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Abstract

The paper presents the longitudinal and lateral stability analysis of an aerostat tethered in a

steady wind. The parametric trend study showing the effect of variation of different parameters

on longitudinal stability boundaries of an aerostat has also been presented. In contrast with

the conventional airplane, the equations of motion for the tethered aerostat included buoyancy

forces, apparent mass terms and static forces resulting from the tether cable. The analysis

consisted of mathematical modeling and its use to compute the stability characteristics for the

longitudinal and lateral cases followed by the parametric trend study carried out by varying

the dimensional, aerodynamic and other parameters of the aerostat for the longitudinal case.

Graphical results show that the aerostat is stable for longitudinal as well as lateral case. The

parametric trend study presented, thereafter, suggested that the judicious and feasible choice

of various aerostat parameters could be utilized to design a new aerostat that can remain stable

for wide range of wind velocities.
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Nomenclature

a = Distance along balloon centre line 

    from nose to reference point, m

A = Aspect Ratio

b = Span (planform) of the horizontal

    tail, m

B = Buoyancy force, N

c
_
 , ct , cr = Mean, tip and root aerodynamic 

    chords of tail, m

CDc = Tether cable drag coefficient

CD, CL, CY = Drag, lift and side force coefficients

Cl, Cm, Cn = Rolling, pitching and yawing moment

    coefficients

dc = Tether cable diameter, m

Dmax, L = Maximum diameter and length of the

    aerostat, m

FX, FY, FZ = External forces acting on balloon

    parallel to x, y and z axes respectively, N

hbr or Hbr = Component of distance from RP to

    COB, positive for COB below RP, m

hcg or Hcg = Component of distance from RP to

    COM of balloon, positive for COM

    below RP, m

hsr or Hsr = Component of distance from RP to

    COM of balloon structure, positive

    for COM below RP, m

Ix, Iy, Iz = Rolling, pitching and yawing moments

    of inertia respectively about balloon

    COM, kg-m
2

Ixy, Ixz, Iyz = Products of inertia in the XY, XZ and

    YZ plane respectively, kg-m
2

kxx, kyy, kzz = Tether force per unit displacement in

    x, y and z axis resp. at BCP, N/m
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kxz, kzx = Tether x-force per unit of z-displacement

    at BCP and vice versa, N/m

kxθ, kzθ = Tether x and y-force per unit of pitch

    displacement respectively, N/rad

kyϕ, kyψ = Tether y-force per unit of roll and yaw

    displacement respectively, N/rad

kθx, kθz = Tether pitching moment per unit of

     x and y-displacement resp., N-m/m

kθθ, kϕϕ, kψψ = Total tether pitch, roll and yaw moment

     per unit of pitch, roll and yaw

     displacement respectively about COM,

     N-m/rad

kθθD, kθθT = Kθθ due to displacement and rotation

     of balloon relative to steady tension

     vector at BCP, N-m/rad

kϕy, kψy = Tether rolling and yawing moment

     per unit of y-displacement, N-m/m

kϕψ, kψϕ = Tether rolling moment/unit of yaw

    displacement and vice versa, N-m/rad

l = Tether cable length, m

lbr or Lbr = Component of distance from RP to

   COB, positive for COB forward of RP, m

lcg or Lcg = Component of distance from RP to

    COM of balloon, positive for COM

    forward of RP, m

lsr or Lsr = Component of distance from RP to

    COM of balloon structure, positive

    for COM aft of RP, m

ltr or Ltr = Component of distance from RP to

    BCP, positive for BCP forward of RP, m

LPHT, LPVT = Distance of CG from MAC of PHT

    and PVT of balloon, m

LVT, LPVT = Vertical distance of CG from MAC of

    VT and PVT of balloon, m

ma = Apparent mass of air associated with

    accelerations of balloon, kg

mg = Mass of inflation gas, kg

ms = Balloon structural mass (including

    bridle, test instruments and payload), kg

mT = Combined mass of balloon structure

    and inflation gas, mg+ ms , kg

Mx, My, Mz = Rolling, pitching and yawing moment

    about X, Y and Z-axes resp., Nm

n = Cable drag per unit length for cable

    normal to the wind, N/m

p, q, r = Perturbed roll, pitch and yaw rates 

    about X, Y and Z-axes resp., rad/s

Sref, Sexposed = Reference area (πDmax
2
/4) and

    exposed planform area of aerostat, m
2

ttr or Ttr = Component of distance from RP to BCP,

     positive for BCP below RP, m

t = Time in seconds

T, T0, T1 = Tether cable tension, tension at lower

    and upper ends respectively, N

u, v, w = Perturbation velocities of balloon

    COM along X, Y and Z-axes resp., m/s

V∞ = Steady wind velocity, m/s

Vn = Component of wind velocity normal

    to cable, V∞ sinγ, m/s

Ws = Structural weight of balloon (including

    bridle, payload and test instr.), N

wc = Tether cable weight per unit length, N/m

xt, zt = Distance parallel to X and Z-axis from

    RP to COM, positive for COM forward

    and below RP respectively

x1, z1 = Coordinates of balloon COM with

    respect to tether cable anchor point, m

α = Perturbation angle of attack, rad

β = Angle of sideslip, rad

ε, σ = Downwash and sidewash angles, rad

Λ = Tail sweep angle, rad

γ0, γ1 = Angles between horizontal and tether

    cable at lower and upper ends resp., rad

ε = Angle between principal X-axis of

    balloon and stability axis, rad

η = Real part of characteristic root of stab.

