending and
VP is work done due to external load.

For buckling analysis q = 0, m0 = 0, m2 = 0 are put in
Eqn. (8). Equation (8) is rewritten as

M E  =  − E I (x)  ∂
 2 w

∂x 2   +  μ  ⎡⎢
⎣

∂
∂x

 ⎛⎜
⎝
N E  ∂w

∂x
⎞
⎟
⎠

⎤
⎥
⎦

(49)

Maximum strain energy for bending is expressed as

Vmax  =  1
2 E  ∫  

0

 L
 (M

 E
)
2

I (x)
  d x (50)

Work done due to external load is written as

VP  =  − P2  ∫  
0

L
 ⎛⎜
⎝

d w
d x

⎞
⎟
⎠

 2
 d x (51)

In buckling analysis w is approximated with inde-
pendent parameters satisfying kinematic boundary condi-
tions. For maximum total potential energy

∂ Π
∂ ai

  =  0 (52)

After simplifying Eqn. (52) we get

∑ 
i = 1

n

  (Ai − P Di) ai = 0 (53)

where

A
i
  =  ∫  

0

 L
 E I(x) 

⎛
⎜
⎝

⎜
⎜

d
 2

w

dx
 2

⎞
⎟
⎠

⎟
⎟
  dx  and  Di = ∫  

0

 L 1
2 P ⎛⎜

⎝

dw
dx

⎞
⎟
⎠
 dx
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We have a homogenous system of n number of eqns.
For a nontrivial solution the determinant of the coeffi-
cients is equal to zero. Thus we get

| Ai − P Di |  =  0 (54)

From Eqn. (54) buckling load P is determined. Total
potential energy of the column with Timoshenko beam
theory is expressed as

Π p  =  VMAX  +  VS  +  VP (55)

where VMAX , VS and VP represent maximum strain energy
for bending, strain energy due to shear force and work
done by external load, respectively. For buckling analysis
q = 0, m0 = 0 and m2 = 0 are incorporated in Eqn (9).
Equation (9) is rewritten as

M T  =  − E I (x)  ∂φ
∂x

  +  μ  
⎡
⎢
⎣

⎢
⎢
N  ∂

2 w

∂t2
⎤
⎥
⎦

⎥
⎥

(56)

Maximum strain energy for bending is written as

VMAX  =  1
2 E  ∫  

0

 L
 (M

 T
)
2

I (x)
  d x (57)

For buckling analysis q = 0 and m0 = 0 are incorporated in
Eqn. (10). Equation (10) is rewritten as

Q  =  GA (x) Ks  
⎛
⎜
⎝
φ  +  ∂ w

∂x
⎞
⎟
⎠
  +  μ  

⎡
⎢
⎣

⎢
⎢
N  ∂

 3 w

∂x 3

⎤
⎥
⎦

⎥
⎥

(58)

Strain energy due to shear force is written as

VS  =  1
2 G  ∫  

0

 L
 (Q

 T
)
2 dx

A (x)
(59)

Work done due to external load is expressed as

VP  =  − P2  ∫  
0

L
 ⎛⎜
⎝

d w
d x

⎞
⎟
⎠

 2
 d x (60)

w and φ are approximate functions with independent pa-
rameters satisfying kinematic boundary conditions. For
maximum total potential energy

∂ Π
∂ ai

  =  0     and     ∂ Π
∂ b i

  =  0 (61)

After simplification, we get

∑ 
i = 1

n

  (Ai − P Di) ai = 0 (62)

where

A
i
  =  ∫  

0

 L
 E I(x) 

⎛
⎜
⎝

⎜
⎜

d
 2

w

dx
 2

⎞
⎟
⎠

⎟
⎟
  dx  and  D

i
 = ∫  

0

 L 1
2 P ⎛⎜

⎝

dw
dx

⎞
⎟
⎠
 dx

Thus we have a homogenous system of n number of
eqns. For a nontrivial solution the determinant of the
coefficients is equal to zero. Thus we get

| Ai − P Di |  =  0 (63)

From Eqn. (63) critical buckling load P is determined.

