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Abstract

The impact response and the impact-induced damage in curved composite laminates subjected
to transverse impact by a metallic impactor are studied using three-dimensional non-linear
transient dynamic finite element formulation. A layered version of isoparametric eight-noded
hexahedral element with incompatible modes is developed which incorporates geometrical
non-linearity based on total Langragian approach. The non-linearity of both strain displace-
ment relation and contact loading are simultaneously solved using Newton-Raphson incre-
mentaliterative method. Impact-induced damages (matrix cracking and delamination) are
predicted using appropriate three-dimensional stress-based failure criteria. Some example
problems of graphite/epoxy laminated cylindrical shells with variation of important parame-
ters such as impactor velocity, shell curvature, laminate dimension and fibre orientation of
plies are solved and the influence of geometrical non-linear effect on both impact response
and resulting damages is demonstrated.

Keywords: Finite element analysis,  geometrical non-linearity,  8-noded layered brick ele-
ment, polymer matrix composites, curved laminates, impact dynamics.

Introduction

Resistance of the damage caused by low velocity non-
penetrating impact is an important design consideration in
case of fibre-reinforced plastic laminated composite struc-
ture. Therefore, numerous experimental and analytical
investigations have been performed for understanding im-
pact response and impact-induced damages in these lami-
nates; the summary of most of the earlier work is reported
in References [1-2].

A number of researchers have deployed the 2-D and
3-D finite element method for the solution of impact
problems for laminated plates and shells. Earlier numeri-
cal investigations were mainly based on small deflection
theory and didn’t consider non-linear effects [3-7]. Ambur
et al. [8] have concluded that the inclusion of geometrical
non-linearity in the prediction of impact response and
damage in thin and moderately thick laminated compos-
ites helps in improving the accuracy of the analysis. Chan-
drashekhara and Schroeder [9] have studied impact
response of laminated curved shell using finite element
formulation based on Sander’s shell theory considering
geometric non-linearity in the sense of von Karman

strains. However, impact damage was not investigated in
their study. Kam et al. [10] predicted deflection and first
ply  failure  load  of  thin  laminated  composite  plates
using a non-linear finite element model based on Mindlin
plate theory. The prediction of ultimate strength of the
damaged plate was based on the hypothetical strength
reduction model that once a matrix crack is predicted at a
point, it is assumed to be extended through the full width
of the plate. Ganapathy and Rao [11] used 4-noded 48 d.o.f
shell element based on Kirchhoff-Love thin shell theory
in non-linear finite element analysis of cylindrical/spheri-
cal shell panels. The authors used a form of classical
Hertzian  contact  law and predicted matrix cracking fail-
ure by applying the general Tsai-Wu failure criterion for
composite materials. Although geometrical non-linearity
was included, the study assumes that low velocity impact
force and deformation can be simulated by static model
and hence does not compute impact response as a function
of time. Krishnamurthy et. al. [12] used 9 noded isopara-
metric shell element based on Mindlin-Reissener assump-
tions regarding transverse shear deformations in their
parametric study of laminated cylindrical shell and as-
sumed parabolic shear stress distribution across the thick-
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ness. Zhu et al. [13] incorporated effects of strain rate
dependency and inelastic behavior of matrix material for
analyzing the mechanical response of laminated shell. The
study was, however, concentrated on transient response of
laminated shell subjected to suddenly applied static load-
ing uniformly distributed over the bottom surface of the
panel and didnt consider damage phenomena. More re-
cently, Kumar [14] has carried out non-linear finite ele-
ment transient dynamic analysis to predict impact
response and impact-induced damage in laminated com-
posite cylindrical shell using eight-noded isoparametric
quadrilateral shell element. The shell element used was
based on Sander’s shell theory [15] and incorporated
geometrical nonlinearity as given by Stein [16].

The present paper is aimed towards understanding
non-linear effects on impact behavior and resulting dam-
age in curved composite laminate subjected to transverse
impact by a metallic impactor using a three-dimensional
non-linear transient dynamic finite element formulation.
A layered version of isoparametric eight noded hexahedral
element with incompatible modes is developed. Geomet-
rical non-linearity is incorporated based on total La-
grangian approach and the generalized Greens strain
tensor is used in the strain-displacement relationships. The
non-linear system of equations resulting from large dis-
placement formulation and non-linear contact law are
simultaneously solved using modified Newton-Raphson
incremental-iterative method. Example problems of
graphite/epoxy cylindrically curved shell are studied with
parametric variations and the influence of geometrical
non-linearity on the impact response and impact-induced
damage is investigated.