    equations, damping parameter, 1/s

ϕ, θ, ψ = Roll, pitch and yaw angles

    respectively, rad

λ = Characteristic root of stability equations

    (η ± iω) and taper ratio

ρ = Atmospheric density, kg/m
3
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ω = Imaginary part of characteristic root

   of stab. equations, frequency, rad/s

Subscripts

A, B, C, G = Aerodynamic, buoyancy, tether-cable

   and gravity force terms respectively

t = Equilibrium trim condition

0, 1 = Lower and upper end of tether cable

α , β , α
.
 , β

.
= With respect to α , β , α

.
 c
_

 ⁄ 2 V∞ and

    β
.
 c
_

 ⁄ 2 V∞  respectively

p, q, r = With respect to p c
_

 ⁄ 2 V∞ , q c
_

 ⁄ 2 V∞ 

    and r c
_

 ⁄ 2 V∞  respectively

Abbreviations

BCP, RP = Bridle Confluence Point and

    Reference Point

CG, COB = Center of gravity and center of Buoyancy

COM, SCM = Balloon centre of mass and balloon

    structural centre of mass

VT, PVT, PHT = Vertical, projected vertical and

    projected horizontal tail

MAC = Mean Aerodynamic Chord

Introduction

The operations of a tethered balloon such as supporting

antennas or providing an aerial platform are often im-

paired by the occurrence of dynamic instabilities, espe-

cially during the strong wind conditions. This paper

presents a systematic approach for the stability analysis of

an aerostat (Fig.1) tethered from an earth-fixed anchor

point and flying in steady wind conditions. Commendable

and extensive work on initial sizing, design methodology,

fabrication and dynamic stability analysis of aerostats has

been done by Pant et. al.[1-5]. The work on initial sizing

and conceptual design has been reported by Gupta et. al.[1]

and Raina et. al.[2]. Rajani et. al.[3-4] have done com-

mendable work on dynamic stability of aerostats. The

most of the work reported in this paper is based on the

reports available on stability analysis and trend study of

tethered aerostat [6-10]. The presented work consisted of

the mathematical modeling [8,18,19] of the considered

tethered aerostat, computation of the roots of characteristic

equation using the mathematical model and the study of

the influence of dimensional, aerodynamic and other con-

figuration related parameters on the longitudinal stability

boundaries of the considered aerostat for a range of steady

wind speeds. The parametric trend study carried out ne-

glected downwash and sidewash effects. Also, the contri-

butions in the area of stability analysis of aerostat [11-13]

and tether cable stability and dynamics [14-16] have been

reported earlier.

The reported work in the section - Mathermatical

Modeling of a Tethered Aerostat, describes the complete

mathematical modeling which includes aerodynamic

modeling, tether-cable, buoyant and gravity forces and

moments. In section - Estimation of the Stability Charac-

teristics, illustrates the steps followed for the computation

of the stability characteristics along with required mathe-

matical formulation. The stability analysis (Longitudinal

and Lateral) and parameter trend study (Longitudinal) by

varying the different parameters for a range of speed

showing the effect on stability boundaries has been pre-

sented in section - Stability Analysis and Longititudinal

Trend Study. Finally, the concluding remarks have been

summarized in the conclusion section, suggesting that a

judicious choice of the parameters based on trend study

analysis can eliminate or greatly reduce the instabilities

encountered during the strong wind conditions.

Mathematical Modeling of a Tethered Aerostat

A systematic approach for the stability analysis of an

aerostat shown in Fig.1 has been followed. The stability

analysis was carried out under steady wind conditions for

an aerostat tethered from an earth-fixed anchor point.

Figure 2 presents the geometrical parameters and vari-

ous forces and moments acting on tethered aerostat. The

use of theoretical formulations [17] based on considered

aerostat configuration was made for the calculation of

stability derivatives which were used during the mathe-

matical modeling to carry out the stability analysis.

Figure 3 shows the coordinate system along with

forces and moments used for the derivation of equations

of motion of the tethered aerostat. Tether cable forces at

the lower and upper end along with related angles have

also been shown in Fig.3.

Table-1 presents the geometric, mass, inertia and aero-

dynamic characteristics of the considered aerostat used to

carry out the stability analysis. Some dimensional parame-

ters were given while the others were calculated for the
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given configuration of the tethered-aerostat based on the

theoretical formulations [17].

The motion of the tethered aerostat consists of small

perturbations about steady flight reference conditions. A

linearized analysis similar to that of a rigid airplane has

been used during the mathematical modeling while taking

into account the following considerations.

• The equations of motion are referred to the centre of

mass of the balloon.

• The balloon is symmetric laterally and has yaw, roll and

side slip angles equal to zero in the reference steady-

state trimmed condition (ψt , ϕt , βt = 0).

• Balloon and bridle form a rigid system.

• The tether cable is flexible, but inextensible and con-

tributes static forces at the bridle confluence point

(BCP).

• The cable weight and drag normal to the cable are

needed only for determining the static cable forces,

equilibrium shape of the cable and the cable deriva-

tives.

• The longitudinal and lateral equations of motion are

uncoupled.