Results and Discussions

Bending of Beam

In the nonlocal flexural beam analysis following con-
figurations are considered (Reddy [7]). Length of beam L
= 10.0m, width b = 1.0m, height h of 0.1m, 1.0m and 2.0m,

Table-1 : Non-dimensional Maximum Deflection at

Free End ⎡⎢
⎣
ŵ  =  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
 in Clamped - Free Uni-

form Beam

L/h μ

Peddieson
et.al [5]

Present Result % of
Differenc

e
EBT EBT TBT EBT

100 0.0 0.1250 0.1250 0.1250 0.000
0.5 0.1225 0.1225 0.1225 0.000
1.0 0.1200 0.1200 0.1200 0.000
1.5 0.1175 0.1175 0.1175 0.000
2.0 0.1150 0.1150 0.1150 0.000
2.5 0.1125 0.1125 0.1125 0.000
3.0 0.1100 0.1100 0.1100 0.000
3.5 0.1075 0.1075 0.1075 0.000
4.0 0.1050 0.1050 0.1050 0.000
4.5 0.1025 0.1025 0.1025 0.000
5.0 0.1000 0.1000 0.1000 0.000
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Young’s modulus E = 30x106 N/m2, Poisson ratio v = 0.3,
UDL per unit length q = 1N/m, moment of inertia

I  =  
⎛
⎜
⎝

b × h 3

12
⎞
⎟
⎠
 m 4 , cross section of beam A = (b x h) m2,

density ρ = 1 kg/m3 and shear correction factor k  =  ⎛⎜
⎝

5
6
⎞
⎟
⎠

are considered.

For tapered beam height h is assumed to be varying
linearly along the beam length (Fig.1). Moment of inertia
and cross-section area are expressed as
I1 = I0 (1 + (x ⁄ L)) m 4 and A1 = A0 (1 + (x ⁄ L)) m 2 , re-
spectively. simply supported - simply supported (SS),

clamped - simply supported (CS) and clamped - free (CF)
boundary conditions are considered in the analysis.

Maximum deflection for SS, CS and CF beams are
computed as mentioned in Eqns. (20, 29). Employing
Euler-Bernoulli theory (EBT) and Timoshenko beam the-
ory (TBT) for CF and SS beams results are listed in Tables-
1 to 2, respectively. From Table-1, one could observe that
the present nonlocal results are exactly matching with
those reported by Peddieson et. al [5]. Peddieson et. al
[5]’s nonlocal work is limited to Euler-Bernoulli theory.
Further, in Table-2, it is observed that present results are
in good agreement with those reported by Reddy [7].
Small difference in results is observed for higher values of

Table-2 : Comparison of Non-dimensional Maximum Center Deflection  ⎡⎢
⎣
ŵ  =  10 2  ×  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
  in 

Simply Supported  - Simply Supported Uniform Beam

L/h μ
Reddy [7] Present Result % of Difference

EBT TBT EBT TBT EBT TBT
100 0.0 1.3130 1.3134 1.3021 1.3025 0.8317 0.8322

0.5 1.3809 1.3813 1.3646 1.3650 1.1818 1.1822
1.0 1.4487 1.4492 1.4271 1.4275 1.4924 1.4994
1.5 1.5165 1.5170 1.4896 1.4900 1.7751 1.7818
2.0 1.5844 1.5849 1.5521 1.5525 2.0399 2.0462
2.5 1.6522 1.6528 1.6146 1.6150 2.2770 2.2888
3.0 1.7201 1.7207 1.6771 1.6775 2.5010 2.5123
3.5 1.7879 1.7886 1.7396 1.7400 2.7026 2.7189
4.0 1.8558 1.8565 1.8021 1.8025 2.8947 2.9103
4.5 1.9236 1.9244 1.8646 1.8650 3.0682 3.0882
5.0 1.9914 1.9923 1.9271 1.9275 3.2299 3.2540