Finite Element Methodology

Governing Equations

Finite element dynamic equilibrium equation is de-
rived using the Hamilton’s principle. It states that the
variation of the energy functional during any time interval
t1 to t2 must be equal to zero, i.e.

δ  ∫  
 t

1

 t
2  Π dt  =  ∫  

 t
1

 t
2  (δ T  −  δ U  +  δ W ) dt  =  0 (1)

The variations in strain energy U, the work done on the
structure by external loads W and the kinetic energy T are
defined as:
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where V and S represent volume and surface of the body.
ρ is the mass density of the material. ⎧⎨⎩ b ⎫⎬⎭ is the body force
vector at any point in the continuum and ⎧⎨⎩ p ⎫⎬⎭ is the surface
force vector at any point on the surface of the body. The
superscript s denotes that surface displacements are con-
sidered and the superscript i denotes the displacements at
the point where the concentrated forces ⎧⎨⎩ fc

 i ⎫⎬⎭ are applied.
⎧
⎨
⎩ δ u ⎫⎬⎭ and ⎧

⎨
⎩ δ ε ⎫⎬⎭are vectors of virtual displacement and

virtual strains respectively.  ⎧⎨⎩ σ ⎫⎬⎭ is the stress vector at any
point.

Now, integration of the δT term by parts with respect
to time gives:
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According to Hamilton’s principle, the displacement
configuration must satisfy the conditions given at time t1
and t2. Hence, ⎧⎨⎩ δ u (t1) 

⎫
⎬
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term of right hand side of Eq. (3) vanishes.

Substitution of Eq. (2) along with second right hand
side term of Eq. (3) into Eq. (1) and rearranging, we get
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Eq. (4) can now be rewritten as a sum of integration
over the volume and areas of all finite elements, i.e.
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The displacements and accelerations within each ele-
ment e are related to the nodal displacements by its shape
function matrix [N] so that:

⎧
⎨
⎩ u ⎫⎬⎭  =  [ N ]  ⎧⎨⎩ U ⎫⎬⎭    and

⎧
⎨
⎩ u
..
 ⎫⎬⎭  =  [ N ]  ⎧⎨⎩ U

..
 ⎫⎬⎭ . (6)

In large displacement problem, strains within each
element e are related to the nodal displacements as

⎧
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_
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where [ B
_

 ] is strain-displacement matrix, [BL] is the con-
tribution from the linear part of the Green’s strain and
1
2 [BNL ] is   the  contribution from the quadratic part of

the Green’s  strain.  [BNL] is given as:

[BNL] = [A] [G],

where [A] is a matrix of slopes and [G] is a matrix of shape
function derivatives defined by the relations:
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Now, substituting from Eqs. (6) and (7) into Eq. (5),
we obtain :
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where [B] = [BL] + [BNL] and
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In Eq. (9), [C] is the material property matrix relating
the strains to the stresses in global coordinate system.

Eq. (8) can be rewritten over the assemblage of all ele-
ments after dropping ⎧⎨⎩ δU ⎫⎬⎭  from each term as follows :
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where ⎧⎨⎩ R ⎫⎬⎭ is the applied load vector given by :
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The equation of equilibrium given by Eq. (10) can be
written  at  time t n + 1  in a non-linear sense as :
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where ⎧⎨⎩ Ψn + 1
⎫
⎬
⎭  is residual or out-of-balance force vector

at a particular solution iteration.

Here Newmark time integration method, which is an
implicit integration scheme, is used to solve equilibrium
equation. Using Newmark method with constant average
acceleration (α = 0.5 and β = 0.25), the nodal acceleration
vectors ⎧
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..
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Eq. (12)  along with Eq. (6) can be put into Eq. (11) to
form :
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Putting Eq. (9) into Eq. (13), an effective static equi-
librium equation can be written as :
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⎧
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vector due to inertia term at time tn + 1 and is given as :
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In Eq. (15), [M ] = ∫  
V

[N ]T ρ n + 1 [N ] dV is the mass ma-

trix.

The solution of above non-linear Eq. (14) is achieved
iteratively. Since Newton-Raphson incremental iterative
scheme is adopted here, it is necessary to find relation
between ⎧⎨⎩d Ψn + 1
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Taking variation of residual force (Eq. (13)) with re-
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From the definition of tangent stiffness matrix,
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In Eq. (18), [S] is a matrix of stress array and is given
as :
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⎢
⎢
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⎥
⎥
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where [I] is an identity matrix of size 3 x 3 for the
present element considered. The system of simultaneous
algebraic equations given in Eq. (17) is solved by frontal

method during each iteration after imposing appropriate
constraint conditions at the laminate boundaries.

