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Abstract

The paper presents the nonlinear longitudinal aerodynamic modeling using Neural-Gauss-

Newton (NGN) method from real flight data of Hansa-3 aircraft. The NGN method is an

algorithm that utilizes Feed Forward Neural Network and Gauss-Newton optimization to

estimate the parameters and it does not require a priori postulation of mathematical model or

solution of equations of motion. The Kirchhoff’s quasi-steady stall model was used to include

the nonlinearity in the aerodynamic model used for parameter estimation. Before application

to the flight data at high angles of attack, the method was validated on flight data at moderate

angles of attack. The results obtained in terms of stall characteristics and aerodynamic

parameters were encouraging and reasonably accurate to establish NGN as a method for

modeling nonlinear aerodynamics using flight data at high angles of attack. The supremacy

of NGN was established by comparing the NGN estimates to that of Maximum Likelihood.

Nomenclature

a1 = Static stall characteristics parameter

ax , ay , az = Horizontal, lateral and vertical component

   of acceleration, m/s
2

A = Aspect ratio

b = Wing span, m

c = Mean aerodynamic chord, m

Cd , CL , = Drag, lift and pitching moment coefficients

Cm

CD
0

, CL
0

, = Drag, lift and moment coefficient at zero

Cm
0

   angle of attack

CX , CY , = Coefficients of longitudinal, lateral and

CZ    vertical force

g = Acceleration due to gravity, m/s
2

Feng = Engine thrust, N

Ix , Iy ,Iz = moment of inertia about x,y and z-axis, kg-m
2

Ixz = Product of inertial, kg-m
2

J = Cost function

k = General index

m = Aircraft mass, kg

N = Number of data points

p,q,r = Roll, pitch and yaw rates, rad/s

R = Measurement covariance matrix

S = Planform area, m
2

t = Time, s

T = Temperature, 
o
K

u,v,w = Longitudinal, lateral and vertical airspeed

   components, m/s

V = Airspeed, m/s

Xo = Steady-state flow separation point

Y = Estimated value

Z = Measured value

α = Angle of attack, rad

α* = Break point corresponding to X0=0.5, deg

β = Angle of sideslip, rad

δa , δe , = Aileron, elevator and rudder deflection, rad

δr

∆ = Bias, m

ϕ , θ , ψ = Angles of roll, pitch and yaw and rad

ρ = Density, kg/m
3

σeng = Angle between flight path and engine

   thrust line, deg

τ1 , τ2 = Time constants representing transient and

   hysteresis effects, sec
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Θ , ζ , ξ = Vectors of unknown parameters

Subscripts

ENCG = Distance of engine from center of gravity

Longitudinal Stability and Control Derivatives
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Introduction

Aircraft parameter estimation [1-10] is probably the

most outstanding and illustrated example of system iden-

tification methodology. The interest in dynamic behavior

of aircraft led to the formulation of the basic equations of

motion in the early 20
th

 century. The equations of motion

of flight vehicle are derived from Newtonian mechanics.

The mathematical models based on such equations of

motion assume that the forces and moments acting on the

vehicle can be synthesized. Out of the various forces and

moments acting on the vehicle, it is the determination of

aerodynamic forces that poses the most difficult challenge

till date. To a large extent, it is the adequacy and accuracy

of modeling of the aerodynamic forces and moments that

would determine the validity and utility of the mathemati-

cal models. Even today, the flight vehicle identification

problems have their main focus on determining the aero-

dynamic model for high performance and highly aug-

mented unstable aircraft. The model for such a vehicle

may have unknown structure or may be highly nonlinear

and affected by unsteady aerodynamics associated with

stall and erroneous air data measurements. At initial stages

of aircraft design, analytical methods provide the only

convenient way of estimating the aircraft parameters.

An extensive investigation in the field of unsteady

aerodynamics associated with aerodynamic stall at high

angles of attack using computational fluid dynamic meth-

ods, wind tunnel tests and semi-empirical methods is

going on in the recent times. Such models are used to

investigate complex flow phenomena analytically, but

presenting them in an analytical form suitable for parame-

ter estimation is a difficult task. An alternative approach

analytically describes [11-12] the flow separation includ-

ing stall hysteresis as a function of an internal state vari-

able. This approach retains the state-space formulation for

explicit identification and validation from flight data.

Greenwell [13] provides a review of unsteady aerody-

namic modeling whereas Refs [14 and15] present the

application of the same to flight data.