Four different sources of external forces and moments

such as aerodynamic, buoyant, tether cable and gravity act

on a tethered aerostat. Therefore, the equations of motion

of a tethered aerostat can be written as [8]

F
X , A

 + F
X, C

 + F
X , B

 + F
X , G

 = m
x , o

 x
..

e
(1a)

F
Y, A

 + F
Y, C

 + F
Y, B

 + F
Y, G

 = m
y,o

 y
..

e
(1b)

F
Z, A

 + F
Z, C

 + F
Z, B

 + F
Z, G

 = m
z, o

 z
..

 e
(1c)

M
X, A

 + M
X, C

 + M
X, B

 + M
X, G

 = I x ϕ
..

 − I x z ψ
..

(1d)

M
Y, A

 + M
Y, C

 + M
Y, B

 + M
Y, G

 = I y θ
..

(1e)

M
Z, A

 + M
Z, C

 + M
Z, B

 + M
Z, G

 = − I x z ϕ
..

 + I z ψ
..

(1f)

Table-1 : Characteristics of the Considered Aerostat

Parameter

(Units)

Value Parameter

(Units)

Value Parameter

(Units)

Value

Ltr (m) 5.98 ρa (kg − m
−3

 ) 1.09 bVT (m) 8.1415

Ttr (m) 10.9 ρhe (kg − m
−3

 ) 0.1759 bPVT (m) 5.7572

Lcg (m) -1.92 mT (kg) 1406 bPHT (m) 11.5145

Hcg (m) 0.68 mhe (kg) 355.85 SVT (m
2
) 44.729

Lbr (m) 0.31 ms (kg) 1050.15 SPVT (m
2
) 31.63

Hbr (m) 0.0 mx , a  (kg) 488.25 SPHT (m
2
) 63.26

Lsr (m) -3.6 my, a  (kg) 2283.6 Sref (m
2
) 96.769

Hsr (m) 2.4 mz , a  (kg) 2283.6 AVT 1.482

l (m) 1000 Ixx (kg − m
−3

 ) 15081.44 APVT 1.048

dc (m) 0.017 Iyy (kg − m
−3

 ) 15081.44 APHT 2.096

Dmax (m) 11.1 Izz (kg − m
−3

 ) 15081.44 LVT (m) 4.2387

L (m) 33.85 B (N) 18354.51 LPVT (m) 1.4795

ct (m) 3.144 wc (N/m) 2.943 LPHT (m) 9.4407

cr (m) 7.844 CDc 1.17

c (m) 5.829 λ 0.4
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The terms mx,o, my,o and mz,o are total aerostat masses

in x, y and z directions respectively and can be expressed

as

m
x,o

 = m
s
 + m

g
 + m

a1
(2a)

m
y,o

 = m
s
 + m

g
 + m

a2
(2b)

m
z,o

 = m
s
 + m

g
 + m

a3
(2c)

The terms ms, and mg are the structural mass of aerostat

and mass of the gas inside the aerostat. The terms ma1, ma2

and ma3 are apparent masses associated with accelerations

in x, y and z directions respectively. The apparent masses

which depend upon the equilibrium trim angle of attack

(αt) are given by the following equations.

m
a1

 = m
x,a

 cos
2
 α

t
 + m

z,a
 sin

2
 α

t
(3a)

m
a2

 = m
y,a

(3b)

m
a3

 = m
x,a

 sin
2
 α

t
 + m

z,a
 cos

2
 α

t
(3c)

The  terms  mx,a,  my,a  and  mz,a are the apparent

masses of  the balloon  accelerating  along  the Xb, Yb  and

Zb axes.

The mass moments of inertia which depend upon the

orientation of the balloon are expressed by the following

equations.

I
x
 = I

xx
 cos

2
 ε + I

zz
 sin

2
 ε (4a)

I
y
 = I

yy
(4b)

I
z
 = I

zz
 sin

2
 ε + I

zz
 cos

2
 ε (4c)

I
xz

 = 1⁄2 (I
xx

 − I
zz

) sin
2
 ε (4d)

The terms Ixx, Iyy and Izz are the mass moments of

inertia about the principal axes and ε is the angle between

the principal X-axis and the stability X-axis. In the present

analysis the Xb, Yb and Zb axes are considered to be

principal axes; hence ε = αt.

Aerodynamic Forces and Moments

The aerodynamic forces and moments at trim condi-

tions in the non-dimensional form while neglecting the

higher order perturbation terms are represented by the

following relationships (8).

F
X, A

 = − 








ρV∞ S

2




 (2C

D
 + C

D
u

) x
.
e





− 








ρV∞ S

2




 (C

D
α

 − C
L
)



 z
.
e

− 















ρV∞
2

 S

2




 (C

D
α

 − C
L
)









 θ − 





ρV∞
2

 S

2




 C

D
(6a)

F
Y, A

 = 








ρ S c
_

4




 C

Y
β
.




 y
..

e
 + 




ρ V∞ S

2
 C

Y
β




 y
.
e

+ 




ρ V
∞

 S c
_

4
 C

Y
p




 ϕ
.
 −  











ρ V
∞

 S c
_

4
 (C

Y
β
.
 − C

Y
p

)









 ψ
.
 − 











ρ V
∞

2
 S

2
 C

Y
β









 ψ

(6b)

F
Z, A

 =  − 








ρ V∞ S

2




 (2C

L
 + C

L
u

)



 x
.
e
 − 








ρ S c
_

4




 C

L
α
.




 z
..

e

− 








ρ V∞ S

2




 (C

L
α
 + C

D
)



 z
.
e
 




ρ V∞ S c
_

4
 (C

L
α
.
 + C

L
q

)



 θ
.