Element Characteristics

In the present analysis, three-dimensional eight-noded
isoparametric layered brick element (Fig.1) is developed
to model the laminated structure. Layered version of ele-
ment is different from the isotropic brick element in the
sense that it accounts for changes in material properties
and orientation of the plies inside the element. Element
tangent stiffness matrix for this element is given as:
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⎦
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⎫
⎬
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(19)

In the above equation, [C] is the material property
matrix relating the strains within the ply to the stresses in
ply coordinate system and [T]is the transformation matrix
relating the strains in the ply principal directions to those
in the global reference axis. The material density ρ, the
elasticity matrix [C], transformation matrix  [T] and  [S]
matrix in the above equation depend on the material prop-
erties and the orientations of the plies through the thick-
ness of the element. When the material properties and ply
orientations are same through the thickness, numerical
integrations of the equation using Gaussian quadrature can
be carried out at element level, otherwise it is accom-
plished from one ply-group to another ply-group through
the element thickness. The stiffness matrix as given by
Eq.(19) is of size 33 x 33 and includes coefficients pertain-
ing to incompatible modes. However, these terms are
eliminated by using the static condensation procedure and
the condensed stiffness matrix is of the order 24 x 24
pertaining to the nodal degrees of freedom.

Calculation of Impact Force

When a composite laminate is impacted by a mass,
local plastic deformation takes place in the contact region.
This local deformation must be taken into account in order
to predict contact force history accurately. Although the
present formulation can simulate any type of complex
contact conditions between impactor and laminate, the
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modified version of Hertzian contact law proposed by
Yang and Sun [17] based on static indentation tests for flat
laminate and cylindrical shell is used in this study. This
approach consists of determining the relationship between
contact force Fc with the indentation depth α. Since the
contact area is generally small in comparison with the
dimensions of the laminate, a point load representing the
resultant contact force is assumed.

The contact force Fn +1
 c  can be written in general form

of contact law as:

Fn +1
 c  =  φ (αn + 1)  =  φ (dn + 1 − wn + 1)

=  φ 
⎛
⎜
⎝
dn + d

.
n Δ t  −  14 

Fn
 c  +  Fn + 1

 c

m  (Δ t) 2  −  wn + 1

⎞
⎟
⎠

(20)

where  dn +1 is the displacement of the centre point of the
impactor at (n + 1) th time-step and calculated by applying
Newmark’s method to equation of motion of impactor as
above. wn+1 is the displacement of mid-surface of the
laminate at the impact point in the direction of impact. The

last term in Eq.(19) consists of 
dFn +1

 c

dwn +1
, which  can be

found by differentiating Eq. (20).

Prediction of Impact Damage

It is reported in previous study [18] that intraply matrix
cracking is the initial damage mode. Delamination (inter-
ply cracking) initiates once the matrix crack reaches at the
interfaces between the ply groups containing different
fibre orientations after propagating throughout the thick-
ness of the ply group that contained the cracked ply. This
type of matrix crack is referred to as the "critical matrix
crack". Accordingly, two failure criteria, critical matrix
cracking criterion and delamination criterion are used.

Critical Matrix Cracking Criterion

In this study, three-dimensional matrix failure crite-
rion originally proposed by Hashin [19] is used. This point
stress criterion was modified by Choi and Chang [18] to
be based on average stress through the thickness of a ply
group, for predicting the critical matrix cracking. Based
on major stresses attributing to transverse matrix cracking,
the criterion for nth ply is given as:
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__

y  <  0 .
(21)

where x-y-z is right-handed ply coordinate system with
x-axis representing the fibre direction. Yt and Yc are the in
situ ply transverse tensile and compressive strengths re-
spectively within the laminate and Si is the in situ inter-
laminar shear strength.  σ

__
y

n  and    τ
_

y
n  are the averaged

inplane transverse normal stress and averaged interlami-
nar transverse shear stress respectively within the nth ply.
em is the strength ratio pertaining to matrix cracking. The
region where em is greater than or equal to unity represents
the location of the critical matrix cracking.

Delamination Criterion

Accurate simulation of delamination propagation is
very difficult and complicated, since this phenomenon
involves multiple dynamic crack propagation and interac-
tion of delamination surfaces. To simplify the analysis, a
semi-empirical criterion proposed by Choi and Chang [18]
based on major stresses contributing to delamination for-
mation is used to estimate the extent of delamination in
composite. The criterion for nth interface is:
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(22)

Where Da is an empirical constant, the value of which
was suggested in [18]. The subscript n and n+1 correspond
to the upper and lower plies of the nth interface respec-
tively.       τ

_
y

n + 1  is the averaged interlaminar longitudinal
shear stress within the (n+1)th ply. ed is the strength ratio
pertaining to delamination. The region, where ed is greater
than or equal to unity at the end of the impact, gives the
estimation of the delamination size.

