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Abstract

Nonlinear behavior of Functionally Graded Material (FGM) skew plates under in-plane load
is investigated here using a shear deformable eight noded iso-parametric plate bending finite
element. The material is graded in the thickness direction according to a power-law distribu-
tion in terms of volume fractions of the constituents. The effective material properties are
estimated using Mori-Tanaka homogenization method. The nonlinear governing equations for
the FGM plate under in-plane load are solved by Newton-Raphson technique to obtain the
out-of-plane central deflection and in-plane displacement of the loaded edge. The existence of
bifurcation-type of buckling for FGM plates is examined for different boundary conditions,
constituent gradient index, and skew angle.

Keywords: FGM plate, Volume fraction index, in-plane load, Extension-bending coupling,
Bifurcation buckling, Secondary instability, Finite element.

Introduction

Functionally Graded Materials (FGM) with continu-
ously changing thermal and mechanical properties at the
microscopic level have recently received considerable
applications in thin walled structural components of space
vehicles, nuclear reactors, and other high thermal applica-
tion areas [1-2]. The structural components, i.e., beams,
plates and shells under such applications may be subjected
to in-plane compressive loads. Hence the knowledge of
stability characteristics of FGM plates and shells are of
much practical importance for the design of such struc-
tures. It is observed from the existing literature, that the
buckling and postbuckling characteristics of isotropic and
composite plates have received considerable attention of
the researchers. However, limited work has been focused
on the stability behavior of FGM plates.

The notable recent contributions pertaining to the
buckling analysis of rectangular FGM plates under in-
plane load are available in Refs. [3-7]. Najafizadeh and
Eslami [8] studied the buckling loads of circular FGM
plates under uniform radial compression. Sharjat et al. [9]
studied the buckling of imperfect rectangular FGM plates
under in-plane compressive load. It is observed that most
of the available work has been dealt with the evaluation of
the critical buckling loads of rectangular / circular FGM
plates using eigenvalue approach.

FGM plates are, in general, non-symmetric-through-
thickness as the material properties vary through the plate
thickness. The bifurcation type of instability is examined
by Leissa [10], Qatu and Leissa [11] for unsymmetric
cross-ply laminated plates and by Aydogdy [12] for FGM
plates subjected to in-plane load. It is observed that, the
clamped plates exhibit the bifurcation type of buckling and
can be studied based on eigenvalue analysis. For non-sym-
metric situation with boundary conditions other than
clamped one, nonlinear analysis is required because of the
bending behavior of plate due to the extension-bending
coupling. However, such problems for FGM plates under
mechanical load have been investigated employing eigen-
buckling analysis [3-9], which may not reveal the actual
behavior. Recently, Liew et al. [13] and Shen [14] have
discussed the existence of bifurcation type of instability
for the piezoelectric FGM plates under thermo-electro-
mechanical loading. It may be inferred from available
work that a comprehensive insight into the postbuckling
behavior of FGM plate structures based on an appropriate
model seems to be scarce in the literature. In view of these,
a nonlinear analysis including extension-bending cou-
pling is necessitated to understand the actual charac-
teristics of FGM plates. Furthermore, to the best of
author’s knowledge, the work on the postbuckling behav-
ior of FGM skew plates that find wide applications in the
different industries is not yet commonly available in the
literature.
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In the present work, an eight-noded shear flexible plate
bending element, developed based on field consistency
approach [15, 16], is used to analyze the nonlinear behav-
ior of FGM skew plates subjected to in-plane compressive
load. The material properties are graded in the thickness
direction according to a power-law distribution in terms
of volume fractions of the constituent materials. Mori-
Tanaka homogenization method is used to estimate the
effective material properties from the volume fractions
and the properties of the constituent materials. The non-
linear governing equations are solved using Newton-
Raphson technique to study the nonlinear behavior of
FGM skew plates. The influences of material gradient
index, thickness of plate, boundary condition and skew-
angle on the stability characteristics of functionally graded
skew plates are highlighted.