10 0.0 1.3130 1.3483 1.3021 1.3343 0.8317 1.0398
0.5 1.3809 1.4210 1.3646 1.3968 1.1818 1.7044
1.0 1.4487 1.4937 1.4271 1.4593 1.4924 2.3043
1.5 1.5165 1.5664 1.4896 1.5218 1.7751 2.8486
2.0 1.5844 1.6391 1.5521 1.5843 2.0399 3.3445
2.5 1.6522 1.7118 1.6146 1.6468 2.2770 3.7983
3.0 1.7201 1.7845 1.6771 1.7093 2.5010 4.2152
3.5 1.7879 1.8572 1.7396 1.7718 2.7026 4.5994
4.0 1.8558 1.9299 1.8021 1.8343 2.8947 4.9547
4.5 1.9236 2.0026 1.8646 1.8968 3.0682 5.2841
5.0 1.9914 2.0754 1.9271 1.9593 3.2299 5.5951
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nonlocal parameter and thick beams. This is attributed to
the shear force effect in thick beams and Rayleigh-Ritz
method approximation. In CF beam deflection is decreas-
ing with increasing non-local parameter. Thus in case of
CF beam stiffness is directly proportional to the non-local
parameter. However, in case of SS beam maximum deflec-

tion is increasing with increase in non-local parameter.
Thus in case of SS beam the beam stiffness is inversely
proportional to the non-local parameter. This is due to
small scale effect at molecular level.

Non-dimensional maximum deflections are computed
for the uniform beam with CS boundary condition. Results
are listed in Table-3. In case of CS uniform  beam deflec-
tion is observed to be increasing with increase in non -local
parameter and inclusion of Timoshenko beam theory. This
is due to the fact that beam stiffness for CS boundary
condition is inversely proportional to the nonlocal parame-
ter. This is due to small scale effect at molecular level. For
the increase of nonlocal parameter from 0 to 5 there is an
increase of 51 percent, increase of 34 percent and decrease
of 20 percent in maximum deflections for SS, CS and CF
uniform beams, respectively. Nonlocal effect is found to
be in increasing order for CF, CS and SS boundary condi-
tions.

Vibration of Beam

Nonlocal fundamental frequencies for SS, CS and CF
beams are computed as mentioned in Eqns. (39,47). Beam
configurations are assumed as mentioned in numerical
example of sub section Bending of beam. The fundamental
frequencies for SS beam are listed Table-4. From this table
one could observe that present results are in good agree-
ment with those reported in Reddy [7]. Small difference

Table-3 : Non-dimensional Maximum Deflection
⎡
⎢
⎣
ŵ  =  10 2  ×  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
  in Clamped - Simply Sup-

ported Uniform Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.5389 0.5421 0.5849 0.7094
0.5 0.5565 0.5596 0.6030 0.7288
1.0 0.5742 0.5771 0.6211 0.7482
1.5 0.5918 0.5946 0.6392 0.7676
2.0 0.6094 0.6121 0.6573 0.7870
2.5 0.6271 0.6296 0.6754 0.8063
3.0 0.6447 0.6471 0.6935 0.8257
3.5 0.6623 0.6646 0.7116 0.8451
4.0 0.6800 0.6821 0.7297 0.8645
4.5 0.6976 0.6996 0.7478 0.8839
5.0 0.7152 0.7171 0.7659 0.9033

Table-4 : Comparison of Non-dimensional Fundamental Natural Frequencies ⎡⎢
⎣
ω
__

  =  ω 1  L 2  √⎯⎯⎯ ρ A
EI

⎤
⎥
⎦
 in Simply

Supported - Simply Supported Uniform Beam

Reddy [7]
L/h μ Present Result % of Difference

EBT TBT EBT TBT EBT TBT
100 0.0 9.8696 9.8683 9.8745 9.8706 0.05005 0.02331

0.5 9.6347 9.6335 9.4297 9.4266 2.12752 2.14792
1.0 9.4159 9.4147 9.0543 9.0518 3.84010 3.85472
1.5 9.2113 9.2101 8.7306 8.7286 5.21848 5.22850