Numerical Results and Discussions

The above non-linear finite element formulation was
implemented in a specially developed computer code
‘FACS’ [20, 21]. A detail about the implementation and
features of the code can be found using the hyperlink [21].
The model and the code is first validated using some
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existing numerical solutions available in literature as dis-
cussed below.

Having validated the present approach, several exam-
ple problems of T300/976 graphite/epoxy laminated cy-
lindrical shells have been considered to study the impact
behaviour of curved composite laminate undergoing large
deformation. The problem descriptions of impact on a
general doubly curved shell are depicted in Fig.2 in which
x1 − x2 − x3 is the right-handed global (reference) coordi-
nate system and impacted side is the first layer in the
stacking sequence. For all the example problems consid-
ered, the mesh size chosen is 16 x 16 x 4 elements and
mesh density is kept higher at the centre than the sides in
the curvilinear plane of the laminate.

Benchmark Results

Large Deformation of Hinged-hinged and Pinned-
pinned Beams

As an example, a benchmark problem of a simply-sup-
ported isotropic beam involving geometric nonlinearity as
solved by Reddy [22] is considered. A uniform beam of
length L=100, cross-section dimensions of 1 x 1, made of
a material with E = 30 x 106 is simply supported at both
ends and subjected to a uniformly distributed load of
intensity q per unit length. The units are consistently
chosen, so that the exact deflection at the middle of the
beam in linear bending theory is 0.5208, when q = 1. In
linear bending theory, where the beam is assumed to
undergo pure bending (i.e. there is no axial deformation);
it is immaterial to consider whether the beam is allowed
free movement in the axial direction at the supported ends.
However, in non-bending, this is a crucial distinction.
Hinged-hinged (HH) condition is designated for the case
where there is no axial restraint at both ends and pinned-
pinned (PP) condition for the one where there is full
restraint. In the former case, inextensional bending occurs
which is largely of a linear nature, and in the latter case,
bending with extension exists. Both the cases are consid-
ered here. Using symmetry, half of the beam is modeled
with 8 x 1 x 1 elements.

The HH case is ideal to test the consistency aspect of
the problem. As a non-linear element formulation is being
used, a correct model should be able to recover the purely
linear bending response under increasing load. This is
possible only if the element can ensure that the inexten-
sional axial condition (i.e. there is no axial restraint at both
ends, no axial force should develop) is consistently recov-

ered throughout. The PP case is ideal to examine the
significance of the consistency aspect of the problem
where the non-linear action becomes important. Table-1
shows the deflection under the load as q increases from 1
to 10. Results from Reddy [22] are also shown in which
two versions of beam element has been used. The first
version which will have locking uses 2 points integration
for bending energy and extensional energy while the sec-
ond version which will be lock free uses 2 points integra-

Table-1 : Central Deflection for a Simply 
Supported Beam Under Uniformly

Distributed Load (UDL)
UDL per

Unit
Length, q

Present
Solution

Reference [22]

2 x 2 x
Integration 

Rule

2 x 2
Selective
(Energy
Based)

Integration 
Rule

2 x 1
Selective
(Energy
Based)

Integration
Rule

(A) Hinged-Hinged (HH) Condition
1 0.517697 0.5108 0.5208
2 1.03519 0.9739 1.0417
3 1.55206 1.3764 1.5625
4 2.06791 1.7265 2.0833
5 2.58231 2.0351 2.6042
6 3.09489 2.3116 3.1250
7 3.60521 2.5630 3.6458
8 4.11301 2.7930 4.1667
9 4.61784 3.0060 4.6875
10 5.11938 3.2051 5.2083
(B) Pinned-Pinned (PP) Condition
1 0.367949 0.3669 0.3687
2 0.545474 0.5424 0.5466
3 0.664471 0.6601 0.6663
4 0.756362 0.7510 0.7591
5 0.832352 0.8263 0.8361
6 0.897760 0.8912 0.9027
7 0.955557 0.9485 0.9617
8 1.00758 1.0002 1.0150
9 1.05506 1.0473 1.0638
10 1.09885 1.0908 1.1089
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tion for bending energy and 1 point integration for the
extensional energy. It is clear from the Table that the
present element model is able to capture both the behavior
correctly.