Formulation

The postbuckling behavior of a Functionally Graded
Material (FGM) skew plate of thickness h made by mixing
two distinct materials - ceramic and metal - is considered
here (Fig.1). The coordinates x,y are along the in-plane
directions, and z along the thickness direction. The top
surface (z = h/2) material is ceramic rich and the bottom
surface (z = -h/2) material is metal rich. The volume
fractions of ceramic (Vc) and metal (Vm) at any point of
the plate are expressed as

Vc (z) = ⎛⎜
⎝

2 z + h
2h

⎞
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 k

  and   Vm (z) = 1 − Vc (z) (1)

where, k is the volume fraction index (k ≥ 0). The effective
bulk modulus K and shear modulus G of the FGM evalu-
ated using the Mori Tanaka estimates [17,18] are as fol-
lows
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where,

f1  =  
Gm (9 Km + 8 Gm )

6 ( Km + 2 Gm )

Here, the subscripts m and c  refer the ceramic and
metal phases, respectively.  The effective values of
Youngs  modulus  E and Poissons ratio υ can be found
from

E = 9KG
3 K + G

  and υ = 3K − 2G
2 (3K + G)

Using Mindlin formulation, the displacements u, v, w
at a point (x, y, z) in the plate are expressed as functions of
mid-plane displacements u0, v0, w and two independent
rotations θx and θy of the normal to the mid-surface as

u(x, y, z) = u0 (x, y) + zθx (x, y)

v(x, y, z) = v0 (x, y) + zθy (x, y)

w(x, y, z) = w0 (x, y) (4)

von Karman’s assumptions for moderately large deforma-
tion allows Green’s strains to be written in terms of mid-
plane displacements for a plate as,

⎧
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The linear and nonlinear strain components at any point
can be expressed as

Fig.1a Geometry and Loading Condition of the Skew Plate

Fig.1b Gradation through Thickness
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where the subscript comma denotes the partial derivative
with respect to the spatial coordinate succeeding it.

The membrane stress resultants ⎧
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where the matrices [Aij] ,[Bij], and [Dij] (i, j = 1, 2, 6) are
the extensional, bending-extensional coupling and bend-
ing stiffness coefficients and are defined as 
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− h ⁄ 2

h ⁄ 2

 [Q
__

ij] (1, z, z2
) dz.

Similarly the transverse shear force ⎧
⎨
⎩Q

⎫
⎬
⎭ representing

the quantities ⎧⎨
⎩
Qxz , Qyz

⎫
⎬
⎭
 is related to the transverse shear

strains ⎧⎨
⎩
εs

⎫
⎬
⎭
 through the constitutive relations as

⎧
⎨
⎩Q

⎫
⎬
⎭ = [Ei j] 

⎧
⎨
⎩
εs

⎫
⎬
⎭
          i, j = 4, 5 (9)

where   Eij = ∫
−h ⁄ 2

h ⁄ 2
  ⎡⎢
⎣
Q
__

 ij
⎤
⎥
⎦
 κi κj dz

Here [Eij]  (i, j = 4, 5) are the transverse shear stiffness
coefficients, κi is the transverse shear correction factor
taken as √⎯⎯⎯⎯5 ⁄ 6  for non-uniform shear strain distribution
through the plate thickness. Q

__
 ij (z) are the stiffness coef-

ficients and are defined as
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The strain energy of the plate can be expressed in terms
of the field variables u0, v0, wo , θx, θy and their deriva-
tives. The potential energy due to external in-plane me-
chanical forces ⎛

⎝
Nxx

 o  , Nyy
 o  , Nxy

 o⎞
⎠
 can be evaluated in terms

of ⎛
⎝
wo , θx , θy⎞⎠

. Following standard procedure (minimi-
zation of total potential energy) the nonlinear finite ele-
ment equations may be written as [19]

[ K  +  KNL  +  λ KG ] ⎧⎨⎩δ ⎫⎬⎭  =  ⎧⎨⎩F ⎫⎬⎭ (11)

where [K] and [KNL] are the linear and nonlinear stiffness
matrices respectively, [KG] is the geometry stiffness ma-
trix due to unit in-plane compressive load, ⎧⎨⎩F ⎫⎬⎭ is the force
vector, ⎧⎨⎩δ ⎫⎬⎭ is the vector of the degrees of freedom associ-
ated to the displacement field in a finite element discreti-
zation. λ is the magnitude of the in-plane compressive
load.