10 0.0 9.8696 9.7454 9.8745 9.7482 0.05005 0.02842
0.5 9.6347 9.5135 9.4297 9.3279 2.12752 1.95081
1.0 9.4159 9.2973 9.0543 8.9708 3.84010 3.51188
1.5 9.2113 9.0953 8.7306 8.6612 5.21848 4.77279
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in results is observed for higher values of nonlocal parame-
ter and thick beams. This is attributed to the shear force
effect in thick beams. In case of SS beam natural frequency
is observed to be decreasing with increase in non-local
parameter. Thus in case of SS beam the beam stiffness is
inversely proportional non-local parameter.

Non-dimensional fundamental frequencies are com-
puted for the uniform beam with CS and CF boundary
conditions. Results are listed in Tables-5 to 6, respectively.
In case of CS uniform beam fundamental frequency is
observed to be decreasing with increase in non-local pa-
rameter and inclusion of Timoshenko beam theory. This
is due to the fact that beam stiffness for CS boundary
condition is inversely proportional to the nonlocal parame-
ter. While, in case of CF uniform beam fundamental
frequency is observed to be increasing with increase in
non-local parameter and inclusion of Timoshenko beam
theory. This is due to the fact that beam stiffness for CF
boundary condition is directly proportional to the nonlocal
parameter.

For the increase of nonlocal parameter from 0 to 5 there
is  decrease of 26 percent and increase of 5 percent in
natural frequencies for CS and CF uniform beams, respec-

tively. Nonlocal effect is found to be in increasing order
for CF and CS boundary conditions.

Buckling of Column

Nonlocal critical buckling loads for SS, CS and CF
columns are computed as mentioned in Eqns. (54, 63).
Column configurations are assumed as mentioned in nu-
merical example of sub section Bending of beam. The SS
column results are listed Table-7. From this table one
could observe that present results are in good agreement
with those reported in Reddy [7]. Small difference in
results is observed for higher values of nonlocal parameter
and thick beams. This is attributed to the shear force effect
in thick beams. In case of SS column critical buckling load
is observed to be decreasing with increase in non-local
parameter. Thus  in  case  of SS  beam the beam stiffness
is  found  to  be inversely proportional to non-local pa-
rameter.

Non-dimensional critical buckling loads are computed
for the uniform beam with CS and CF boundary condi-
tions. Results are listed in Tables-8 to 9, respectively.  In
case of CS uniform beam critical buckling load is observed
to be decreasing with increase in non-local parameter and
inclusion of Timoshenko beam theory. This is due to the
fact that beam stiffness for CS boundary condition is

Table-5 : Non-dimensional Fundamental  Frequen-

cies ⎡⎢
⎣
ω
__

  =  ω 1  L 2  √⎯⎯⎯ ρ A
EI

⎤
⎥
⎦
 in Clamped - Simply

Supported Uniform Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 15.4252 15.4141 14.9345 13.7532
0.5 14.6405 14.6330 14.2450 13.2736
1.0 14.0137 14.0102 13.6871 12.8719
1.5 13.4968 13.4966 13.2223 12.5287
2.0 13.0674 13.0627 12.8268 12.2313
2.5 12.6798 12.6896 12.4848 11.9707
3.0 12.3650 12.3646 12.1856 11.7405
3.5 12.0804 12.0784 11.9213 11.3529
4.0 11.7997 11.5975 11.6861 11.1891
4.5 11.5673 11.3940 11.4758 11.0421
5.0 11.3579 11.2108 11.2869 10.9103

