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Abstract

A new parameter estimation method based upon Feed Forward Neural Network is proposed.
The proposed method utilizes the universal mapping capability of Feed Forward Neural
Network to develop flight dynamic model of aircraft. Gauss-Newton method is used to obtain
values of aerodynamic parameters by minimizing a chosen error cost function. The method
has then been validated using flight data pertaining to longitudinal dynamics of aircraft. Proof
of match approach has been followed to verify the estimated model by the proposed method.
The results obtained using the proposed method have also been compared with those obtained
using wind tunnel tests, and Filter Error method. Unlike, most of the conventional methods,
the proposed method does not require a priori description of the model. It also bypasses the
requirement of solving the equations of motion. This feature may have special significance in
handling flight data of an unstable aircraft.

Keywords: Parameter estimation, Longitudinal aerodynamic, Neural Network, Gauss-Newton
method

Nomenclature

ax, az = accelerations component along x,z body axes
c
_

= mean aerodynamic cord length
Cm = rolling moment coefficient

CD , CL = drag and lift coefficient

CX , CZ = force coefficient along x,z body axes

e j = column vector with one in the jth row and
    zeros elsewhere

Feng = thrust force by aircraft engine

Ix, Iy, Iz = moments of inertia about x,y and z axes

Ixz = moment of inertia about xz plane
m = mass of the aircraft
p, q, r = roll, pitch and yaw rates

q
.

= pitch acceleration

q
_

= dynamic pressure

S = reference wing area
U(k) = neural network input vector at kth instant
V = true airspeed
W = weight matrix in neural network

Y (k) = neural network output vector at kth instant
Z (k) = measured output vector at kth instant

Greek Notation

α = angle-of-attack
θ = pitch angle
Θ = system parameters
δe = elevator deflection
σeng = engine inclination angle with aircraft body axes

Abbrevation

CG = Center of Gravity
ENCG = Distance between Center of Gravity and Engine

Introduction

Aircraft parameter estimation is probably the most
outstanding and illustrated example of the system identi-
fication methodology. The highly successful application
of system identification to flight vehicle has been possible
partly due to better measurement techniques and data
processing capabilities provided by the digital computers,
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partly due to the ingenuity of engineers in advantageously
using the developments in other fields such as estimation
and control theory, and partly due to fairly well-under-
stood basic physical principles leading to adequate aero-
dynamic modeling and design of appropriate flight test. In
the past the most widely used parameter estimation meth-
ods have been maximum likelihood method, equation
error method and output error method [1-4]. Application
of these methods requires a priori postulation of the model
[3, 4]. There are several approaches to model building. The
so called "white box" approach starts from the first prin-
ciple and a model is derived from basic physical laws that
govern the behavior of the system [5]. This approach
works for relatively simple systems, but its complexity
increases manifold for recently introduced highly aug-
mented, high performance aircraft. On the other hand, the
"black box" approach generates a model based entirely on
the input/output measurements of the system without try-
ing to model the internal physical mechanism of the sys-
tem [5]. Since we wish to estimate and validate such
models from measured input-output data, the Artificial
Neural Networks (ANNs) provide an alternative approach
to model building.

A new thrust area is emerging in the area of aircraft
aerodynamic modeling and parameter estimation: devel-
opment of techniques using (ANNs) for flight vehicle
identification. More recently, many scientists and engi-
neers have explored the potential of ANNs in diverse
fields such as signal processing, pattern recognition, air-
craft aerodynamic modeling, parameter estimation and
control [6]. Artificial neural networks have been used in
variety of applications because they are adaptive, they
learn through examples and they can provide excellent
functional approximation [6, 7]. Recently, ANNs model-
ing has been attempted for aircraft dynamics where aircraft
motion variables and control inputs are mapped to predict
the total aerodynamic coefficients [8-11]. In all these
papers, the emphasis has been on aerodynamic modeling
and estimation of aerodynamic coefficients using Feed
Forward Neural Networks (FFNNs). Raol and
Jategaonkar [12] have used the Recurrent Neural Net-
works (RNNs) to model aircraft aerodynamics in a way
that allows aircraft parameters to be estimated from flight
data. However, as the authors [10] pointed out, the RNNs
have only a limited scope of aircraft identification appli-
cation and it is the FFNNs which may prove to be more
flexible and thereby have a higher potential for future
application for aircraft identification and parameter esti-
mation.