Clamped 16-ply Symmetric Laminate Subjected to Uni-
form Load

Next a 16-ply ⎡
⎣
 ±  45 ⁄ 02

o ⁄  +
__

 45o ⁄  902
o⎤
⎦ S

 graphite-ep-

oxy square laminate of size b = 254 mm and thickness h
= 2.114 mm is considered as investigated by Noor [23].
The plate is clamped on all edges and subject to uniform
load q. The material properties of graphite-epoxy unidi-
rectional ply are taken as:

E
 x

 = 131 GPa ;  E
 y

 = E
 z
 = 13.03 GPa ;  G

 xy
 = G

 yz
 = G

 xz
 = 6.41 GPa ;

v
 xy

  =  v
 yz

  =  v
 xz

  =  0.38 .

Figure 3 gives the comparison between present analy-
sis and the results by Noor [23] for laminate central
deflection of the mid-ply. A good agreement can be ob-
served.

Clamped [0/90] Asymmetric Cross-ply Cylindrical
shell Panel Subjected to Uniform Load

The asymmetric cross-ply cylindrical shell panel stud-
ied by Reddy and Chandrashekhara [24] is investigated.
The  radius and length of the cylindrical shell panel are
64.5 m and 12.9 m respectively. The angle subtended by
the arc is 0.2 radian. The thickness of the shell is 64.5 mm.
The material properties used are same as those of [24]:

E
 x

 = 172 GPa ;  E
 y

 = E
 z
 = 7 GPa ;  G

 xy
 = G

 yz
 = G

 xz
 = 3.5 GPa ;

v
 xy

  =  v
 yz

  =  v
 xz

  =  0.25 .

The load-deflection curve of the non-linear solution is
given in Fig.4 along with the results of reference [24].
Fairly good agreement is seen.

Impact Response of a Rectangular Graphite/epoxy
Laminated Plate

As another example, impact on a rectangular graph-
ite/epoxy laminated plate with a ply orientation of [0/-
45/45/90]2S is investigated with plate dimensions and
impactor parameters to be same as that taken by Kumar et
al. [25]. A non-linear analysis was carried out for this
problem. The results of contact force and plate centre
displacement are presented in Fig. 5 along with the results

of linear analysis reported in [25]. There is only a negli-
gible difference between linear and non-linear solutions
for this particular problem which indicates that the non-
linearity effect is not much pronounced for the case where
maximum plate deflection is of the order less than the plate
thickness.

Impact Response

T300/976 Graphite/epoxy cylindrical shells of differ-
ent dimensions and curvatures with two different lay-ups
[904/08/904] and [454/-458/454] and clamped on their
edges are considered. At first, [904/08/904] cylindrical
shell is taken with geometric properties: a = b = 100 mm;
R1 = R = a, 10a; and R2 = ∞ (Fig. 2). The impactor is a
steel mass of 200 gm having a half sphere head of 10 mm
diameter and initial velocity 5 ms-1. The material proper-
ties of fiberite T300/976 graphite/epoxy composite are
considered as listed elsewhere [18]. The time step Δt is
chosen to be 8 μs. The results of contact force, impactor
displacement and shell centre displacement are presented
in Fig. 6  for  linear  analysis of shell curvature R = 10a
and both linear and non-linear analyses of shell curvature
R = a. An increase in contact period and reduction in peak
contact force resulted in using a non-linear analysis when
compared with using a linear analysis. This indicates that
the overall stiffness of the laminate decreased when geo-
metrical non-linearity is incorporated in the solution. Al-
though, there is no substantial difference in maximum
central deflection in the two analyses for this particular
problem, post-contact amplitude of free vibration is con-
siderably less in non-linear case. Effect of shell curvature
is also shown in the figure. The maximum contact force
increases and both contact duration and amplitude of shell
response decrease with decrease in shell radius. This sig-
nifies that increasing the curvature has a stiffening effect
on the cylindrical shell.

Next, cylindrical shell of larger dimensions a = b = 300
mm and curvature R = a is considered which is again
clamped on its edges and is subjected to impact by a steel
mass of 200 gm having a half sphere head of 10 mm
diameter and initial velocity 10 ms-1. The results are
plotted in Fig.7 for linear and non-linear solutions of
[904/08/904] layup and non-linear solution of [454/-
458/454] layup. Again an increase in contact duration and
reduction in maximum contact force are observed in case
of non-linear approach. Maximum central deflection also
increased considerably in non-linear solution. A compari-
son of this result with results of Fig.6 depicts that effect of
geometrical non-linearity obviously increased with in-
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crease in maximum shell deflection. Non-linear solutions
of the two different lay-ups depict that [904/08/904] cross-
ply laminate produces a higher maximum contact force
combined with higher contact duration and higher shell
centre deflection in comparison to [454/-458/454] angle-
ply laminate.