In the present work, an eight-noded C° continuous
shear flexible plate bending element with five degrees of
freedom per node is used here to study the nonlinear
behavior of FGM skew plates. By employing field consis-
tency approach, as described in Prathap et al. [15] and
Ganapathi et al. [16], the element is found to be free from
locking syndrome and has good convergence properties.
For skew plate, the element matrices corresponding to
global axes are transformed to local axes using transfor-
mation rules [20].
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Solution Procedure

For the case of pure ceramic or metallic plate under
compressive in-plane load, the critical buckling load at
which Euler type of buckling occurs is found from solving
the following linear eigenvalue problem:

[ K  +  λ KG ] ⎧⎨⎩δ ⎫⎬⎭  =  ⎧⎨⎩0 ⎫⎬⎭ (12)

Here, the force vector ⎧⎨⎩F ⎫⎬⎭ is zero as the in-plane com-
pressive load is accounted for in the geometric stiffness
matrix. The lowest eigenvalue λ is the critical buckling
load. To get the post-buckling paths, the following non-
linear eigen value problem is solved iteratively [21] as
described below.

[ K  +  KNL  +  λ KG ] ⎧⎨⎩δ ⎫⎬⎭  =  ⎧⎨⎩0 ⎫⎬⎭ (13)

After the eigenvector is obtained from the linear buck-
ling analysis (Eq. 12), it is normalized and scaled up so
that the maximum displacement is equal to the desired
amplitude, say w/h = 0.2 (w is the maximum lateral
displacement, h is the thickness of the plate). The iterative
solution procedure for the non-linear analysis starts with
this initial vector. Based on this initial mode shape, the
non-linear stiffness matrix that depends on displacement
is formed. Subsequently, the updated eigenvalue and its
corresponding eigenvector are obtained from Eq.(13).
This eigenvector is further normalized, and scaled up by
the same amplitude (w/h), and the iterative procedure
adopted here continues till the convergence of buckling
load (eigenvalue).

In case of FGM plates bending-extension coupling
produces bending curvature under in-plane load. In such
cases, the nonlinear equilibrium Eq. (11) is written as

[ K  +  KNL   ] ⎧⎨⎩δ ⎫⎬⎭  =  ⎧⎨⎩F ⎫⎬⎭ (14)

where ⎧⎨⎩F ⎫⎬⎭ is the force vector consisting of in-plane com-
pressive loads ⎛

⎝
Nxx

 o   Nyy
 o   Nxy

 o⎞
⎠
.. Eq.(14) is solved by New-

ton-Raphson technique to get the force-displacement
curves.

Results and Discussion

Here, the study is focused on the nonlinear behavior of
functionally graded skew plates under in-plane load. The
boundary conditions considered here are
a)  Simply Supported :

u = w = θ
y
 = 0 on x = 0 ;     w = θ

y
 = 0 ;  u = constant on x = a

v = w = θ
x
 = 0 on y = 0 ;     w = θ

x
 = 0 ;  v = constant on y = b

b)  Clamped Support :

u = w = θ
x
 = θ

y
 = 0 on x = 0 ;     w = θ

x
 = θ

y
 = 0 ;  u = constant  on  x = a

v = w = θ
x
 = θ

y
 = 0 ; on  y = 0 ;     w = θ

x
 = θ

y
 = 0 ;  v = constant  on  x = b

c)  Two opposite edges simply supported and other two
free :

u = w = θ
y
 = 0 on x = 0 ;     w = θ

y
 = 0 ;  u = constant on x = a

u = constant and v = constant along the edges x = a and y
= b respectively is enforced during assembly of the finite
element equations.

In order to validate the efficacy of the present formu-
lation, two examples are considered for which solutions
are available in the literature. Linear buckling problem of
simply supported thin isotropic skew plates is solved with
different mesh sizes and the non-dimensional buckling
load  λcr (= a 2 λcr

 ⁄ π2 D) is reported in Table-1 along

Table-1 : Mesh Convergence of Mechanical Buckling Parameter for Thin Simply Supported
Isotropic Skew Plate

Skew Angle
Present

Wang [22]
4*4 6*6 8*8

0° 4.0055 4.0023 4.0006 4.0000

15° 4.4130 4.4020 4.4003 4.3937

30° 6.0454 5.9735 5.9725 5.8963

45° 10.5686 10.4526 10.3031 10.1026
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with those of Wang [22]. The critical buckling loads are
obtained from the eigenvalue analysis (Eq.12). It is ob-
served from Table-1 that the convergence is monotonic
and the present results compare well with the existing
solutions. Based on progressive mesh refinement, an 8 x
8 mesh is found to be adequate to model the skew plate for
this analysis. The present formulation is also tested by
studying the postbuckling equilibrium paths of a simply
supported isotropic square plate (a/h = 50). Postbuckling
paths are obtained through eigenvalue solution, as it is
applicable to the chosen problem and it is found to be in
excellent agreement with the solution of Sundaresan et al.
[23] in Table-2. Furthermore, it is observed from Table-2
that there is a drop in the postbuckling resistance at
w/h=1.0 and this is possibly due to change in stiffness
leading to the redistribution of mode shape at higher level
of compressive load. The redistributed mode shape looses
its symmetry and the maximum displacement shifts to-
wards one side of the plate as shown in Fig.2. This "mode
redistribution" or "sudden decrease of nonlinear stiffness"
is reported earlier by Singha et al. [21] while investigating
the thermal post-buckling behavior of composite plates.