Raisinghani, Ghosh et al. [13] using FFNN proposed
two new methods namely the Delta and the Zero method
for explicitly estimating aircraft parameters from flight
data. Both these methods do not require an a priori postu-
lation of the model and bypass the requirement of solving
equations of motion. It is suggested in Ref. [13], that both
these methods may be viewed as complimentary to the
existing methods for parameter estimation and they pre-
sent themselves as straight forward methods in which the
FFNN is trained for the given flight data, and the parame-
ters are estimated at one go [13]. Both the methods use
motion and control variables as the input file, while aero-
dynamic coefficients are presented as the output file for
training a Neural Network (NN). For the purpose of pa-
rameter estimation, the trained NN is presented with suit-
ably modified input file, and the corresponding predicted
output file of aerodynamic coefficients is obtained. Suit-
able interpretation and manipulation of such input-output
files yield the estimated values of the parameters. The
application of the Delta and the Zero method on the real
flight data has been demonstrated in Refs. [13-15]. Fur-
ther, the advantage of FFNN based methods in estimating
parameters from flight data of unstable aircraft was also
highlighted in Ref. [16].

Application of the Delta and the Zero method to com-
plete data yields N values, or in other words time histories,
for the derivative (parameter) to be extracted. These ex-
tracted values are plotted as histograms, which usually
show a near-normal distribution, from which the mean
representing the aerodynamic derivatives can be deter-
mined [4, 13]. Standard deviations are used as a measure
of confidence in each parameter estimate.

A natural effort to improve the confidence level in the
parameter estimate gets directed towards improving
FFNN training for modeling. There are several possible
techniques including the more advanced Levenberg-Mar-
quardt algorithm [17, 18]. There exist many types of feed
forward neural networks in the literature, for example,
Multilayer Perceptron (MLP), Radial Basis Function
(RBF) network [19, 20] etc. Selectively these could be
used to improve modeling using FFNN. However, due to
lack of systematic principle/guideline to select the tuning
parameters of FFNN, one may have to use his own judg-
ment in freezing the tuning parameters. The application of
various FFNN training algorithm generally shows very
fast decrease in cost function in the first few iterations, but
the stringent tolerances for terminations are reached even
after a few hundred iterations. This is attributed to the fact
that data is corrupted with noise, and after capturing the
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main system characteristics, the network tries to account
for random noise, leading to small oscillation in the cost
function [4].

To avoid such phenomena specifically for parameter
estimation Modified Delta method was proposed in Ref.
21. Accordingly the Delta method was improved (Modi-
fied Delta) following a different strategy in selecting in-
put-output vector rather than too much working on its
training aspects. The Modified Delta method is based on
interpreting the stability and control derivatives as fol-
lows: if we could obtain variation in the value of an
aerodynamic coefficient due to variation in only one of the
motion/control variables while the variation in other mo-
tion/control variables are zero, then the ratio of the vari-
ation of the aerodynamic coefficient to variation of the
non-zero motion/control variable will yield the corre-
sponding stability/control derivative [21]. The Modified
Delta method was applied on real flight data pertaining to
longitudinal and lateral-directional dynamics [21]. It was
further shown that the Modified Delta method yielded
parameter estimates with lesser standard deviation as com-
pared to parameter estimates obtained through the Delta
method. For all these methods standard deviations were
used as a measure of confidence in the parameter esti-
mates. Most of the conventional methods extract parame-
ter estimates by minimizing error cost function [1] for N
data points. The cost function is minimized by a numerical
optimization procedure. The Cramer-Rao bounds [1, 4]
are also obtained which are measures of confidence in each
parameter estimate. Strictly speaking, there is a lower
bound on the variance of each model parameter, but they
are commonly used as a measure of the relative quality of
identification rather than an absolute measure [5]. The
Delta and Modified Delta methods did not have the pro-
vision to estimate Cramer-Rao bounds along with the
estimates. Further, there was no explicit postulation of cost
function using motion variables to be minimized in an
optimal way to estimate parameters. This motivated us to
develop the proposed method.