Impact-induced Damages

Impact-induced damages (critical matrix cracking and
the extent of delamination) are studied for the above
cylindrical shells with two different lay-ups [904/08/904]
and [454/-458/454]. The shell with [904/08/904] lay-up
with dimensions a = b = 100 mm and curvatures R = 10a
and R = a is subjected to impact by a steel mass of 200 gm
and nose radius 5 mm traveling at a velocity of 5 ms-1.
Critical matrix cracking takes place in the bottom [904]
ply group for all the cases. The value of strength ratio, em
at any point in the shell is found to be maximum at time
approximately 768 μs for R/a = 10 (linear analysis), at 536
μs for R/a = 1 (linear analysis) and at 592 μs for R/a = 1
(non-linear analysis), as plotted in isometric view in Fig.
8. The critical matrix cracking failure contour is extended
much wider along the fibre direction of the cracked [904]
ply group than in the direction normal to the fibre direc-
tion.

The maximum values of strength ratio, ed (impact-in-
duced delamination criterion) in the bottom 0/90 plies
interface during the impact are plotted in Fig.9 for the three
cases. It is seen that delamination propagated much wider
in the fibre direction of the [904] ply group below the
delaminated interface than in the direction normal to it and
approached a peanut shape.

 From Figs.8 and 9, it can be observed that there is a
considerable increase in the sizes of both the damages
when non-linearity is considered in the solution. A small
increase in damage sizes is also seen with increase in shell
curvature. Maximum strength ratio, em occurred earlier in
case of higher curvature mainly because contact duration
is less in this case.

Impact-induced damages are also predicted for the
example problem of Fig.7. The value of strength ratio, em
at any point in the shell with [904/08/904] lay-up happened
to be maximum in the bottom [904] ply group at time
approximately 1020 μs  in case of linear analysis and 1128
μs in case of non-linear analysis. For the non-linear solu-
tion of [454/-458/454] lay-up, the value of strength ratio,

em at any point in the bottom [454] ply was predicted to be
maximum at time approximately 852 μs. The results are
plotted in Fig.10. The maximum value of strength ratio, ed
and predicted delamination size in the bottom 0/90 plies
interface of [904/08/904] lay-up and in the bottom -45/45
plies interface of [454/-458/454] lay-up after the impact are
plotted in Fig.11. Again there is a considerable increase in
size of damages in case of non-linear solution. A different
representation of impact damage results for [454/-458/454]
lay-up is shown in Fig.12 for the sake of clarity. It is seen
again that there is a clear alignment of both the damages
in the direction of fibre in the lowermost [454] ply group
of [454/-458/454] lay-up. The profiles of strength ratios,
em and ed are also noticeably different for the two different
lay-ups.

Summary

Three-dimensional non-linear finite element and tran-
sient dynamic analysis of laminated composite cylindrical
shells subjected to transverse impact is performed and
implemented by a specially developed computer code. A
layered version of isoparametric eight-noded hexahedral
element with incompatible modes is developed which
incorporates geometrical non-linearity based on total Lan-
gragian approach. The tangent stiffness matrix accounting
for the geometric non-linearity is formulated using gener-
alized Greens strain tensor. The non-linear system of
equations was solved iteratively using Newton-Raphson
method by considering a suitable displacement and force
convergence norms. Several numerical examples of
graphite/epoxy laminated cylindrical shells are considered
and parametric studies were performed. Non-linear geo-
metrical effects on impact response and resulting damages
are studied for problem configurations with different cases
of impactor velocity, shell dimension, shell curvature and
fibre orientation of plies. Although the solution parame-
ters such as mesh density and time step selected here were
found to provide stable solutions for the problem cases
considered, it is expected that more quantitative inferences
will result with increasing mesh density and decreasing
analysis time step.

Some important observations were deduced from the
study. When geometrical non-linearity was considered in
the analysis, a reduction in peak contact force resulted in
combination with an increase in both contact period and
maximum shell deflection. The difference in impact re-
sponse is found to be more significant for the cases when
the maximum shell deflection is higher than the shell
thickness. Considerable changes in the size and profile of
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both the impact damages (critical matrix cracking and
delamination) are also noticed as a result of using non-lin-
ear approach.

References

1. Cantwell, W. J. and Morton, J., "The Impact Resis-
tance of Composite Materials - A Review", Compos-
ites, Vol. 22, pp. 347-362, 1991.

2. Abrate, S., "Impact on Laminated Composites: Re-
cent Advances". Applied Mechanics Review, Vol.
47, pp. 517-544, 1994.

3. Aggour, H. and Sun, C.T., "Finite Element Analysis
of a Laminated Composite Plate Subjected to Circu-
larly Distributed Central Impact Loading", Comput-
ers and Structures, Vol. 28, pp. 729-736, 1988.