Aerodynamics pertaining to static attached flow con-

ditions can be adequately modeled using time-invariant

aerodynamic parameters and linear models. Output error

method and its variants are routinely used to extract aero-

dynamic model pertaining to stationary attached flow

conditions. But in case of detached flow conditions at high

angles of attack near stall, the aerodynamic forces and

moments become highly nonlinear and are associated with

noticeable unsteady effects. The application of output

error method and its variants [16-18] for parameter esti-

mation using flight data of air vehicle require postulation

of correct flight dynamic formulations having accurate

description of aerodynamic model. Since aerodynamic

model at high angles of attack near stall may not be exact,

the solution of equations of motion using in-exact aerody-

namic model may lead to inaccurate computation of re-

sponse of motion variables (modeling error). This

modeling error, if limited, can be treated as process noise.

Most of the estimation methods (output error method and

its variants) face difficulties in estimating aerodynamic

parameters from flight data having process noise.

More recently, investigations have been carried out to

explore the potential of Artificial Neural Networks [19-

25] for aircraft aerodynamic modeling and parameter es-

timation. Feed Forward Neural Network (FFNN) is found

to be the most promising for its application to aircraft

modeling. The main advantage and strength of FFNN

[19-25] modeling is in its ability to capture highly non-

linear complex phenomena for which the model postula-

tion with physical understanding is difficult. It has been

shown that FFNN can work as general function approxi-

mators and thereby are capable of approximating any

continuous function to any desired accuracy provided the

appropriate number of hidden layers and the neurons per

layer exist and that the activation function is continuous.

It has been shown [10] during the modeling of lift, drag

and pitching moment coefficients of the research aircraft

HFB-320 that the predictive capability of the trained

FFNN for flight data with atmospheric turbulence is found

to be good. The capability of FFNN to model highly

nonlinear complex phenomena and handle the process

noise in a better way has been utilized to estimate the

aerodynamic parameters from flight data at high angles of

attack in the presented work.
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In the present work, Neural Gauss-Newton method

(NGN), proposed by Peyada [24-25] has been used for

aerodynamic parameter estimation from real flight data of

Hansa-3 aircraft at high angles of attack near stall. The

NGN method uses input and output variables directly from

the measured real flight data for the task of parameter

estimation. Therefore, the method bypasses the solving of

equations of motion and hence, the involvement of any

inaccuracies due to unsteady effects, aerodynamic model

(not so exact) in computing estimated response.

The use of Kirchhoff’s quasi-steady stall model [10]

was made to include unsteady effects in the aerodynamic

model, thereby making the estimation model nonlinear.

The nonlinear longitudinal aerodynamic model used for

parameter estimation consisted of lift, drag and pitching

moment coefficients which included unsteady effects in

terms of flow separation point and hysteresis derivatives.

The flow separation point is a function of static stall

characteristics, break point and time constant.

The NGN method, first validated on flight data at

moderate angles of attack, was implemented on flight data

at high angles of attack. Encouraging results were obtained

in the form of longitudinal aerodynamic and stall charac-

teristic parameters. These estimates when compared with

Maximum Likelihood (ML) estimates proved the suprem-

acy of the NGN method.

In the presented work, in Section - Real Flight Data

Generation and Data Compatibility Check, explains the

procedure for generation and processing of real flight data

and highlights the conduct of flight tests using Hansa-3

aircraft. Data compatibility check has also been carried out

in the same section. Description regarding quasi-steady

stall modeling has been presented in Section - Quasi-

steady Stall Modeling. Linear and nonlinear aerodynamic

models used for parameter estimation are given in Section

- Aerodynamic Models used for parameter Estimation.

The procedure for application of NGN method has been

presented in Section - Neural-Gauss-Newton Method. Re-

sults have been presented and discussed in Section - Re-

sults and Discussion. Concluding remarks along with

scope for future work have been highlighted in the conclu-

sion section.

Real Flight Data Generation and Data Compatibility

Check

A flight test program using Hansa-3 (Fig.1), an in-

house fully instrumented research aircraft, was conducted

at Flight Laboratory of Indian Institute of Technology,

Kanpur to gather the real flight data with the help of data

acquisition system. The data was gathered corresponding

to 3-2-1-1, doublet and quasi-steady stall maneuver

(QSSM). The elevator from trim condition was deflected

by the pilot to execute 3-2-1-1, doublet and well designed

QSSM. However, the execution of 3-2-1-1 and doublet

maneuvers was not difficult as the control deflections were

limited to generate the response of motion variables at

moderate angles of attack. But, the execution of QSSM

was not an easy task as the control deflection involved high

angles of attack near stall. In spite of a lot of efforts, only

one set of flight data corresponding to QSSM, that reason-

ably represented the nonlinear characteristics, could be

generated.