In the present work, a new method using FFNN is
proposed for estimating aircraft parameters from flight
data. This method is christened the Neural Gauss Newton
(NGN) method. The reasons for the nomenclature will
become apparent once the method is described. A black-
box approach using neural networks is used for building
aircraft dynamic model. Parameter estimation technique
based on the Gauss-Newton optimization is then used to
determine the unknown aerodynamic parameters. The
proposed method (NGN method) is validated using real

flight data. Longitudinal flight data generated using test
aircraft [22], HANSA-3 have been used for validation of
the proposed method. The results show that the NGN
method has good potential as alternative tool for parameter
estimation from flight data. One may straightway obtain
the parameter estimates along with Cramer-Rao bound via
this method.

The verification of the identified model is a key step
in the identification process to assess the predictive capa-
bilities of the extracted model. One approach is to compare
the flight determined parameter estimates against the val-
ues obtained from wind tunnel tests or analytical predic-
tions. The other approach is known as the proof-of-match
[4]. It is a widely used approach which is based on the
comparison of the model predictions with the flight meas-
urements. To this end, the flight data omitted from the
identification studies is selected to ensure that the model
is not tuned to specific data record or input form. In this
study initially the verification of estimated model for
longitudinal case has been carried out by comparing the
flight extracted parameter estimates against the values
obtained from wind tunnel tests [22]. Finally, proof-of-
match exercise has also been carried out to verify the
extracted model. The capability of NGN method to carry
out proof-of-match exercise without solving equations of
motion is also an additional feature of this method.

Filter Error Method [4] (FEM) was also applied on
these flight data to estimate aerodynamic parameters. The
effect of the magnitude and the sign of the initial guess
values of the parameters on the estimates obtained using
NGN and FEM methods have also been studied. Various
runs were carried out with different sets of initial guess
values of the parameters. Runs were also carried out by
changing the signs and magnitudes of the initial guess
values of the parameters. It has been observed that the
NGN method has the capability of extracting the aerody-
namic parameters accurately even if the initial guess val-
ues are substantially off (both in magnitude and sign) from
the nominal values of aerodynamic parameters of the
chosen aircraft.

Parameter Estimation Algorithm

The block diagram of the proposed neural network
based parameter estimation is presented in Fig.1. The
proposed estimation method utilizes the universal func-
tion mapping capability of FFNN. The neural model rep-
resenting the dynamics of the aircraft in maneuver is used
for the purpose of parameter estimation. For estimating the
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numerical values of the parameters, Gauss-Newton
method [4] is used for updating the parameter by minimiz-
ing the error cost function. The error cost function repre-
sents the summation of error between measured and
predicted motion variables over the length of flight data
used in the estimation process. This fundamental under-
standing is exploited in the proposed NGN method for
estimating aircraft stability and control parameters from
flight data.

The estimation process starts with conducting of ex-
periment. Pre-decided maneuvers are attempted to excite
selected dynamics of the aircraft. On board data acquisi-
tion system is activated to acquire the flight data. This set
of flight data is referred to as measured flight data. Refer-
ring, Fig.1, it can be seen that the measured flight data
undergoes data compatibility check (for flight path recon-
struction) and all the variables are transferred to the center
of gravity (CG) of the aircraft for further analysis. It is
assumed here that during the maneuver, the variation in
CG is negligible. The approach followed to formulate the
NGN method using the measured flight data is described
next.

Let the measured flight data contain the time histories
at kth  instant of α (k) , θ (k) , q (k) , V (k) ,ax (k) , az (k).
Next step is to form input U (k) and output Z (k+1) vectors
to be used for building the aircraft dynamic model using
neural network architecture as given in Fig.2. The input

vector U (k)  and the output vector Z (k+1) required to
build flight dynamic model are defined next.

U (k) = ⎡
⎣
α (k)  θ (k)  q (k)  V (k)  CD (k)  CL (k)  Cm (k)⎤

⎦

T

(1)

where the values of CD (k) ,  CL (k) and Cm (k) at the
kth instant are obtained by plugging required values of
flight variables into Eqs.(2) - (6).

CD (k) = − CX (k) cos α (k) − CZ (k) sin α (k) (2)

where

CX (k) = ⎛⎜
⎝
max

CG (k) − Feng cos σeng
⎞
⎟
⎠
 / q
_
 (k) S (3)

CL (k) = CX (k) sin α (k) − CZ (k) cos α (k) (4)

CZ (k) = ⎛⎜
⎝
maz

CG (k) − Feng sin σeng
⎞
⎟
⎠
 / q
_
 (k) S (5)

Cm (k) = ⎡
⎣
Iy q
.
 (k) − Ixz 

⎛
⎝p

2 (k) − r2 (k)⎞⎠
− ⎛
⎝
Iz (k) − Ix (k)⎞⎠

 p (k) r (k)

− Feng cos σeng zENCG − Feng sin σeng yENCG] / (q
_
 (k) S c

_
)

(6)

The output vector Z (k+1) at (k+1)th instant required for
flight dynamic model is constructed in Eq. (7).