Next, nonlinear behaviors of aluminum / alumina
FGM skew plates subjected to in-plane load are investi-
gated. The top surface of the plate is ceramic rich and the
bottom surface is metal rich. The Youngs modulus, for
alumina and aluminum are Ec = 380 GPa, Em = 70 GPa,
respectively and Poissons ratio (υ) 0.3 is for both ceramic
and metal. The variation of the volume fraction of ceramic
(Vc) in the thickness direction (z) for the functionally
graded plate is shown in Fig.3.

Postbuckling paths for a thin clamped FGM square
(a/h = 100, a/b = 1) plate under uni-axial compression are
presented in Fig.4 for various values of material gradient

Table-2 : Comparison of Buckling and Postbuck-
ling of Uniaxially Compressed Simply Supported

Isotropic Plate (a/h = 50, a/b = 1)

w/h
λ ⁄ λ cr

Present Sundaresan et al. [23]
0.2 1.0138 1.0137
0.4 1.0549 1.0547
0.6 1.1235 1.1233
0.8 1.2200 1.2198
1.0 1.2101 1.3445

λ cr 3.9930 4.0081

Fig.2 The Redistribution of Normalised Mode Shape
Contours of Simply Supported Isotropic Plate

(a/h = 50, a/b = 1) Before and After Secondary
Instability : (i) w/h = 0.8, (ii) w/h = 1.0

Fig.3 Variation of Volume Fraction of Ceramic Through the
Plate Thickness
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index (k). The clamped plate exhibits a bifurcation-type of
instability as the extension-bending coupling is neutral-
ized by the supports, and the postbuckling paths are ob-
tained through eigenvalue approach. It is observed from
the figure that after the bifurcation buckling, the postbuck-
ling load increases monotonically with the increase in
out-of-plane deformation. The postbuckling paths show a
drop near about w/h = 0.6, and it corresponds to secondary
instability and a redistribution of the mode shape. Further-
more, the load-displacement curves are found to be sym-
metric with respect to the vertical axis (mid-surface) for
all the values of material gradient index, i.e. irrespective
of the direction of the buckling deformation. It is also
observed that, with the increase in material gradient index
(k), the resistance of the plate reduces, i.e., for a specified
in-plane load the out-of-plane displacement increases, and
this is because of the stiffness reduction due to the more
metal inclusion in FGM plate.

Next,  the  nonlinear  behavior  of simply supported
thin  square  FGM plates (a/h = 100, a/b = 1) under
uni-axial  compression  is  investigated  in  Fig.5 for vari-
ous  values  of  material gradient index (k). The variations
of  non-dimensional out-of-plane central deflection (w/h)
and in-plane displacement of the loaded edge (u/a) with
non-dimensional uni-axial load
⎛
⎝λ

∗ = a 2 λ cr
 ⁄ π 2 Dc , Dc = Ec h

 3 ⁄ 12 (1 − υ 2)⎞⎠ are pre-
sented in Fig.5 (a) and Fig.5 (b) respectively. The isotropic

plates exhibit bifurcation buckling and the corresponding
postbuckling paths for pure ceramic and pure metal cases
are traced by the eigenvalue analysis. For FGM plates (k
= 0.2, 0.5, 1.0, 2.0, and 10.0) the non-linear governing
equation (14) is solved by Newton-Raphson technique to
include the effects of extension-bending coupling and the
corresponding load-displacement curves are shown by
solid lines in Fig.5 (a). It is observed that with the increase
in the compressive load, the FGM plate starts bending
towards the ceramic side of the plate. For comparison

Fig.4 Effect of Gradient Index, k on Postbuckling Paths of
Clamped Thin FGM Square Plate Under Uniaxial

Compression (a/h = 100, a/b = 1)

Fig.5a Effect of Gradient Index, k on Postbuckling Paths of
Simply Supported Thin FGM Square Plate Under