− 











ρ V∞
2

 S

2
 (C

L
α

 + C
D

)









 θ  − 

ρ V∞
2

 S

2
 C

L
(6c)

M
X, A

 = 




ρ S ( c
_
 )

2

4
 C

l
β
.




 y
..

e
 + 




ρ V
∞

 S c
_

2
 C

l
β




 y
.
e
 + 











ρ V
∞

 S ( c
_
 )

2

4
 C

l
p










 ϕ
.

− 











ρ V∞ S ( c
_
 )

2

4
 (C

l
β
. − C

l
r

)









 ψ
.
  − 





ρ V∞
2

 S c
_

2
 C

 l
β




 ψ

(6d)

M
Y, A

 = 




ρ V∞ S c
_

2
 (2C

m
 + C

m
u

)



 x
.
e
 + 




ρ S ( c
_
 )

2

4
 C

m
α
.




 z
..

e
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+ 




ρ V∞ S c
_

2
 C

m
α




  z

.
e
  +  

ρ V∞ S ( c
_
 )

2

4
 (C

m
α
.
 + C

m
q

)  θ
.

+ 





ρ V∞
2

 S c
_

2
 C

m
α




  θ  +  

ρ V∞
2

 S c
_

2
 C

m
(6e)

M
Z, A

 = 




ρ S ( c
_
 )

2

4
 C

n
β
.




 y
..

e
 + 




ρ V∞ S c
_

2
 C

n
β




 y
.
e

+ 











ρ V∞ S ( c
_
 )

2

4
 C

n
p










 ϕ
.
  −  











ρ V∞ S ( c
_
 )

2

4
 (C

n
β
. − C

n
r

)









  ψ

.

−  





ρ V∞
2

 S c
_

2
 C

n
β




  ψ (6f)

Tether-Cable Forces and Moments

The tether-cable forces and moments (8) are expressed

as :

F
X, C

 =  − k
xx

 x
e
 − k

xz
 z

e
 − (k

xθ
 + T

1
 sin γ

1
) θ + T

1
 cos γ

1

(7a)

F
Y, C

 =  − k
yy

 y
e
 + (T

1
 sin γ

1
 − k

yϕ
) ϕ − (T

1
 cos γ

1
 + k

yψ
) ψ

(7b)

F
Z, C

  =  − k
zx

 x
e
 − k

zz
 z

e
 + (T

1
 cos γ

1
 + k

zθ
) θ + T

1
 sin γ

1

(7c)

M
X, C

 =  − k
ϕ y

 y
e
 − (h

k
2

 T
1
 sin γ

1
 + k

ϕ ϕ
) ϕ + (h

k
2

 T
1
 cos γ

1
 − k

ϕ ψ
) ψ

(7d)

M
Y,C

 =  − k
θ x

 x
e
 − k

θ z
 z

e
 − k

θ θ
 θ − h

k
1

 T
1
 sin γ

1
 + h

k
2

 T
1
 cos γ

1

(7e)

M
Z,C

 =  − k
ψ y

 y
e
 + (h

k
1

 T
1
 sin γ

1
 + k

ψ ϕ
) ϕ − (h

k
1

 T
1
 cos γ

1
 − k

ψ ψ
) ψ

(7f)

where

h
k

1

 = (l
tr
 − l

cg
) cos α

t
 + (t

tr
 − h

cg
) sin α

t

h
k

2

 = (t
tr
 − h

cg
) cos α

t
 − (l

tr
 − l

cg
) sin α

t
 ,

k
xθ = h

k
2

 k
xx

 − h
k

1

 k
x2

 ,   k
zθ = h

k
2

 k
zx

 − h
k

1

 k
zz

kθx
 = h

k
2

 k
xx

 − h
k

1

 k
zx

 ,   kθz
 = h

k
2

 k
xz

 − h
k

1

 k
zz

kθ θ = kθ θ
 D

 + kθ θ
 T

kθ θ
D

 = h
k

2

2

 k
xx

 − h
k

2

 h
k

1

 (k
xz

 + k
zx

) + h
k

2

1

 k
zz

 ,

kθ θ
 T

 = h
k

2

 (T
1
 sin γ

1
) + h

k
1

 (T
1
 cos γ

1
)

k
y ϕ =  − h

k
2

 k
yy

 ,     k
y ψ =  h

k
1

 k
yy

 ,     kϕ y
 = k

y ϕ

kϕ ϕ = h
k

2

2

 k
yy

 ,     kψ ψ = h
k

2

1

 k
yy

kϕ ψ  =  − h
k

1

 h
k

2

 k
yy

 ,     kψ y
 = k

y ψ ,     kψ ϕ = kϕ ψ

Buoyancy Forces and Moments

The expressions for the buoyancy forces and moments

about the centre of mass in the stability axis system can be

expressed assuming small perturbation angles as (8) :

F
X, B

 = B θ (8a)

F
Y, B

 =  − Bϕ (8b)

F
Z, B

 =  − B (8c)

M
X, B

 =  − B 

(h

cg
 − h

br
) cos α

 t
 + (l

br
 − l

cg
) sin α

 t


 ϕ

(8d)

M
Y, B

 = B 

(l

br
 − l

cg
) cos α

 t
 − (h

cg
 − h

br
) sin α

 t



− B 

(h

cg
 − h

br
) cos α

 t
 + (l

br
 − l

cg
) sin α

 t


 θ (8e)

M
Z, B

 =  − B 

(l

br
 − l

cg
) cos α

 t
 − (h

cg
 − h

br
) sin α

 t


 ϕ

(8f)

Gravity Forces and Moments

The component due to structural weight of balloon is

considered during the formulation of equations of motion

for gravity forces. The effects of apparent mass and lifting

gas are already included in the coefficients of the accel-

eration and buoyancy terms respectively.