 

An onboard measurement system installed on the test

aircraft provided the measurements of large number of

signals such as aircraft motion variables, atmospheric

conditions, control surface position etc. using dedicated

sensors. The measurements made in flight were recorded

on board at a sampling rate of 50 Hz using suitable

interface with standard Laptop. The flight data consisted

of raw data for measured V, α, β, p, q, r, ax, ay, az, ϕ, θ,

ψ, h, δa, δe and δr and the location of measuring sensors.

The measurements of V, α and β were obtained with flight

log mounted on a boom fixed to the tip of the wing.

The accelerations (ax , ay , az) along the three body

axes were measured using an accelerometer located near

the centre of gravity of the aircraft. The angular rates (p,

q and r) were obtained from the measurements available

from the inertial platform. The angular accelerations

(p
.
 , q

.
 and r

.
 ) were obtained by numerical differentiation

of the corresponding angular rates ( p, q and r). The control

surface deflections (δa , δe and δr ) were measured using

potentiometer. The temperature T was recorded using the

standard cockpit outside air temperature (OAT) gauze.

After establishing a typical cruise at desired altitude,

elevator was deflected to excite longitudinal dynamics of

Hansa-3 using 3-2-1-1, doublet and QSSM. Three real

flight data sets consisting of time histories of various

measured states and motion variables were generated.

Figs.(2-4)  present the flight data in terms of angle of

attack (α), pitch angle (θ), pitch rate (q), velocity (V) and

acceleration along x- and z-axis (ax and az). The variables

α, β, φ, θ, ψ and δe used in plots are in degrees whereas

the variables ax, and az are in m/s
2
. The variables V, h and

q are in m/s, m and deg/s, respectively.
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Figures 2 and 3 show that a negative elevator deflec-

tion (Trailing edge deflected upwards) from trim condition

leads to increase in α, θ, q, ax (a measure of drag) and az

(a measure of lift coefficient) whereas the trend of vari-

ation gets reversed when the deflection is in the opposite

direction. It can also be observed that there is a continuous

increase and decrease in V even at trim condition for

3-2-1-1 and doublet input respectively. This increase or

decrease may be due to not so-exact trim achieved during

the flight test. However, the velocity reduces as the eleva-

tor is deflected in negative direction (3-2-1-1 input) and

increases as the elevator is deflected in positive direction

(doublet input) from trim condition. Since the maneuver

was so quick, the trend of variation for the following

deflections was difficult to ascertain.

Data set corresponding to 3-2-1-1 control input (Fig.2)

was used to estimate aerodynamic parameters with a pur-

pose to validate NGN method at moderate angles of attack.

Doublet control input (Fig.3) was used to validate NGN

estimates obtained from data set corresponding to 3-2-1-1

input.

Figure 4 presents the state and motion variables corre-

sponding to quasi-steady stall maneuver. This data set was

used to model the nonlinear aerodynamics and estimate

parameters using NGN method and Kirchhoff’s quasi-

steady stall model.

Figure 4 shows that the maximum angle of attack

(αmax) of 18 degrees was achieved during the execution

of QSSM. A sudden change in the value of az, a measure

of lift (CL), confirms a drop in lift coefficient beyond αmax.

A sudden drop in CL beyond 18 degrees establishes the

occurrence of stall phenomena. The horizontal accelera-

tion (ax), representing the drag characteristics, shows that

the drag increases drastically during the stall. All other

variables also vary in a manner in which they should vary

during the execution of such maneuver. The pitch angle

(θ) dips drastically and even touches -18 degrees during

the maneuver. Similarly sudden change in pitch rate (q) is

observed near the stall region. The speed (V) of aircraft

keeps on increasing as long as the pitch angle keeps on

decreasing. The flight data confirms to the expectation of

the behavior of almost near stall. These data were used to

capture nonlinear aerodynamics near stall using NGN

method and Kirchhoff’s quasi-steady stall model. Table-1

presents the geometrical characteristics of Hansa-3 air-

craft used to carry out the study.

