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Abstract

Nonlocal elasticity theory is a popularly growing technique for the realistic analysis of nano

structures. In the present work nonlocal elasticity plate theory has been employed and

vibration analyses of skew graphene sheets are carried out. Relevant governing differential

equations are reformulated using the nonlocal differential constitutive relations suggested by

Eringen. The equations of motion including the nonlocal theory are derived. All edges of the

skew graphene sheets are assumed to be simply supported. Naviers approach has been

employed to solve the governing differential equations. Bauers skew plate analysis has been

extended to include the nonlocal elasticity plate theory. Vibration response of the skew

graphene sheets is studied. Effects of the (i) size of the graphene sheets (ii) modes of vibration

(iii) nonlocal parameter and (iv) skew angle of graphene sheet on nonlocal vibration frequen-

cies are investigated. It has been observed that the vibration response of the skew graphene

sheets are influenced significantly by the nonlocal parameter.
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Nomenclature

a, b = Length and breadth of the plate

D = Bending rigidity of the graphene sheet

E = Young’s modulus of the graphene sheet material

Eb = Young’s modulus of the beam material

h = Thickness of the beam

hb = Length (or breadth) of a square graphene sheet

Lb = Length of the beam

M
1

 xx
, M

1

 yy
 ,

M
1

 xy
= Moment resultants

N
0

 xx
, N

0

 yy
 ,

N
0

 xy
= In-plane force resultants

q = Transverse distributed load

S(x) = Fourth order elasticity tensor

ξ = Transformed X co-ordinate

η = Transformed Y co-ordinate

σl
= Macroscopic local stress tensor

u, v = Displacement of the point (x, y, 0) of graphene

    sheet along X and Y axis, respectively

w
c

= Deflections of the single layered graphene

    sheet at point (x, y) calculated using CLPT

ε
xx

 ,ε
yy

 ,ε
zz

 ,

ε
xy

 ,ε
yz

 ,ε
xz

= Strain tensors

µ = Nonlocal parameter

ν = Poisson’s ratio of the graphene sheet material

ρ = Density of the graphene sheet material

ρb = Density of the beam material

Introduction

Invention of carbon nano tubes (CNTs) by Iijima

(1991), started a new field of research for the accurate

analysis of nano-size structures. CNTs have attracted at-

tention of scientific community due to their superior me-

chanical, chemical and electrical properties. Due to these

superior properties CNTs are used in the emerging fields

of nano electronics and nano devices. The CNTs also hold

exciting promise in useful potential applications as elec-

trodes in super capacitors and as cable material for space

elevators. But conducting experiments with nanoscale size

specimens is found to be difficult and expensive. There-
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fore, development of appropriate mathematical models for

the analysis of nanostructures is an important issue. The

approaches which are generally used for the analysis of

nano structures are (a) atomistic (Ball 2001, Baughman et

al. 2002), (b) hybrid atomistic-continuum mechanics

(Bodily and sun 2003, Li and Chou 2003, Pradhan and

Phadikar 2008) and (c) continuum mechanics. Both

atomistic and hybrid atomistic-continuum mechanics are

computationally expensive and are not suitable for analyz-

ing large scale systems. Continuum mechanics approach

is less computationally expensive than the former two

approaches. Thereby size-dependent continuum-based

methods (Zhou and Li 2001, Fleck and Hutchinson 1997,

Yang et al. 2002) are becoming popular in modelling nano

sized structures as it offers much faster solutions than

molecular dynamics simulations for various engineering

problems. It has been found that continuum mechanics

results are in good agreement with atomistic and hybrid

approaches (Duan et al. 2007).