Z (k+1) = ⎡
⎣
α (k+1)  θ (k+1)  q (k+1)  V (k+1)  a

x
 (k+1)  a

z
 (k+1)⎤

⎦

 T

(7)

Fig.1 Schematic of NGN Method

Fig.2 Neural-Architecture for Flight Dynamic Modeling
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Once input vector U(k) and output vector Z(k+1) are
constructed using flight data, the next task is to develop
the flight dynamic model using FFNN (Fig. 2). The neural
network performance, that is its ability to accurately du-
plicate data used in training with adequate prediction
capability, depends on the network tuning parameters [4,
6]. The choice of tuning parameters depends on several
factors, such as number of inputs and outputs, the amount
of noise in data to be matched, and the complexity of the
input-output subspace. Several guidelines to tune the
FFNN are available in open literature [4]. Once neural
model is created, it can be used for prediction of output
variable Y(k+1) for any given input variable U(k). For
parameter estimation the input vector U(k) is recon-
structed by keeping the same initial conditions
(α (k) , θ (k) , q (k) , V (k)) used for training however,
CD (k) , CL (k) and Cm (k) are modified as per the chosen
aerodynamic model in the estimating algorithm. Let, the
chosen aerodynamic model for longitudinal parameter
estimation be given as in Eqs.(8) - 10).

CD = CD
0
 + CD

α

 α + CD
δ
e

 δe (8)

CL = CL
0
 + CL

α

 α + CL
q
 ( q
_
 c
_

 ⁄ 2 V ) + CL
δ
e

 δe (9)

Cm
 CG = Cm

0
 + Cm

α

 α + Cm
q
 ( q
_
 c
_

 ⁄ 2 V ) + Cm
δ
e

 δe (10)

To start the estimation algorithm it is necessary to
specify some suitable initial guess values of the unknown
parameters vector Θ , consisting of non-dimensional pa-
rameters used for the description of aerodynamic model
of CD , CL and Cm

 CG.

Θ = ⎡
⎢
⎣

C
D

0
  C

D
α

  C
D
δ
e

  C
L

0
  C

L
α

  C
L

q
  C

L
δ
e

  C
m

0
  C

m
α

  C
m

q
  Cm

δ
e

⎤
⎥
⎦

 T

(11)

The aim of the exercise is to estimate unknown pa-
rameter vector Θ consisting of aerodynamic parameters
namely,  CD0

 , CDα
 .... Cmq

  and Cmδe
.

For the longitudinal case let U(k) be selected as input
variable vector and Y(k+1) be selected as estimated output
vector. The estimated output vector can be represented as
given in Eq.(12).

Y (k+1) = ⎡
⎣
α (k+1)  θ (k+1)  q (k+1)  V (k+1)  a

x
 (k+1)  a

z
 (k+1)⎤

⎦
 T

(12)

At this point, it may be realized that during the estima-
tion process some a priori form of the aerodynamic model
has been assumed. The task is then to estimate the values
of aerodynamic parameters required to characterize the
model structure. In the next step the Gauss-Newton
method has been applied to update the parameter vector
Θ, as per Eq.(13).

Θi+1 = Θi + Δ Θ ,       and     Δ Θ = − F −1 G (13)

where, i is the iteration index, F and G and are the infor-
mation (Hessian) matrix and the gradient vector matrix [4]
respectively and are formulated in Eqs. (14) and (15).

F  =  ∑ 
k = 1

N

   ⎡⎢
⎣

∂Y (k)
∂ Θ

⎤
⎥
⎦

 T
   R −1 ⎡⎢

⎣

∂Y (k)
∂ Θ

⎤
⎥
⎦

(14)

G  =  −  ∑ 
k = 1

N

   ⎡⎢
⎣

∂Y (k)
∂ Θ

⎤
⎥
⎦

 T
   R −1 [Z (k) − Y (k)] (15)

where the definition of residual error (E(k)) and covari-
ance matrix of the residual [4] (R) between measured and
predicted output from neural model are presented in Eqs.
(16) and (17).