Table-6: Non-dimensional Fundamental  Frequen-

cies ⎡⎢
⎣
ω
__

  =  ω 1  L 2  √⎯⎯⎯ ρ A
EI

⎤
⎥
⎦
 in Clamped - Free  Uni-

form Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 3.5168 3.5160 3.4981 3.4428
0.5 3.5322 3.5312 3.5137 3.4593
1.0 3.5479 3.5468 3.5297 3.4761
1.5 3.5639 3.5627 3.5461 3.4933
2.0 3.5803 3.5790 3.5629 3.5110
2.5 3.5972 3.5957 3.5800 3.5291
3.0 3.6144 3.6128 3.5976 3.5477
3.5 3.6321 3.6303 3.6157 3.5667
4.0 3.6503 3.6483 3.6342 3.5863
4.5 3.6689 3.6667 3.6532 3.6064
5.0 3.6880 3.6856 3.6727 3.6272
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inversely proportional to the nonlocal parameter. While,
in case of CF uniform beam critical buckling load is
observed to be increasing with increase in non-local pa-
rameter and inclusion of Timoshenko beam theory. This
is due to the fact that beam stiffness for CF boundary
condition is directly proportional to the nonlocal parame-
ter.

For the increase of nonlocal parameter from 0 to 5 there
is an decrease of 63 percent and increase of 5 percent in
critical buckling loads for CS and CF uniform columns,
respectively. Nonlocal effect is found to be in increasing
order for CF and CS boundary conditions.

Bending of Tapered Beam

Present flexural response computation is extended to
tapered beams Non-dimensional maximum deflections for
SS, CS and CF boundary conditions are being computed
and listed in Tables-10 to 12, respectively. I(x), A(x) and
h(x) are integrated from 0 to L and the integrated values
are used in the computation of tapered beam.

From Tables 10-12 following observations are made.
In case of SS and CS tapered beam deflection is observed
to be increasing with increase in non-local parameter and
inclusion of Timoshenko beam theory. In case of CF
tapered beam deflection is observed to be decreasing with

Table-7 : Comparison of Non-dimensional Critical Buckling Loads  
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in 

Simply Supported  - Simply Supported Uniform Beam

L/h μ
Reddy [7] Present Result % of Difference

EBT TBT EBT TBT EBT TBT
100 0.0 9.8696 9.8671 9.8696 9.8621 0.0001 0.0511

0.5 9.4055 9.4031 9.0094 9.0033 4.2110 4.2523
10 0.0 9.8696 9.6227 9.8696 9.6227 0.0001 0.0002

0.5 9.4055 9.1701 9.0094 8.7789 4.2110 4.2658

Table-8 : Non-dimensional Critical Buckling Loads
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in Clamped - Simply

Supported Uniform Column

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 21.7050 21.5844 20.0970 16.7875
0.5 17.9782 17.8799 16.7247 14.0205
1.0 15.4984 15.4102 14.4570 12.1371
1.5 13.7005 13.6168 12.8026 10.7529
2.0 12.3238 12.2418 11.5307 9.6893
2.5 11.2289 11.1467 10.5161 8.8446
3.0 10.3332 10.2498 9.6845 8.1552
3.5 9.5844 9.4990 8.9881 7.5794
4.0 8.9475 8.8596 8.3949 7.0891
4.5 8.3980 8.3073 7.8827 6.6648
5.0 7.9183 7.8246 7.4353 6.2931

Table-9 : Non-dimensional Critical Buckling Loads
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in Clamped - Free

Uniform Column

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 2.4897 2.4672 2.4488 2.3940
0.5 2.5481 2.5301 2.5104 2.4517
1.0 2.6105 2.5971 2.5759 2.5131
1.5 2.6774 2.6688 2.6460 2.5785
2.0 2.7493 2.7457 2.7211 2.6484
2.5 2.8269 2.8286 2.8019 2.7233
3.0 2.9111 2.9183 2.8892 2.8039
3.5 3.0027 3.0157 2.9840 2.8911
4.0 3.1029 3.1221 3.0873 2.9856
4.5 3.2132 3.2391 3.2006 3.0887
5.0 3.3354 3.3685 3.3258 3.2019
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increase in non-local parameter and inclusion of Ti-
moshenko beam theory. For L/h=100 EBT and TBT yield
same results because of cumulative effect of tapering, CF
boundary condition and nonlocal elasticity.