4. Wu, H. T. and Springer, G. S., "Impact Induced
Stresses, Strains, and Delaminations in Composite
Plates", Journal of Composite Materials, Vol. 22, pp.
533-560, 1988.

5. Wu, H.T. and Chang, F.K., "Transient Dynamic
Analysis of Laminated Composite Plates Subjected
to Transverse Impact", Computers and Structures,
Vol. 31, pp. 453-466, 1989.

6. Nosier, A., Kapania, R.K. and Reddy, J.N., "Low
Velocity Impact of Laminated Composites Using a
Layerwise Theory", Computational Mechanics,
Vol.13, pp. 360-379, 1994.

7. Kim, S.J., Goo, N.S. and Kim, T.W., "The Effect of
Curvature on the Dynamic Response and Impact
Induced Damage in Composite Laminates", Com-
posite Science and Technology, Vol.57, pp. 763-773,
1997.

8. Ambur, D.R., Starnes, J.H. Jr. and Prasad, C.B.,
"Low-Speed Impact Damage Initiation Charac-
teristics of Selected Laminate Composite Plate",
AIAA Journal, Vol. 33, pp. 1919-1925, 1995.

9. Chandrashekhara, K. and Schroeder, T., "Nonlinear
Impact Analysis of Laminated Cylindrical and Dou-

bly Curved Shells", Journal of Composite Materials,
Vol. 29, pp. 2160-2179, 1995. 

10. Kam, T.Y., Sher H.F. and Chao, T.N., "Prediction of
Deflection and First-Ply Failure Load of Thin Lami-
nated Composite Plates via the Finite Element Ap-
proach", International Journal for Solids and
Structures, Vol. 33, pp. 375-398, 1996.

11. Ganapathy, S. and Rao K.P., "Failure Analysis of
Laminated Composite Cylindrical/Spherical Shell
Panels Subjected to Low-Velocity Impact", Comput-
ers and Structures, Vol. 68, pp. 627-641, 1998.

12. Krishnamurthy, K.S., Mahajan, P. and Mittal, R.K.,
"A Parametric Study of The Impact Response and
Damage of Laminated Cylindrical Composite
Shells", Composite Science and Technology, Vol.
61, pp. 1655-1669, 2001.

13. Zhu, L., Chattopadhyay, A. and GoldBerg, R.K.,
"Multiscale Analysis Including Strain Rate Depend-
ency for Transient Response of Composite Lami-
nated Shells", Journal of Reinforced Plastics and
Composites, Vol. 25, pp. 1795-1831, 2006.

14. Kumar, S., "Analysis of Impact Response And Dam-
age in Laminated Composite Shell Involving Large
Deformation and Material Degradation", Journal of
Mechanics of Materials and Structures, Vol.3,
pp.1741-1756, 2008.

15. Sanders, Jr. J.L., "An Improved First Approximation
Theory for Thin Shells", NASA Report R-24, 1959.

16. Stein, M., "Nonlinear Theory for Plates and Shells
Including the Effects of Transverse Shearing", AIAA
Journal, Vol. 24, pp. 1538-1544, 1986.

17. Yang, S.H. and Sun, C.T., "Indentation Law for
Composite Laminates", ASTM STP 787, pp. 425-
449, 1982.

18. Choi, H.Y. and Chang, F.K., "A Model for Predicting
Damage in Graphite/Epoxy Laminated Composites
from Low-Velocity Point Impac"t, Journal of Com-
posite Materials, Vol. 26, pp. 2134-2169, 1992.

19. Hashin, Z., "Failure Criteria for Unidirectional Fibre
Composites". Journal of Applied Mechanics, Vol.47,
pp. 329-334, 1980.

MAY 2010 NON-LINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE SHELLS 117



20. Kumar, S., "Finite Element Analysis of Impact-In-
duced Deformations, Stresses and Damages in Com-
posite Laminates", Ph.D. Thesis, Indian Institute of
Technology, Kharagpur, 1998.

21. Finite Element Analysis Software ‘FACS’, URL:
http://www.facssoft.com.

22. Reddy, J.N., "An Introduction to Non-Linear Finite
Element Analysis", Oxford University Press, Ox-
ford, 2004.

23. Noor, A.K., "Hybrid Analytical Technique for Non-
linear Analysis of Structures", AIAA Journal,
Vol.23, pp. 938-946, 1985.

24. Reddy, J.N. and Chandrashekhara, K., "Nonlinear
Analysis of Laminated Shells Including Transverse
Shear Strains", AIAA Journal, Vol. 23, pp. 440-441,
1985.