The forces and moments due to gravity for small

perturbation angles are determined by:

F
X, G

 =  − W
s
 θ (9a)
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F
Y, G

 =  − W
s
 ϕ (9b)

F
Z, G

 =  − W
s

(9c)

M
X, G

 =  − W
s
 

(h

sr
 − h

cg
) cos α

 t
 + (l

sr
 + l

cg
) sin α

 t


 ϕ
(9d)

M
Y, G

 = W
s
 

(l

sr
 + l

cg
) cos α

 t
 − (h

sr
 − h

cg
) sin α

 t



− W
s
 

(h

sr
 − h

cg
) cos α

 t
 + (l

sr
 + l

cg
) sin α

 t


 θ (9e)

M
Z, G

 =  − W
s
 

(l

sr
 + l

cg
) cos α

 t
 − (h

sr
 − h

cg
) sin α

 t


 ϕ
(9f)

Estimation of the Stability Characteristics

After the mathematical modeling, the stability charac-

teristics (roots/eigen values) of the considered aerostat can

be estimated by executing the following steps:

• Calculate the trim angle of attack.

• Obtain the aerodynamic parameters dependent on trim

angle of attack for the steady state trim condition.

• Calculate the value of tensions in the cable at the upper

and lower ends.

• Use the value of tensions to obtain tether cable deriva-

tives.

• Obtain the stability equations by putting the equilib-

rium part of the balloon’s equations of motion to zero.

• Convert the above stability equations in the matrix

form and obtain the roots/eigen values by using the

results obtained in the steps 1 to 4.

Balloon Equations of Motion

After combining all the expressions for each of the

external forces and moments (such as aerodynamic, buoy-

ancy, cable-tether and gravity), the following resulting

equations of motion (8) about the balloon COM can be

obtained.

x-force :

m
x
 x
..

e
 + 




ρ V∞ S

2
 (2C

D
 + C

D
u

)



 x
.
 e

 + k
xx

 x
e

+ 




ρ V∞ S

2
 (C

D
α
 − C

L
)



 z
.
 e

 + k
xz

 z
e

+ 










k

xθ +  
ρ V∞

2
 S

2
 (C

D
α
 − C

L
) − (B − W

s
) + T

1
 sin γ

1










 θ

+  
ρ V∞

2
 S

2
 C

D
 − T

1
 cos γ

1
  =  0 (10a)

y-force :

m
 y

 y
..

e
 − 




ρ V∞ S

2
 C

Y
β




 y
.
e
 + k

yy
 y

e
 − 




ρ V∞ S c
_
 

4
 C

Y
p




 ϕ
.

+ 

k

yϕ − T
1
 sin γ

1
 + B + W

s


 ϕ +  

ρ V∞ S c
_
 

4
 (C

Y
β
. − C

Y
r

) ψ
.

+ 

k

y ψ + T
1
 cos γ

1
 + 

ρ V∞
2

 S

2
 C

Y
β


 ψ = 0 (10b)

z-force :

m
z
 z
..

e
 +  

ρ V∞ S

2
 (2C

L
 + C

L
u

) x
.
e
 + k

zx
 x

e

+ 
ρ V∞ S

2
 (C

L
α

 + C
D

) z
.
 e

 + k
zz

 z
e
 + 

ρ V∞ S c
_
 

4
 (C

L
α
.
 + C

L
q

) θ
.

+  k
zθ + 

ρ V∞
2

 S

2
 (C

L
α
 + C

D
) − T

1
 cos γ

1
) θ

+  
ρ V∞

2
 S

2
 C

L
 + B + W

s
 − T

1
 sin γ

1
  =  0 (10c)

Rolling Moment :

− 




ρ S c
_
  2

4
 C

1
β
.




 y
..

e
 − 




ρ V
∞

 S c
_

2
 C

1
β




 y
.
e
 + k

ϕ y
 y

e
 + I

x
 ϕ
..

− 











ρ V
∞

 S c
_
  2

4
 C

1
p










 ϕ
.
 + 



h
k

2

 T
1
 sin γ

1
 + k

ϕ ϕ
 + M

s
1





 ϕ − I
xz

 ψ
..

+ 











ρ V
∞

 S c
_
  2

4
 



C
l
β
.
 − C

l
r














 ψ
.
 + 











ρ V
∞

2
 S c

_

2
 C

l
β

− h
k

2

 T
1
 cos γ

1
 + k

ϕ ψ









 ψ =  0

(10d)
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Pitching Moment :

− 




ρ V
∞

 S c
_

2
 (2C

m
 + C

m
u

)



 x
.
  e

 + k
θx

 x
e
 − 




ρ S c
_
  2

4
 C

m
α
.




 z
..

e

− 




ρ V
∞

 S c
_

2
 C

m
α




 z
.
e
 + k

θz
 z

e
 + I

y
 θ
..
 − 











ρ V
∞

 S c
_
  2

4




C
m

α
.
 + C

m
q














 θ
.