For the increase of nonlocal parameter from 0 to 5 there
is an increase of 47 percent, increase of 45 percent and
decrease of 19 percent in maximum deflections for SS, CS
and CF tapered beams, respectively. Nonlocal effect is
found to be in increasing order for CF, CS and SS bound-
ary conditions.

 

Vibration of Tapered Beam

Present beam vibration computation is extended to
tapered beams. Non-dimensional fundamental frequen-
cies for SS, CS and CF boundary conditions are being
computed and listed in Tables-13 to 15, respectively. I(x),
A(x) and h(x) are integrated from 0 to L and the integrated
values are used in the computation of tapered beam.

From these Tables 13-15 following observations are
made. In case of SS and CS tapered beams vibration
frequency is observed to be decreasing with increase in
non-local parameter and inclusion of Timoshenko beam
theory. In case of CF tapered beam vibration frequency is
observed to be increasing with increase in non-local pa-
rameter and inclusion of Timoshenko beam theory. For the
increase of nonlocal parameter from 0 to 5 there is de-
crease of 26 percent, decrease of 27 percent and increase
of 3 percent in maximum deflections for SS, CS and CF
tapered beams, respectively.

Table-10 : Non-dimensional Maximum Center

Deflection  ⎡⎢
⎣
ŵ  =  10 2  ×  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
  in 

Simply Supported  - Simply Supported Tapered
Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.8703 0.8800 0.8926 0.9590
0.5 0.9126 0.9225 0.9345 1.0091
1.0 0.9546 0.9650 0.9764 1.0428
1.5 0.9968 1.0075 1.0183 1.0847
2.0 1.0384 1.0500 1.-602 1.1266
2.5 1.0803 1.0924 1.1021 1.1684
3.0 1.1222 1.1349 1.1440 1.2103
3.5 1.1642 1.1774 1.1859 1.2522
4.0 1.2061 1.2199 1.2278 1.2941
4.5 1.2480 1.2623 1.2697 1.3360
5.0 1.2899 1.3048 1.3117 1.3778

Table-11 : Non-dimensional Maximum Deflection
⎡
⎢
⎣
ŵ  =  10 2  ×  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
  in 

Clamped - Simply Supported Tapered Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.3308 0.3858 0.4044 0.4727
0.5 0.3460 0.3975 0.4167 0.4857
1.0 0.3611 0.4092 0.4290 0.4988
1.5 0.3762 0.4209 0.4414 0.5118
2.0 0.3913 0.4326 0.4537 0.5248
2.5 0.4064 0.4443 0.4661 0.5378
3.0 0.4215 0.4561 0.4784 0.5508
3.5 0.4366 0.4678 0.4907 0.5638
4.0 0.4518 0.4795 0.5031 0.5768
4.5 0.4669 0.4912 0.5154 0.5999
5.0 0.4820 0.5029 0.5278 0.6029

Table-12 : Non-dimensional Maximum Deflection
⎡
⎢
⎣
ŵ  =  w ⎛⎜

⎝

EI
qL 4

⎞
⎟
⎠

⎤
⎥
⎦
  in Clamped - Free

Tapered Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 0.1059 0.1059 0.1069 0.1098
0.5 0.1040 0.1040 0.1050 0.1078
1.0 0.1021 0.1021 0.1030 0.1059
1.5 0.1001 0.1001 0.1011 0.1040
2.0 0.0982 0.0982 0.0992 0.1020
2.5 0.0963 0.0963 0.0972 0.1001
3.0 0.0943 0.0943 0.0953 0.0982
3.5 0.0924 0.0924 0.0934 0.0962
4.0 0.0905 0.0905 0.0914 0.0943
4.5 0.0885 0.0885 0.0895 0.0924
5.0 0.0866 0.0866 0.0876 0.0905
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Nonlocal effect is found to be in increasing order for
CF, CS and SS boundary conditions.