There are exploratory studies on the continuum models

for vibration of CNTs or similar micro or nanobeam like

elements (Wang et al. 2006, Wang and Varadhan 2005, Fu

et al. 2006, Wang and Varadhan 2006, Zhou et al. 2006,

Lu et al. 2007) . In these work it has been suggested that

nonlocal elasticity theory developed by Eringen (1983 and

2002) used in the continuum models for accurate predic-

tion of vibration response. In nonlocal elasticity theory the

small-scale effects are captured by assuming that the stress

at a point is a function not only of the strain at that point

but also a function of the strains at all other points of the

domain. This is due to the scale effect of the nanostruc-

tures. As the lengths are reduced the influences of long

range inter-atomic and inter molecular cohesive forces on

the static and dynamic properties tend to be significant and

cannot be neglected. The importance of nonlocal elasticity

theory motivated the scientific community to explore the

behaviour of micro/nano structures more accurately. The

feasibility of nonlocal continuum theory in the field of

nanotechnology was first reported by Peddieson et. al

(2003). A relevant reference concerning nonlocal theories

for bending, buckling and vibration analysis of beams is

reported by Reddy (2007).

Nanoplates possess superior mechanical properties

(Luo and Chang 2000, Zhang and Huang 2006) as that of

nano tubes. But when compared to that of one dimensional

structure, limited work has been found on vibration analy-

sis of two dimensional nanoplates (Zhang and Huang

2006, He et al. 2006, Kitipornchai et al 2005, Behfar et al.

2005). Only classical plate theory (CLPT) has been con-

sidered in modelling the nanoplates (Zhang and Huang

2006, He et al. 2006, Kitipornchai et al. 2005, Behfar et

al. 2005). Further these mathematical models did not

include scale effects. Thus it is importance to incorporate

nonlocal elasticity theories in the vibration analyses of

nanoplates due to the scale effect of nano structures. Work

related to bending, vibration and buckling analyses of

CNTs and graphene sheets using nonlocal elasticity are

found in (Murmu and Pradhan 2009a, Murmu and Pradhan

2009b, Murmu and Pradhan 2009c, Murmu and Pradhan

2009d, Murmu and Pradhan 2009e, Murmu and Pradhan

2009f Murmu and Pradhan 2009g, Murmu and Pradhan

2009h, Murmu and Pradhan 2010, Pradhan 2009, Pradhan

and Phadikar 2008, Pradhan and Phadikar 2009a, Pradhan

and Phadikar 2009b, Pradhan and Phadikar 2009c, Prad-

han et al. 2009 and Pradhan and Sarkar 2009). In the

present paper attempt is made to study the effect of non-

local plate theory on the vibration response of skew gra-

phene sheets. Navier’s approach has been employed to

solve the governing differential equations for all sides

simply supported graphene sheets. Vibration of plates

with skew angle using local theory is being reported by

Bauer (1983). Using the present nonlocal elasticity plate

theory vibrations of skew graphene sheets are studied and

discussed in this article. Results for (i) nonlocal

nanobeams and (ii) nonlocal rectangular plates obtained

from the present formulation are compared with the cor-

responding results available in the literature (Reddy 2007,

Pradhan and Phadikar 2009c). Further, effects of (i) size

of the graphene sheets (ii) modes of vibration (iii) nonlocal

parameter and (iv) skew angle of graphene sheets on

nonlocal vibration frequencies are being investigated.

Formulation

The coordinate system used for the graphene sheet is

shown in Fig.1. Origin is chosen at one corner of the

midplane of the graphene sheet. The X,Y and Z coordinates

of the axes are taken along the length, breadth and thick-

ness of the graphene sheet, respectively. Following stress

resultants are used in the present formulation

N
0

 xx
 = ∫  

− h ⁄ 2

 h ⁄ 2
σ

xx

 nl
 d z ,     N

0

 yy
 = ∫  

− h ⁄ 2
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 h ⁄ 2
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 d z
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 h ⁄ 2
σ
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0
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 h ⁄ 2
ρ d z

(1)
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Here h denotes the height of the graphene sheet. σxx
 nl