Data compatibility check [10] also referred as Flight

path reconstruction (FPR) was carried out to ensure that

the measurements used for subsequent aerodynamic

model identification were consistent and error free. The

scale factors, zero shifts and time delays present in the

measured flight variables are estimated using observation

equations and Maximum Likelihood (ML) algorithm. The

following set of unknown parameters was considered ade-

quate for reconstructing the longitudinal dynamics of

Hansa-3 aircraft for data compatibility check.

Θ = 

∆ a

x
  ∆ a

y
  ∆ a

z
  ∆ p  ∆ q  ∆ r  Kα  ∆ α



 T
(1)

Figure 5 presents the measured and computed response

of motion variables during compatibility check using

flight data pertaining to QSSM. Data compatibility check

was carried out on all three data sets (Table-2), but the

graphical result has been presented only for QSSM.

It was observed that the matching of measured and

estimated response was slightly better for the real flight

data corresponding to 3-2-1-1 and doublet input (not

shown) than in case of quasi-steady stall maneuver (Fig.5).

Ideally, the scale factors close to unity and negligible

biases suggest the high accuracy of the gathered flight

data. Table-2 presents the estimated scale factor and biases

for all the three sets of real flight data along with the values

of Cramer-Rao bounds. It can be observed from the esti-

mated values that the biases are negligible and scale factor

is close to unity for 3-2-1-1 and doublet input establishing

the high accuracy of estimation. In case of quasi-steady

stall maneuver, the biases are negligible but the scale

factor departs slightly from unity. This may be due to

distorted position of sensors during the execution of ma-

neuver leading to slightly inaccurate capturing of the real

flight data.

Table-1 : Geometrical Characteristics of Hansa-3

Aircraft

Component (Symbol) Value (Units)

Aircraft Mass (m) 750 (Kg)

Wing Planform Area (S) 12.47 (m
2
)

Aspect Ratio (A) 8.8

MAC (c) 1.21 (m)

Span (b) 10.47 (m)
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 Quasi-steady Stall Modeling

Aerodynamic models become highly nonlinear due to

dominant unsteady effects and flow separation at higher

angles of attack and aircrafts undergoing stall. For such a

case, a non-dimensional state X describes the instantane-

ous location of an idealized flow separation point along

the chord on the upper surface of the wing (0 ≤ X ≤ 1),

where X=1 and X=0 correspond to attached and fully

separated flow respectively. Kirchhoff’s flow separation

theory, for a symmetrical profile, can be used to model the

wing lift [10] as a function of angle of attack (α) and flow

separation point (X) with the help of Eq.2.

CL (α , X)  =  CLα
 




1 + √X
2





2

  α

where

C
L

α

  =  
(2πA)




2 + √ 4 + 

A
2
 β

 2

η
2

 (1 + 
tan

2
 Λ

β
2 )





   ∗  
S

exposed

S
ref

(2)

Reformulation of the Kirchhoff’s expression (Eq.2)

for non-symmetrical profile gives [10]:

X
o
  =   




 2  √[(C

L
 − C

L
o

) ⁄ (C
L

α

 α ) ]   −  1




2
(3)

The steady flow separation point (Xo) depends upon

the airfoil and wing configuration. Using Eq.(2) with

X=Xo, the function can be determined statically in wind

tunnel. Using the following approximation based on hy-

perbolic tangent [10]:

X
o
  =  

1

2
  




1 − tan  h  [ a

1
 (α − α

∗
) ] 


(4)

Where a1 defines the static stall characteristics of the

airfoil and α* the breakpoint corresponding to Xo = 0.5.

This approximation is better suited to parameter estima-

tion because it is a continuous function in its entire range

and has just two unknown parameters, namely a1 and α*.

The general representation [10] for unsteady flow

characterizing the transient and quasi-steady effects is

given by Eq.5.