+ 

k

θ θ
 + M

s
1

 − 
ρ V

∞

2
 S c

_

2
 C

m
α


 θ − 

ρ V
∞

 2
 S c

_

2
 C

m
 + h

k
1

 T
1
 sin γ

1

−  h
k

2

 T
1
 cos γ

1
  −  M

s
2

  =  0 (10e)

Yawing Moment :

− 




ρ S c
_
  2

4
 C

n
β
.




 y
..

e
 − 




ρ V
∞

 S c
_

2
 C

n
β




 y
.
e
 + 

k

ψ y


 y

e
 − 

I
xz

 ϕ
..



− 











ρ V
∞

 S c
_
  2

4
 C

n
p










 ϕ
.
 + 



M
 s

2

 + k
ψ ϕ

 − h
k

1

 T
1
 sin γ

1




 ϕ + (I
z
) ψ

..

+ 











ρ V
∞

 S c
_
  2

4
 



C
n

β
. − C

n
r














 ψ
.

+ 











ρ V
∞

2
 S c

_

2
 C

n
β

 + h
k

1

 T
1
 cos γ

1
 + k

ψ ψ






 ψ  =  0 (10f)

where

M
s
1

 = 



l
br

 − l
cg

 B + 

l
sr

 + l
cg

 W
s


 sin α

t

+ 



h

cg
 − h

br
 B + 


h

sr
 − h

cg
 W

s


 cos α

t

M
s
2

 = 



l
br

 − l
cg

 B + 

l
sr

 + l
cg

 W
s


 cos α

t

− 



h

cg
 − h

br
 B + 


h

sr
 − h

cg
 W

s


 sin α

t

m
x
 = m

x, o
 ,     m

y
 = m

y, o
 − 

ρ S c
_

4
 C

Y
β
. ,

m
z
 = m

z, o
 + 

ρ S c
_

4
 C

L
α
.

Equilibrium Trim Conditions

In the mathematical model used for calculating the

stability characteristic, it is seen that all the aerodynamic

parameters are dependent on the angle of attack and it is

required to calculate the angle of attack at which the steady

state trimmed condition for the balloon is achieved, this

angle of attack is called the trim angle of attack.

The steady state trimmed conditions can be obtained

by setting the perturbation quantities of Equations (10a-

10c) equal to zero.

ρ V∞
2

 S

2
  C

D
 − T

1
 cos γ

1
  =  0 (11a)

ρ V∞
2

 S

2
  C

L
 + B − W

s
 − T

1
 sin γ

1
  =  0 (11b)

− 
ρ V∞

2
 S τ

2
  C

m
 + h

k
1

 T
1
 sin γ

1
 − h

k
2

 T
1
 cos γ

1
 − M

s
2

 =  0

(11c)

Substitute Equations (11a-11b) into Equation (11c) to

eliminate the cable tension T1 and angle  γ1 to obtain the

following tr im equation:

h
k

1

 





ρ V∞
2

 S

2
 C

L
 + B − W

s




 − h

k
2

 





ρ V∞
2

 S

2
 C

D





−  
ρ V∞

 2
 S

2
 C

cm
 − M

s
2

  =  0 (12)

Equation (12) can be solved by Newton iterations to

find the equilibrium trim angle of attack (αt) for various

wind velocities, provided the aerodynamic coefficients

CL, CD, and Cm are known functions of  αt . The calculated

αt can be used to solve the Equations (11a-11c) to find T1

and γ1 followed by the evaluation of α dependent stability

coefficients.

Formulations for Calculation of Stability Derivatives

The expressions for the longitudinal and lateral stabil-

ity coefficient/derivatives calculated in the previous step

are based on the theoretical formulation corresponding to

CG location. The derivatives based on the aerostat con-

figuration have been calculated for projected horizontal
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(PHT), vertical (VT) and projected vertical (PVT) tail. Lift

curve slope expression given in Equation (13) uses the

values of constants of the respective tail (PHT, PVT or

VT).

C
L

α
t

  =  
(2 π A)




2 + √ 4 + 

  A 2  β  2

η
2

 (1 + 
tan  2 Λ

β
 2 ) 





   ∗   
S

exposed

S
ref

(13)

where CL
α

t

 is the lift curve slope of the tail.

Longitudinal Derivatives (PHT)

C
L
 = 0.0061 + 1.2α + C

L
α

t

 α + η C
D

c

 
S

p

S
ref

 α
2
 ,

C
L

α

 = 1.2 + C
L

α
t

 + 2η C
D
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S

p

S
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 α

C
L

α
.
 = C

L
q

 
dε
dα
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L

q

 = 2C
L

α
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L
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D

C
D
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C

L

2

π e A
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D
α

  =  2 
C

L

π e A
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α

C
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
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


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
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d ε
d α

          where     τ  =  

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Laterial Derivatives (VT)

C
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Lateral Derivatives (PVT)
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Lateral derivatives for complete vertical tail can be

obtained by adding the corresponding derivatives of ver-

tical tail and projected vertical tail.
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Equilibrium Cable Shape

The forces acting on tether cable of length (Fig.4) are

the tension, cable weight and drag normal to the cable.