 ,

σyy
 nl

 , σzz
 nl

 , σxy
 nl , σyz

 nl
 and σxz

 nl
 represent the nonlocal stress

tensors. In classical local elasticity theory, stress at a point

depends only on the strain at that point. While in the

present nonlocal elasticity theory it is assumed that the

stress at a point depends on the strains at all the points of

the continuum. In other words, according to this nonlocal

theory strain at a point depends on both stress and spatial

derivatives of the stress at that point. According to Eringen

(1983) the nonlocal constitutive behaviour of a Hookean

solid is represented by the following differential constitu-

tive relation

(1 − µ∇
2
 ) σ

 nl
 = σ

l
(2)

Here µ is the nonlocal parameter; σl
 is the local stress

tensor at a point which is related to strain by generalized

Hooke’s law

σ
l
 (x) = S (x) : ε(x) (3)

Where S is the fourth order elasticity tensor and ‘:’ denotes

the double dot product. The following governing equation

has been derived in reference (Pradhan and Sahu, 2010 ).

− D ∇
4
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2
w
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∂ t
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(4)

It can be noted that by setting µ = 0 in above Eq. (4)

traditional local classical plate theory can be obtained.

Navier’s Approach

The developed governing differential equation of sec-

tion (Formulation) have been solved by Navier’s approach

for all sides of the graphene sheet simply supported. The

simply supported boundary conditions are written as

At x = 0 and x = a   u = 0   v = 0  N
0

 xx
 = 0 ,   M

1

 xx
 = 0

At y = 0 and y = b   u = 0   v = 0  N
0

 yy
 = 0 ,   M

1

 yy
 = 0

The generalized displacement has been expressed as

w
 c

 (x, y) = ∑ 

m = 1

∞

    ∑ 

n = 1

∞

 W
mn

  sin  




m π x

a




  sin  





n π y

b




 e

 iωt

(5)

It is assumed that the graphene sheet is free from any

in plane or transverse loadings. So we have

N
0

 xx
  =  N

0

 yy
  =  N

0

 xy
  =  q  =  0

Therefore  equation (4) is reduced to

−  D∇
4
W − µ m

0
 ω

2
 ∇

2
 W  =  − m

0
 ω

2
 W (6)

Solution to the equation (6) can be written as mentioned

in (Leissa 1969)

From which we get

∇
2
W  =  − 




k ± √ k

 2
 + 

k

µ




 W (7)

Here

k  =  
µ m

 0
 ω

2

2 D
(8)

For nontrivial solution of equation (7) we obtain

p  =  k + √ k
2
 + 

k

µ
(9)

Which implies

(∇
 2

 + p) W = 0 (10)

Solving the above equation we get

k  =  
p

 2

2 p + 
2

µ

(11.1)

On simplification

ω = 



√D

m
0
 (1 + p µ)

 



 p (11.2)
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Tramsforming the axes to the sides of the parallelo-

gram (Fig.1)

ξ = x − y  tan α (12.1)

η  =  
y

cos α
(12.2)

After transforming the generalised equation (5) and

simplifying one get

W (ξ, η) = ∑ 

m = 1

∞

   ∑ 

n = 1

∞

W
mn

 sin  




m π ξ
a




 sin  





n π η
a





(13)

After transforming of equation (10) for skew graphene

sheet one can write

∂
2
W

∂ ξ
 2

 + 
∂

2
W

∂η
 2

 + 2 sin α 
∂

 2
W

∂ ξ ∂ η
 + p cos

2
  α W  =  0 (14)

Substituting the boundary condition one gets

∑ 
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∞
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∞
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
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









m
2

a
2
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n

 2

b
 2




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
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








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



n π ξ
a




 sin 





n π η
b





−  2  sin α 
n m π

 2
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



m π ξ
a




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



n π η
b




 ]  =  0 (15)

Expanding the Cosine functions of above equation into

Fourier Sine series

cos 




k π ξ
a




 cos 





l π η
b




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∞
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∞

a
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


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a




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



n π η
b





(16)

Where for m = k and n = 1  and amn
 kl

 = 0

And for m ≠ k and n ≠1

a
mn

 kl
  =  

4

π
2
  

mn [1 − (− 1)
m + k] [1 − (− 1)

n + l
]