 

Buckling of Tapered Column

Non-dimensional critical buckling loads for SS, CS
and CF tapered columns are being computed and listed in
Tables-16 to 18, respectively. I(x), A(x) and h(x) are inte-
grated from 0 to L and the integrated values are used in the
computation of tapered column.

From Tables 16-18 following observations are made.
In case of SS and CS tapered columns critical buckling
load is observed to be decreasing with increase in non-lo-
cal parameter and inclusion of Timoshenko beam theory.
In case of CF tapered column critical buckling load is
observed to be increasing with increase in non-local pa-
rameter and inclusion of Timoshenko beam theory.

For the increase of nonlocal parameter from 0 to 5 there
is decrease of 49 percent, decrease of 63 percent and
increase of 38 percent in maximum deflections for SS, CS
and CF tapered columns, respectively. Nonlocal effect is
found to be in increasing order for CF, CS and SS bound-
ary conditions. From the present computation it is found
that nonlocal elasticity has significant contribution for
lower L/h ratios. (L/h < 100). Thus Timoshenko beam
theory should be included in the analysis.

Table-14 : Non-dimensional Fundamental  Fre-

quencies ⎡⎢
⎣
ω
__

  =  ω 1  L
 2  √⎯⎯⎯ ρ A

EI
⎤
⎥
⎦
 in  Clamped - Sim-

ply Supported Tapered Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 14.6927 14.6914 13.6500 11.2741
0.5 13.9265 13.9236 13.0368 10.9454
1.0 13.3183 13.3077 12.5312 10.6574
1.5 12.8128 12.7967 12.1033 10.4019
2.0 12.3825 12.3624 11.7340 10.1727
2.5 12.0097 11.9866 11.4105 9.9656
3.0 11.6822 11.6569 11.1237 9.7771
3.5 11.3912 11.3644 10.8671 9.6044
4.0 11.1304 11.1025 10.6356 9.4455
4.5 10.8949 10.8662 10.4253 9.2986
5.0 10.6809 10.6517 10.2333 9.1622

Table-13 : Non-dimensional Fundamental  Fre-

quencies ⎡⎢
⎣
ω
__

  =  ω 1  L
 2  √⎯⎯⎯ ρ A

EI
⎤
⎥
⎦
 in  Simply Sup-

ported - Simply Supported Tapered Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 9.8691 9.8634 9.3622 8.1356
0.5 9.4244 9.4201 8.9847 7.8933
1.0 9.0491 9.0459 8.6606 7.6770
1.5 8.7255 8.7231 8.3775 7.4821
2.0 8.4419 8.4401 8.1267 7.3050
2.5 8.1900 8.1887 7.9021 7.1428
3.0 7.9640 7.9630 7.6990 6.9934
3.5 7.7593 7.7587 7.5139 6.8551
4.0 7.5726 7.5722 7.3442 6.7264
4.5 7.4012 7.4010 7.1877 6.6063
5.0 7.2431 7.2430 7.0463 6.4936

Table-15 : Non-dimensional Fundamental  Fre-

quencies ⎡⎢
⎣
ω
__

  =  ω 1  L
 2  √⎯⎯⎯ ρ A

EI
⎤
⎥
⎦
 in  Clamped - Free

Tapered Beam

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 2.8532 2.8390 2.7163 2.4163
0.5 2.8618 2.8476 2.7239 2.4220
1.0 2.8706 2.8562 2.7317 2.4277
1.5 2.8796 2.8650 2.7395 2.4336
2.0 2.8887 2.8739 2.7475 2.4395
2.5 2.8979 2.8830 2.7554 2.4455
3.0 2.9073 2.8922 2.7637 2.4515
3.5 2.9168 2.9016 2.7721 2.4577
4.0 2.9265 2.9111 2.7805 2.4639
4.5 2.9364 2.9208 2.7891 2.4702
5.0 2.9464 2.9307 2.7978 2.4766
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Conclusions

Effect of nonlocal parameter on the structural response
is sensitive to the applied boundary conditions and Ti-
moshenko beam theory.