25. Kumar, S., Rao, B.N. and Pradhan B., "Effect of
Impactor Parameters and Laminate Characteristics
on Impact Response and Damage in Curved Com-
posite Laminates", Journal of Reinforced Plastics and
Composites, Vol. 26, pp. 1273-1290, 2007.

Fig.1 Layered Version of Eight-noded Isoparametric Brick
Element

Fig.2  Problem Description of Impact on a General Doubly
Curved Shell

Fig.3  Load-deflection Curve for 16-ply
⎡
⎣ ± 45 ⁄ 02

o ⁄  +
__

 45o ⁄  902
o⎤
⎦ S  Square Laminate

(Size b = 254 mm and thickness h = 2.114 mm) with
Clamped Edges and Subjected to Uniform Load

Fig.4  Load-Deflection Curve for Clamped [0/90] Asymmetric
Cross-ply Cylindrical Shell Panel Subjected to Uniform Load
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Fig.5  Comparison of (a) Contact force, (b) Impactor
displacement and (c) plate centre displacement in

a 76.2 by 76.2 mm T300/934 graphite/epoxy laminated plate
([0/45/45/90]2S) with clamped edges impacted

by 12.7 mm diameter aluminum sphere at a velocity
of 25.4 ms-1.(time step, Δt = 4 μs)

Fig.6 (a) Contact force, (b) Impactor displacement and
(c) Centre displacement in graphite/epoxy cylindrical

shells ([904/08/904]) (a = b = 100 mm; R = 10a and R = a),
with clamped edges impacted by blunt-ended steel cylinder of
nose radius 5mm and mass 200 gm having initial velocity of 5

ms-1.(time step, Δt = 8 μs)
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Fig.7 (a) Contact force, (b) Impactor displacement and
(c) Centre displacement in graphite/epoxy cylindrical

shells ([904/08/904] and [454/-458/454] layups)
(a = b = 300 mm; R = a), with clamped edges and

impacted by blunt-ended steel cylinder of nose radius 5mm
and mass 200 gm having initial velocity of 10 ms-1

(time step, Δt = 8 μs)

Fig.8  Maximum strength ratio, em in bottom [904] ply of
[904/08/904] cylindrical shells (dimensions : a = b = 100 mm)
having different curvatures (i) R/a = 10 (linear analysis), (ii)
R/a = 1 (linear Analysis) and (iii) R/a = 1 (non-linear analy-
sis), all with clamped edges and impacted by 200 gm mass at

a velocity of 5 ms-1.(em values : A = 0.2, B = 0.5, C = 1.0)

Fig.9  Maximum strength ratio, ed and predicted delamination
sizes at 0/90 interface of  [904/08/904] cylindrical shells (di-

mensions : a = b = 100 mm) having different curvatures
(i) R/a = 10 (linear analysis), (ii) R/a = 1 (linear Analysis)
and (iii) R/a = 1 (non-linear analaysis), all with clamped

edges and impacted by 200 gm mass at a velocity of 5 ms-1.
(ed values : A = 0.2, B = 0.5, C = 1.0)
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Fig.10  Maximum strength ratio, em in cylindrical shell (di-
mensions : a = b = 300 mm; R = a) with clamped edges and
impacted by 200 gm mass at a velocity of 10 ms-1 : (i) in bot-
tom [904] ply of [904/08/904] lay-up (linear analysis), (ii) in
bottom [904] ply of [904/08/904] lay-up (non-linear analysis)

and  (iii) in bottom [454] ply of [454/-458/454] lay-up (non-lin-
ear analysis). (em values : A = 0.2, B = 0.5, C = 1.0)

Fig.11  Maximum Strength Ratio, ed and predicted delamina-
tion sizes in cylindrical shell (dimensions : a = b = 300 mm;

R = a) with clamped edges and impacted by 200 gm mass at a
velocity of 10 ms-1 : (i) at 0/90 interface of  [904/08/904] lay-
up (linear analysis), (ii) at 0/90 interface of [904/08/904] lay-

up (non-linear analysis) and  (iii) at -45/45 interface of
[454/-458/454] lay-up (non-linear analysis).

(ed values : A = 0.2, B = 0.5, C = 1.0)

Fig.12  (i) Maximum strength ratio, em in bottom [454] ply
and (ii) Maximum strength ratio, ed at -45/45 interface in

[454/-458/454] lay-up cylindrical shell (dimensions : a = b =
300 mm; R = a) with clamped edges and impacted by 200 gm

mass at a velocity of 10 ms-1. (Values : A = 0.2, B = 0.5,
C = 1.0)
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