E (k) = (Z (k) − Y (k)) (16)

R = 1
N  ∑ 

k = 1

N

 [Z (k) − Y (k) ] [Z (k) − Y (k) ] T (17)

For a small perturbation δ Θ j in each of the unknown
variables of the parameter vector Θ, the perturbed re-
sponse variable Y pi (k) corresponding to the unperturbed
variables Yi (k) is computed. The approximate value of
corresponding sensitivity coefficient [4] is obtained
through Eq.(18).

⎡
⎢
⎣

∂Y pi (k)

∂ Θ

⎤
⎥
⎦ij

  =  
Y pi (k) − Yi (k)

∂ Θ j
(18)

where the perturbed response output variables Ypi (k) is
obtained by replacing parameter vector Θ with the
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Θ + δ Θj e
 j (where e j is a column vector with one in the

jth row and zeros elsewhere) in the input variable vector
of the already trained neural model. The parameters are
optimized by minimizing the cost function [4] (J (Θ , R))
as formulated in Eq.(19).

J (Θ ,R) = 12  ∑ 
k = 1

N

 [Z (k) − Y (k) ] T  R −1 [Z (k) − Y (k) ]

(19)

The estimation error covariance matrix [4] P is func-
tion of model parameters Θ , the data points being ana-
lyzed and the covariance matrix of the residuals R. The
expression to compute P is given in Eq.(20).

F  ≈  
⎧

⎨

⎩

⎪

⎪
∑ 

 k = 1

N

   ⎡⎢
⎣

∂Y (k)
∂ Θ

⎤
⎥
⎦

 T

   R −1 ⎡⎢
⎣

∂Y (k)
∂ Θ

⎤
⎥
⎦
 
⎫

⎬

⎭

⎪

⎪

 −1

(20)

The standard deviations of the parameter estimates or
the Cramer-Rao bounds [4] (σΘ i) are the diagonal ele-
ments of the estimation error covariance matrix P which
can be computed using Eq.(21).

σ Θi  =  √⎯⎯⎯ Pii (21)

Generation of Flight Data

The final test of any scheme for parameter estimation
must come from its successful demonstration on real flight
data. A flight data base for identification studies was
gathered from flight maneuvers with the test aircraft [22].
Typically, starting from trim flight conditions, the pilot
applied control input in an attempt to excite the chosen
dynamic modes. An onboard measurement system in-
stalled on the test aircraft provided measurements using
dedicated sensors of a large number of signals such as
aircraft motion variables, atmospheric conditions, control
surface position etc.  The measurements made in flight
were recorded onboard using suitable interface with stand-
ard laptop. The flight data had raw data for measured
V, α, β, p, q, r, ax , ay , az , φ, θ, ψ, H, δe , δa and  δr , and
the location of the measuring sensors. The measurement
of airspeed (V), angle of attack (α), angle of side slip (β)
were obtained with flight log mounted on a boom fixed to
the tip of the wing. The angular rates p, q and r were
obtained from the measurements available from the iner-
tial platform. The accelerations along the three body axes
were measured using an accelerometer triad located near

the CG of the aircraft. The angular rates p
.
 , q
.
 and r

.
 were

obtained by numerical differentiation of the correspond-
ing angular rates. The control surface deflections
(δe , δa , δr) were measured using potentiometer. The tem-
perature T was recorded using the standard cockpit outside
air temperature (OAT) gauge. Two sets of flight data
simulating short period longitudinal dynamics were gen-
erated at an altitude 6000 feet. The cruise speed at which
the perturbations were initiated was fixed at nearly 56 m/s.

The longitudinal flight data FLT1 (Fig.3) was gener-
ated using multi step elevator input (δemax

 = 7deg) having
total duration of 4s only. Another flight data set FLT2
(Fig.4) was generated with two similar looking double
pulse input having almost same magnitude. These two
pulses although look similar but has opposite elevator

Fig.3 Longitudinal Flight Data : FLT1

Fig.4 Longitudinal Flight Data : FLT2
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deflections to excite the longitudinal dynamics. The pro-
posed NGN method was applied on flight data FLT1 and
FLT2 to estimate longitudinal aerodynamic parameters.
Further these flight data were also used for model verifi-
cation using proof-of-match technique [4].