In case of SS and CS beam deflection is observed to
be increasing with increase in non-local parameter and
inclusion of Timoshenko beam theory. In case of CF
uniform beam deflection is observed to be decreasing with
increase in non-local parameter and inclusion of Ti-
moshenko beam theory.

In case of SS and CS beams vibration frequencies are
observed to be decreasing with increase in non-local pa-
rameter and inclusion of Timoshenko beam theory. In case
of CF beam vibration frequency is observed to be increas-
ing with increase in non-local parameter and inclusion of
Timoshenko beam theory.

In case of SS and CS columns critical buckling loads
are observed to be decreasing with increase in non -local
parameter and inclusion of Timoshenko beam theory. In
case of CF column critical buckling load is observed to be
increasing with increase in non-local parameter and inclu-
sion of Timoshenko beam theory.

Table-16 : Non-dimensional Critical Buckling

Loads  
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in 

Simply Supported - Simply Supported Tapered
Column

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 15.8390 14.4212 13.7967 13.3877
0.5 14.3026 13.1551 13.4934 12.2232
1.0 13.0833 12.1320 12.4406 11.2782
1.5 12.0856 11.2830 11.5675 10.4917
2.0 11.2502 10.5642 10.8284 9.8243
2.5 10.5379 9.9457 10.1925 9.2490
3.0 9.9218 9.4064 9.6383 8.7467
3.5 9.3823 8.9311 9.1499 8.3036
4.0 8.9053 8.5083 8.7155 7.9092
4.5 8.4798 8.1292 8.3261 7.5553
5.0 8.0974 7.7869 7.9746 7.2356

Table-17 : Non-dimensional Critical Buckling

Loads  
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in 

Clamped - Simply Supported Tapered Column

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 29.8530 29.7510 27.9463 23.8585
0.5 14.7636 24.6441 23.2081 19.8639
1.0 21.3875 21.2514 20.0401 17.1508
1.5 18.9459 18.7940 17.7383 15.1903
2.0 17.0811 16.9136 15.9747 13.7113
2.5 15.6017 15.4189 14.5722 12.5507
3.0 14.3950 14.1966 13.4256 11.6063
3.5 13.3891 13.1752 12.4679 10.8146
4.0 12.5364 12.3067 11.6541 10.1364
4.5 11.8035 11.5576 10.9527 9.5463
5.0 11.1664 10.9039 10.3410 9.0270

Table-18 : Non-dimensional Critical Buckling

Loads  
⎡
⎢
⎣
P  =  Pcr  ×  

⎛
⎜
⎝

L 2

EI
⎞
⎟
⎠

⎤
⎥
⎦
  in 

Clamped - Free Tapered Column

μ EBT TBT TBT TBT
L/h = 100 L/h = 100 L/h = 10 L/h = 5

0.0 3.1462 3.1234 3.1027 3.0578
0.5 3.2291 3.2047 3.1837 3.1376
1.0 3.3176 3.2915 3.2701 3.2228
1.5 3.4124 3.3845 3.3627 3.3139
2.0 3.5144 3.4843 3.4621 3.4118
2.5 3.6244 3.5920 3.5693 3.5173
3.0 3.7436 3.7086 3.6853 3.6315
3.5 3.8734 3.8354 3.8116 3.7557
4.0 4.0155 3.9741 3.9496 3.8914
4.5 4.1721 4.1268 4.1014 4.0406
5.0 4.3460 4.2960 4.2697 4.2059
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Effect of nonlocal parameter is larger on bending and
buckling than in vibration of beams. Effect of nonlocal
parameter in case of CF boundary condition is substan-
tially less than those for SS and CS boundary conditions.
Further, effect of nonlocal parameter in case of CF bound-
ary condition is opposite in nature as compared to those
for SS and CS boundary conditions.

Nonlocal elasticity has significant contribution for
lower L/h ratios and Timoshenko beam theory should be
included in the analysis.
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