(m
2
 − k

2
) (n

2
 − l

2
)

(17)

It may be noted that Fourier coefficient is nonzero only

when m+1 and n+1 are odd numbers. Equating the coef-

ficients of

sin 




m π ξ
a




 sin 





n π η
b




  in equation (15) yields
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m
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b
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








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π
 2
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  ∑ 

k = 1

∞

   ∑ 

l = 1

∞

k l a
m n

k l
 W

kl
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(18)

Equation (18) has a non trivial solution only if the

determinant of the coefficients vanishes. The equation for

the determinant of the skew graphene sheet is written as

(19)

Where

α
 mn

 mn
  =  p cos

2
α − π

 2
 










m
2

a
2

 + 
n

 2

b
 2








β
 mn

 kl
  =  −  32 sin α 

m n k l

ab m
 2

 − k
 2
  

n

 2
 − l

 2


(20)

For α = 0 i.e., the rectangular membrane, all diagonal

elements of the determinant vanish so that the determinant

becomes

  Π
m = 1

∞
     Π

n = 1

∞

  









p −  π

 2
  

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




m
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a
 2
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b
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
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
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(21)

Solution of equation (21)

ω
mn

  =  √ D

m
 0

    







m
 2

a
 2

 + 
n

 2

b
2










 π

 2
(22)

The solution for local rectangular nanoplate is identi-

cally same as mentioned in the reference (Pradhan and

Phadikar 2009c).

Equation (19) is solved for nontrivial solution (Bauer

1983) and vibration frequencies and vibration modes are

computed.
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Results and Discussions

The governing differential equation for the vibration

of nonlocal skew graphene sheets is written in Eq. (10). It

can be seen that putting µ = 0 in the equation traditional

local elastic graphene sheet vibration equation is obtained.

It is interesting to note that by putting µ = 0, one can obtain

the corresponding local elasticity equation for graphene

sheets. This derived local elasticity equations of graphene

sheets matches with those reported by Kitipornchais et al.

(2005). Further, putting  b = ∞ in Eq.(21) nonlocal solu-

tions for free vibration of nanobeam are obtained. These

derived equations do match with the nonlocal equations

for free vibration of beam reported by Reddy (2007).

Euler-Bernoulli theory (EBT) is considered in the analy-

sis. A beam with elastic modulus Eb = 30GPa, length Lb

=10m, height hb = varied, density ρb=1 kg/m
3
 are consid-

ered. Non-dimensional natural frequencies are expressed

as ω
__

b = ωb  ×  Lb
 2

 √ 
ρb hb

Eb Ib

. Frequency ratio is defined as

the ratio of frequency obtained using nonlocal theory to

the frequency obtained using the local theory. Young’s

modulus E, Poisson’s ratio v and density ρ are assumed as

1.02TPa, 0.3 and 1 kg/m
3
, respectively. Present frequency

ratio results of rectangular graphene sheets have been

verified with those reported in Pradhan and Phadikar

(2009c). Comparisons of these nanobeams and nanoplates

results with those available in the literature (Reddy 2007,

Pradhan and Phadikar 2009c) are presented in Tables-1

and 2, respectively. Frequency values for µ = 0 cases are

available in Pradhan and Sahu 2010 and Pradhan and

Phadikar 2009c where one can infer about the actual

frequencies of different cases from frequency ratios.

All edges of the skew graphene sheet (Fig.1) are as-

sumed to be simply supported. Navier’s approach has been

used to solve the governing differential equations. Bauer’s

skew plate analysis (1983) has been extended to include

nonlocal plate theory. Vibrations of these nonlocal skew

graphene sheets are studied. One can found from the

Figs.2-5 that the frequency ratios for free vibration of the

skew graphene sheets are significantly influenced by (i)

size (length or breadth) of the graphene sheets (ii) modes

of vibrations (iii) nonlocal parameter and (iv) skew angle

of the graphene sheets. In Fig.2 the frequency ratios have

been plotted for various nonlocal parameters and various

sizes of the graphene sheets. The skew angle is considered

to be 5 degree. From this figure one can observe that the

nonlocal effect is more significant for the graphene sheets

Table-1 : Nondimensional Natural Frequencies of

Beams Using EBT

L/h µ Nondimensional 

Natural

Frequency from

EBT (Reddy

2007)