Application of the Proposed Method to Real Flight
Data

The flight data FLT1 and FLT2 were generated by
exciting the longitudinal dynamics of HANSA-3 test air-
craft. The longitudinal short period dynamics was excited
about a steady state trim at V = 56 m/s at a cruise altitude
of 6000ft. Day and time of the experiment was carefully
chosen to ensure fairly calm weather. The flight data
acquired were preprocessed and reconstructed after carry-
ing out exhaustive data compatibly check. Next, using
these flight data, the input and output vectors for neural
mapping were constructed. The input vector U(k)con-
sisted of time histories at kth instant of
α (k),  θ (k),  q (k),  V (k),  CD (k),  CL (k) and Cm (k)
whereas the output vector Z(k+1) had
α (k+1),  θ (k+1),  q (k+1),  V (k+1),  ax (k+1) and
az (k+1) as its elements. A typical FFNN structure used for
building flight dynamic model has already been presented
in Fig.2. Using U(k) as network input vector and Z(k) as
the output vector, the FFNN was trained as discussed
earlier. The FFNN used a log-sigmoid and linear transfer
function as the activation function and Levenberg-Mar-
quardt [17, 18] algorithm was used for updating the neural
network weights. The mean square error (MSE) criterion
or the number of iteration decided the termination of the
iterative process. A range of values of the network parame-
ters was tried to arrive at the final architecture of the FFNN
used for parameter estimation. The network parameters
varied were the number of hidden layers (1-3), the number
of hidden neurons in the hidden layers (2-15), the learning
rate (0.1-0.8), the momentum rate (0.1-0.8), and the num-
ber of iterations (100-2000).

The network parameters finally chosen gave a good
match between the true and the predicted values of the time
histories of the variables. The final FFNN used had one
hidden layer with ten neurons, the learning rate = 0.3.

The  NGN  method  has  then  been  used  to predict
the stability and control derivatives (parameters) of the
aircraft.  Filter  error method [4] (FEM) was also applied
on  flight  data  FLT1  and  FLT2  to  estimate longitudinal
aerodynamic  parameters. The values of the estimated

parameters namely CD0
,  CDα

,  CDδe
,  CL0

,  CLα,  CLδe
,

Cm0
,  Cmα

,  Cmq
 and Cmδe

along with their Cramer-Rao

bounds are presented in Table-1. Column 3 and 4 of
Table-1 present the values of the estimated parameters
obtained by applying NGN and FEM respectively on flight
data FLT1. Similarly, column 5 and 6 present parameter
estimates obtained by applying NGN and FEM on flight
data FLT2. Column 2 lists the numerical values of the
parameters obtained using wind tunnel tests [22]. It could
be seen in Table-1 that the values of the parameters ob-
tained using the NGN method are in fairly close agreement
with the values obtained using wind tunnel tests [22] and
FEM. It may also be seen that few aerodynamic parame-
ters namely CDδe

,  CLδe
,  CL0

,  Cm0
 are not well estimated.

Their values differ significantly, from the estimates ob-
tained through wind tunnel tests. This may be due to lack
of information content in the flight data (FLT1 and FLT2).
It may be mentioned here that despite the best effort of the
pilot, it was not possible to generate flight data pertaining
[4] to 3-2-1-1 type elevator input excitation.

It may be mentioned here that while applying FEM,
the estimated values showed significant dependence on
the choice of initial guess values of the parameters. In
contrast the values of the parameters estimated through the
NGN method did not depend either on the magnitude or
sign of the initial guess values of the parameters and choice
of initial process noise matrix. This is expected as the
propose NGN method bypasses the requirement of solving
equations of motion. To check for the robustness of the
NGN method with respect to choice of initial guess values
of the parameters and presence of measurement noise in
the flight data, the proposed algorithm was applied on
simulated flight data of unstable aircraft to estimate the
aerodynamic parameters. Although, not reported in this
paper, the proposed NGN method could successfully esti-
mate the values of all of the parameters with correct signs
and magnitudes.