Uniaxial Compression (a/h = 100, a/b = 1)

Fig.5b End Shortening of Simply Supported Thin FGM
Square Plate Under Uniaxial Compression

(a/h = 100, a/b = 1)
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purpose, the problem is also solved based on eigenvalue
approach and the corresponding postbuckling paths are
highlighted in the figure by dotted lines. It is further
observed that the postbuckling curves are symmetric about
the Y-axis for pure ceramic (k = 0) and pure metal cases
(k = infinite), whereas, it looses its symmetry and is shifted
towards ceramic side for FGM plates (k = 0.2, 0.5, 1.0, 2.0,
and 10.0). This is attributed to the extension-bending
coupling and a shift in the neutral surface towards the high
stiff ceramic side of the plate. Furthermore, for the chosen
deflection, the compressive load evaluated based on non-
linear analysis is in general low compared to those of
buckling study and the nonlinear characteristics obtained
from two different approaches are quite different from
each other. The difference between solid curves (nonlinear
analysis) and dotted curves (eigenvalue analysis) clearly
indicate the effect of extension-bending coupling, which
was neglected in the earlier investigations [3-9]. Hence, it
can be opined that the bifurcation type of instability may
not take place in actual situation when the postbuckling
response curve is not symmetric. The in-plane displace-
ments (u/a) of the loaded edge are found to increase
monotonically with the increase in compressive edge load
in Fig.5 (b). However, the slopes of the end shortening
curves decrease with increase of compressive load, indi-
cating a softening behavior. This softening behavior at
higher load level is observed for all values of material
gradient index k.

Similar feature is also observed for simply supported
thick square plates, (a/h = 20, a/b = 1) under uni-axial
compression and thin square plates (a/h = 100, a/b = 1)
under bi-axial compression as shown in Fig.6 and 7 re-
spectively. Isotropic plates do exhibit bifurcation buck-
ling, whereas, FGM plates under compressive edge load
behaves like eccentrically loaded plate and start bending
towards ceramic side (radius of curvature being on the
metal side) with the increase in compressive edge load.

The postbuckling paths of thin square FGM plates (a/h
= 100, a/b = 1) with two opposite sides simply supported
and other two edges free are presented in Fig. 8 for
different values of material gradient index k. Here non-
linear load-displacement curves are obtained by Newton-
Raphson method and the variation of out-of-plane
displacement (w/h) and end shortening (u/a) with respect
to edge compression is shown in Figs.8 (a) and (b) respec-
tively. It is observed here that the load carrying capacity
of the FGM plate is relatively less compared to the case of
all sides simply supported boundary condition and the
slope of the load-displacement curves reduces and be-

comes almost flat with the increase in compressive load.
The same trend is observed for all the values of material
gradient index k.

Finally, the effect of skew angle on the postbuckling
paths of simply supported FGM skew plate under uni-axial
compression (Nx or Ny) is studied in Fig.9. The postbuck-
ling paths obtained for different skew angles are qualita-

Fig.6 Postbuckling Paths of Simply Supported Thick
FGM Square Plate Under Uniaxial Compression

(a/h = 20, a/b = 1)

Fig.7 Postbuckling Paths of Simply Supported Thin
FGM Square Plate Under Biaxial Compression

(a/h = 100, a/b = 1)
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tively similar with respect to the deflection. It is further
observed that, with the increase in skew angle, the out-of-
plane deflection (w/h) reduces for a specified compressive
load, i.e., the load carrying capacity increases with the
increase in skew angle. It is further observed that the
compressive load in the Y-direction (Ny) produces more
deflection compared to the compressive load in X-direc-
tion (Nx).

Conclusions

Nonlinear behavior of aluminum-alumina FGM skew
plates under in-plane compressive load is studied here
using an eight-noded shear flexible plate bending finite

element. The nonlinear governing equations are solved by
Newton-Raphson technique to study the nonlinear behav-
ior of FGM plates under edge compression. It is observed
that FGM plates with clamped boundary condition exhibit
bifurcation type of instability under in-plane load and the
corresponding postbuckling path can be obtained from
eigenvalue analysis. However, FGM plates with simply
supported boundary condition bend towards the ceramic
side of the plate due to the extension-bending coupling and
the corresponding postbuckling paths can be obtained
through nonlinear analysis. Further, the load carrying ca-
pacity of FGM plates increases with the increase in skew
angle.
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