Nondimensional 

Natural

Frequency from

EBT (Present)

100 0.0 9.8696 9.8696

0.5 9.6347 9.6347

1.0 9.4159 9.4159

1.5 9.2113 9.2113

2.0 9.0195 9.0195

20 0.0 9.8696 9.8696

0.5 9.6347 9.6347

1.0 9.4159 9.4158

1.5 9.2113 9.2112

2.0 9.0195 9.0194

Table-2 : Comparison of Frequency Ratio Results of Rectangular Nanoplate

µ = 1 nm
2 µ = 1 nm

2 µ = 2 nm
2 µ = 2 nm

2

Length (nm) Frequency Ratio

(Pradhan and

Phadikar 2009c)

Frequency Ratio

(Present)

Frequency Ratio

(Pradhan and

Phadikar 2009c)

Frequency Ratio from

Present

5 0.7473 0.7475 0.6173 0.6226

10 0.9140 0.9138 0.8438 0.8467

15 0.9614 0.9588 0.9192 0.9223

20 0.9807 0.9762 0.9508 0.9540

25 0.9859 0.9845 0.9719 0.9698

30 0.9928 0.9892 0.9772 0.9787
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smaller than 15nm x 15nm. As the size of the graphene

sheet increases the nonlocal effect is diminished exponen-

tially because the effect of inter-atomic and inter molecu-

lar cohesive forces decrease with size of the sheet. The

maximum jump in the frequency ratio is observed for

nonlocal parameter going from 0nm
2
 to 1nm

2
. This jump

in the frequency ratio is gradually reduced as one employs

nonlocal parameter 2-4 nm^2.

Similarly in Figs.3-4 frequency ratios are plotted for

various vibration modes. In Fig.3 modes with m ≠ n are

plotted and in Fig.4 modes with m = n are plotted. The

nonlocal parameter is assumed to be 1nm
2
. The results

shown in Figs.3-4 are in line with the rectangular graphene

sheet results reported by Pradhan and Phadikar (2009c).

In Fig.5 frequency ratios have been plotted for various

nonlocal parameters and skew angles of the graphene

sheets. The skew graphene sheet is considered to be of

10nm length. With the increase in skew angle the fre-

quency ratios are found to decrease. Further, the nonlocal

effects become significant with the increase in the magni-

tude of the graphene sheet skew angle.

Conclusions

Nonlocal elasticity equations of Eringen are employed

and vibration analysis of skew graphene sheets is carried

out. Effects of (i) size of the graphene sheets (ii) modes of

vibrations (iii) nonlocal parameter and (iv) skew angle of

graphene sheets on the vibration frequency ratios are

investigated. Nonlocal effects significantly increase with

decrease in the graphene sheet size. This effect is more

significant for graphene sheets which are smaller than

15nm x 15nm. It has been observed that natural frequency

ratios decrease with increase in mode numbers. Further,

frequency ratio decreases with increase in magnitude of

the nonlocal parameter. Furthermore, the nonlocal effects

become significant with the increase in the magnitude of

the graphene sheet skew angle.
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Fig.1 Skew Graphene Sheet with Co-ordinate Axis

Fig.2 Frequency Ratio Vs Length for α = 5 deg, m=n=1 and

Various Nonlocal Parameters

Fig.3 Frequency Ratio Vs Length for α = 5 deg, µ = 1 nm
2

and m ≠ n
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Fig.4 Frequency Ratio Vs Length for α = 5 deg, µ = 1 nm
2

and m = n

Fig.5 Frequency Ratio Vs α (deg) for m=n=1, L = 10 nm and

Various Nonlocal Parameters
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