Next, we carried out the model verification exercise
using flight data. Both the flight data FLT1 and FLT2 were
alternatively used for parameters estimation and model
verification using proof-of-match [4] procedure. In the
first step, parameters were estimated using flight data
FLT1. Next, using these estimates the estimated model
was constructed using Eq. (8), (9) and (10). This estimated
model along with the initial conditions and control input
used  in generating real flight data FLT2 were fed to the
already trained neural model (used for estimation) to pre-
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dict the estimated responses (Est-NGN-NN). These re-
sponses were then compared with the measured flight data
FLT2. A fairly close comparison among the measured and
estimated responses (Est-NGN-NN) is presented in Fig. 5.
Further, equations of motions pertaining to longitudinal
motion [4] were also solved using estimated values of
parameters obtained through the NGN method and FEM
to compute the estimated responses Est-NGN-EQM, Est-
FEM-EQM respectively corresponding to elevator used
input in FLT2. These were then compared with the flight
measured variables FLT2. A fairly close agreement was
observed as given in Fig.5. The estimated responses com-
puted with FEM and NGN estimates are indistinguishable
in the scale of the Fig.5. Further, to see how good the
estimated values are, we compared the estimated CD, CL
and Cm obtained by substituting the estimated values of
the parameters obtained using NGN method in the right

hand side of Eq.(8) - (10), with the flight derived CL, CD

and Cm being analyzed. Fig.6 presents comparison be-
tween, CL, CD and Cm  being analyzed and estimated
CL, CD and Cm. The estimated model of CL, CD and Cm

matches closely with the flight derived values of CL, CD

and Cm used in developing flight dynamic model using
neural network. Similar exercise was carried out wherein
parameters were estimated using flight data FLT2 and for
validation the estimated responses computed with the
initial conditions and the control input used in generating
FLT1 were compared with the real flight data FLT1. In
this case also excellent matching was observed as can be
seen from Fig.7. Further Fig.8 presents a comparison
between estimated model of CL, CD, Cm and flight derived
values of CL, CD, Cm (FLT2). In this case, also the match-

Table-1 : HANSA-3 Longitudinal Parameters

Parameter Wind Tunnel
Value

Estimated Parameters from Flight Data
FLT1 FLT2

NGN FEM NGN FEM
CD0 0.035 0.03645

(0.001284)*
0.036197
(0.00182)

0.0286
(0.0015)

0.03068
(0.00189)

CDα 0.0859 0.06091
(0.012539)

0.070236
(0.01828)

0.0374
(0.0149)

0.00717
(0.01834)

CDδe 0.0258 0.1515
(0.011986)

0.15304
0.01754)

0.1867
(0.01477)

0.16409
(0.01861)

CL0 0.354 0.229404
(0.004058)

0.22091
(0.00627)

0.2722
(0.00414)

0.25843
(0.00505)

CLα 4.711 4.8856
(0.030049)

4.7658
(0.05823)

4.7145
(0.03199)

4.6248
(0.04203)

CLq - 37.25858
(1.1391)

40.392
(1.9943)

37.1543
(0.3079)

42.1
(1.5673)

CLδe 0.2653 0.37609
(0.050703)

0.54365
(0.08072)

0.31503
(0.0497)

0.5879
(0.06029)

Cm0 0.5214 0.0905124
(0.003072)

0.083389
(0.00158)

0.089796
(0.00304)

0.08183
(0.00143)

Cmα -0.3372 -0.412282
(0.026244)

-0.40089
(0.01461)

-0.3777
(0.02237)

-0.3672
(0.01153)

Cmq - -8.79214
(0.98729)

-7.1649
(0.51061)

-9.4836
(0.92061)

-8.0692
(0.4426)

Cmδe -0.6941 -0.73488
(0.039717)

-0.65859
(0.02062)

-0.78167
(0.03595)

-0.69625
(0.01708)

* Values in parentheses indicate sample standard deviation (Cramer-Rao bound)
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ing is excellent confirming the validation of the proposed
NGN method.

Conclusion

A new method christened the Neural-Gauss-Newton
(NGN) method have been proposed for estimating aircraft
parameters from flight data using feed forward neural
networks. The proposed method advantageously uses the
universal function mapping characteristics of feed forward
neural network and optimization capability of Gauss-
Newton algorithm. The results obtained for real flight data
pertaining to longitudinal dynamics of Hansa-3 aircraft
have shown the success and the potential of the proposed
method. Since the proposed method does not require solv-
ing of equations of motion, it presents itself as straight
forward method in which the FFNN is trained to capture

the flight dynamic model of an aircraft, and the parameters
along with Cramer-Rao bounds are estimated in few itera-
tions. The NGN method, which bypasses the requirement
of solving the equation of motion, may have special sig-
nificance in handling flight data of unstable airplane.
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