Drag along the cable has been neglected. The normal drag

force per unit length depends on the component of wind

velocity normal to the cable Vn, the drag cable coefficient

CDc
 and cable diameter dc and can be expressed as(8):

n  =  C
D

c

 d
c
 
1

2
 ρ V

n

2
(14)

Tension (T1) at upper end of the cable using tension





d T

T
 =  −  
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_

q
_ 




d f

q
_
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_
 − f

 + 
d f

q
_
 + p

_
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






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T
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1
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
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

q
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q
_
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


p
_

q
_

 ,  p
_

 = 
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c

2 n
 ,  q

_
 = √1 + ( p

_
 )

2
 , f = cos γ

(15)

For the known parameters such as 
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

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

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  d γ
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


  n ,  W

c
 , T

1
  and  γ

1
 ,

the following expressions can be used to determine the

coordinates x~  and  z~1 at the upper end and T0  and  γ0  at

the lower end.

λ
_
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n τ
1
 1

T
1
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1
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x~
1
 = 

T
1

n τ
1

 ∫  
γ

0

 γ
1

 
τ cos γ


sin

2
 γ + 2 p

_
 cos γ

 d γ

where

d σ = 
τ cos γ


sin

2
 γ + 2 p

_
 cos γ

 d γ (17)

z~
1
 = 

T
1
 − T

0

w
c

   where  d z~ = d l sin γ = 
d T

w
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)

Cable Force Derivatives

Consider  the  cable  in  its  equilibrium  position. If

the upper end is slowly displaced in the x~ z~ - plane from

its original position ( x~1 , z~1) to a new position

(x~1 + d x~ , z~1 + d z~) , the resultant x- and z-force incre-

ments are

d F
x
 = k

xx
 d x~ + k

xz
 d z~   and   d F

z
 = k

zx
 d x~ + k

zz
 d z~

(19)

The cable derivatives (spring constants) kxx, kxz, kzx

and kzz for the longitudinal case can be expressed as(8):

k
xx

 = 
1

δ
 

T

1
 cos γ

1
(sin γ

1
 − sin γ

0
) + n (z

1
 − l sin γ

0
) sin

3
 γ

1



(20a)

k
xz

 = 
1

δ
 

T

1
 cos γ

1
(cos γ

0
 − cos γ

1
) + n (l cos γ

0
 − x~

1
) sin

3
 γ

1



(20b)

k
zx

 = 
1

δ
 



T

1
 sin γ

1
(sin γ

1
 − sin γ

0
) − (w

c
 + n sin

2
 γ

1
 cos γ

1
) (z~

1
 − l sin γ

0





(20c)

k
zz

 = 
1

δ
 



T

1
 sin γ

1
(cos γ

0
 − cos γ

1
) − (w

c
 + n sin

2
 γ

1
 cos γ

1
) (l cos γ

0
 − x~

1





(20d)

where

δ =  x
1
 (sin γ

1
 − sin γ

0
) + z

1
 (cos γ

0
 − cos γ

1
) − l sin (γ

1
 − γ

0
)

The single lateral cable derivative determined by con-

sidering a small force dFY to act in the y-direction on the

upper end of the cable is given by the following expres-

sion.

dF
Y

  =  k
yy

 dy

where
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k
yy

  =  
n √τ

1
 (sin

2
 γ

1
 + 2 p

_
 cos γ

1
)

∫ √  
τ(γ)

(sin
2
 γ + 2 p

_
 cos γ)γ

0

 γ
1

 d γ

(21)

Stability Equations

The stability equations are obtained by setting the

equilibrium trim portions of the equations of motion

(Equations (10a-10f)) equal to zero. The following work-

ing forms of the stability equations (8) written about the

balloon centre of mass are obtained.

Longitudinal Equations of Motion

X-force :

m
x
 x
..

e
 + 




ρ V∞ S

2
 (2C

D
 + C

D
u

)



 x
.
 e

 + k
xx

 x
e

+ 




ρ V∞ S

2
 (C

D
α
 − C

L
)



 z
.
 e

 + k
xz

 z
e

+  









kxθ +  

ρ V∞
2

 S C
D

α

2









  θ  =  0 (22a)

Z-force :

m
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..

e
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ρ V∞ S

2
 (2C
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) x
.
e
 + k

zx
 x

e

+ 
ρ V∞ S

2
 (C

L
α

 + C
D

) z
.
 e
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e
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 S C
L

α

2









  θ  =  0 (22b)

Pitching Moment :

− 




ρ V
∞

 S c
_

2
 (2C

m
 + C

m
u

)



 x
.
  e

 + k
θx

 x
e
 − 




ρ S c
_
  2

4
 C

m
α
.




 z
..

e

− 




ρ V
∞

 S c
_

2
 C

m
α




 z
.
e
 + k

θz
 z

e
 + I

y
 θ
..
 − 











ρ V
∞

 S c
_
  2

4




C
m

α
.
 + C

m
q














 θ
.

+ 

k

θ θ
 + M

s
1

 − 
ρ V

∞

2
 S c

_

2
 C

m
α


 θ  =  0 (22c)

Lateral Equations of Motion

Y-force :

m
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e
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Rolling Moment :
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Yawing Moment :
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




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
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_
 C

n
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k
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)
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Using the mathematical model, the stability equations

can be written in the state space form as given below:

d x

d t
  =  Ax + Bu (24)

where A is the characteristic matrix and B is the input

matrix. Since no control input is being used, therefore the

matrix A gives the characteristics of the aerostat system.

The equation for longitudinal and lateral stability case

can be expressed in the following matrix form respec-

tively.
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(25)

The roots of characteristic equation obtained by com-

puting stability matrix A for longitudinal and lateral case

give an insight into the stability of the system.

Stability Analysis and Longitudinal Trend Study

The computed values of longitudinal frequencies (ω)

and damping rates (η) for the considered aerostat have

been plotted as a function of wind velocity in Figs.5(a-b)

and in root locus form in Fig.5c. Figs.(5a-5b) indicate that

the considered aerostat has three oscillatory modes of

motion for the given range of the wind velocities. First two

modes (1 and 2) represent the aerodynamic modes such as

‘short period mode’ and ‘long period mode (Phugoid

mode)’ whereas the third mode represents the tether cable

mode. It can be observed that the aerostat is longitudinally

stable except at and below wind velocity of 2 m/s at which

one of the roots becomes positive (Fig. 5b). It could also

be observed (Fig. 5b) that mode 2 splits into two real

non-oscillatory modes above wind velocity of 19 m/s and

again merged into one at 35 m/s. The negative slope

between pitching moment coefficient and angle of attack

(Fig.5d) infers that the aerostat is stable longitudinally.

The computed values of lateral frequencies (ω) and

damping rates (η) for the considered aerostat have been

plotted as a function of wind velocity in Figs.6(a-b) and in

root locus form in Fig.6c. Figs.(6a-6b) indicate that the

considered aerostat has three oscillatory modes of motion

for the given range of the wind velocities. Fig.6b indicates

that none of the modes for the considered aerostat configu-

ration was unstable.

Next, a parametric trend study was carried out to see

the effect of variation of different dimensional and aero-

dynamic parameters of the considered aerostat on longitu-

dinal stability boundaries.

The results showing the effect of different parameters

on the stability boundaries for a range of speed have been

presented in graphical form. Figs.(7-20) show that the

aerostat is unstable below the speed of 2 m/sec and in the

region bounded by the two curved/straight boundaries

except Fig.13, which shows the effect of increase in tether

cable length on the stability of the aerostat in terms of

damping for a particular wind speed. Rest of the region

(above 2 m/s) represents the stable region. The unstable

region increases or decreases with increase or decrease in

the values of most of the dimensional and aerodynamic

parameters of the considered aerostat. Very little or negli-

gible effect on stability boundaries was observed for some

parameters.

It can be observed (Figs.7-19) that the parameters such

as Ltr, Ttr, Lbr, Lsr, mhe, B, C.G. (moment arm), ac, wc,

CDc, Cmo affect the stability boundaries strongly while the

parameters such as Lcg, Hcg, Hbr, Hsr, CLα_PHT and down-

wash have very little or negligible effect on the stability

characteristics/boundaries of the aerostat.

It can be observed that the decrease in Ltr (the horizon-

tal component of distance between RP and BCP) decreases

the unstable region while decrease in Ttr (the vertical

component of distance between RP and BCP) increases

the unstable region (Figs.7(a-b)). The change in horizontal

(Lcg) or vertical (Hcg) component of distance from RP to

COM has very little or negligible effect on the stability

boundaries (Figs. 8(a-b)). Increase in the value of horizon-

tal component of distance from RP to COB (Lbr) and COM

of structure (Lsr) decreases the unstable regions while the

vertical components (Hbr and Hsr) have negligible effect

(Figs.9(a-b) and 10(a-b)). Greater the mass (mhe) and the

buoyant force (B) of the helium gas lesser will be the

unstable region (Figs.(11-12)). Fig.13 presents a plot be-

tween damping and the tether cable length for short period
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mode for a wind speed of 20 m/s. It can be observed from

Fig.13 that the damping keeps on increasing with increase

in the tether cable length leading to increase in the longi-

tudinal stability with increase in the tether cable length.

Reduction in the cable diameter (dc), the cable weight (wc)

and the cable drag coefficient (CDc) leads to the reduction

in the unstable region (Figs.(14-16)). Increase in the hori-

zontal tail moment arm and zero lift pitching moment

coefficient reduces the unstable region (Figs.(17-18))

while the change in downwash and lift curve slope of

horizontal projected tail have negligible effect on stability

characteristics of the aerostat (Figs.(19-20)).

Conclusion

A stability analysis and trend study for a balloon

tethered in a steady wind has been presented. Equations of

motion of the considered aerostat included aerodynamic,

tether-cable, buoyancy and gravity forces along with aero-

dynamic apparent mass and structural mass terms. After

mathematical modeling, the roots of the characteristic

stability equation were computed and plotted for various

steady-wind conditions. It was observed from graphical

presentations that the considered aerostat was stable lon-

gitudinally as well as laterally. Later on, parameter trend

study was carried out to show the influence of various

dimensional and aerodynamic parameters of aerostat on

longitudinal stability boundaries for a wide range of

steady-wind speeds. The study suggests that the judicious

and feasible choice of various parameters can be utilized

to design a new tethered aerostat which can remain stable

for a wide range of wind speeds. The limitation of the

stability analysis carried out was that the downwash and

sidewash terms have been neglected. Also, the effect of

ballonet and its dynamics has been neglected during the

analysis.
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