τ
1
  

dX

dt
  +  X  =  

1

2
  




 1 − tan h [a

1
 (α − τ

2
 α
.
 − α

∗
 ) ] 


(5)

Although Eq.(5) provides a model characterizing both

the transient and quasi-steady stall characteristics in terms

of four parameters, namely  a1, α*, τ1 and τ2, estimation

of these parameters requires appropriate flight maneuvers

containing adequate information necessary to estimate

each parameter separately. Determination of both the time

constants ( τ1 and τ2) requires highly dynamic stall ma-

neuvers. Flight data with dynamic stall is more difficult

and risky to gather, whereas it is relatively easier to per-

form quasi-steady stall maneuver. This simplified ap-

proach accounting for quasi-steady stall characteristics is

considered adequate. Flight data with quasi-steady stall

would enable estimation of the hysteresis time constant τ2

only. Accordingly, the transient effects can be neglected

by setting τ1 equal to zero. This eliminates the need of

differential equation and Eq.(5) simplifies to [10]:

X  =  
1

2
  




 1 − tan h [a

1
 (α − τ

2
 α
.
 − α

∗
 ) ] 


(6)

Table-2 : Data Compatibility Check for Longitudinal Real Flight Data of Hansa-3 Aircraft

Factors →
Input ↓

∆ax

(m/s
2
)

∆ay

(m/s
2
)

∆az

(m/s
2
)

∆p

(rad/s)

∆q

(rad/s)

∆r

(rad/s)

Kα ∆α
(rad)

3-2-1 0.080

(0.080)

-0.026

(0.001)

0.001

(0.001)

-0.0007

(0.0)

-0.0009

(0.0)

0.003

(0.0)

1.02

(0.008)

-0.004

(0.0)

Doublet -0.181

(0.001)

0.172

(0.001)

0.014

(0.001)

0.001

(0.0)

-0.0009

(0.0)

-0.002

(0.0)

0.0983

(0.011)

0.001

(0.002)

QSSM -0.839

(0.002)

-0.045

(0.002)

-0.025

(0.0)

-0.0007

(0.0)

-0.0004

(0.0)

0.0048

(0.0)

0.627

(0.003)

0.119

(0.0)

( ) Cramer-Rao Bounds
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Aerodynamic Models used for Parameter Estimation

The following aerodynamic model was used for longi-

tudinal parameter estimation from flight data of Hansa-3

aircraft pertaining to 3-2-1-1 input using NGN and ML

methods.

C
D
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δ
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C
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m
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δ
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The aerodynamic model used for parameter estimation

from real flight data pertaining to quasi-steady stall ma-

neuver is given by Eqs.( 8.1-8.3).

C
L
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L
o

 + C
L

α
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(8.3)

where A, e, δe and q are the wing aspect ratio, Oswald

factor, elevator deflection and pitch rate respectively. Any

additional effects are accounted for through an empirical

correction term 
∂ CD

∂ X
. The parameter 

∂ Cm

∂ X
 models any

hysteresis effect in the pitching moment.

The aim was to estimate unknown parameter vectors

[ζ (Eq.9) and ξ (Eq.10)] from real flight data pertaining to

3-2-1-1 and QSSM, respectively.
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Table-3 presents the wind tunnel values of parameters

for Hansa-3 aircraft which were used as a reference to

compare the estimated results.

Neural-Gauss-Newton Method

The NGN method is an algorithm that utilizes the

FFNN and Gauss-Newton optimization to estimate the

aerodynamic parameters. The neural model has been used

to predict time histories of motion variables at (k+1)
th

instant given the measured initial conditions correspond-

ing to k
th

 instant (where k = 1 to n: n is the total number

of discrete data points). It has been observed that for all

practical purposes of parameter estimation, this approach

helps in building flight dynamic model (in restricted

sense) using measured input-output data and does not

require any priori postulation of mathematical model or

solving of equations of motion. Fig.6 presents the neural-

architecture for longitudinal flight dynamic model.

Let the measured flight data contains the time histories

of α (k) , θ (k) , q (k) ,V (k) , ax(k) , az(k) at k
th

 instant.

Next step is to form the input U(k) and the output Z(k+1)

vectors for building the aircraft dynamic model using

neural network architecture as given in Fig.6.

The input vector, U(k) required to build flight dynamic

model can be defined as:

U (k)  =  

α (k)  θ (k)  q (k)  V (k)  C

D
(k)  C

L
(k)  C

m
(k)


 T
(11)

The values of CD(k) , CL(k) and Cm(k) at the k
th

 instant

can be  obtained by plugging measurement variables

α (k) , ax (k) , az (k) and dynamic pressure q
_
 (k) along with

mass and inertia  characteristics in Eqs.(12.1-12.3).

Table-3 : Wind Tunnel Values of Aerodynamic

Parameters

Parameters Wind Tunnel Value

CDo 0.035

CDα 0.086

CDδ e 0.026

CLo 0.354

CLα 4.978

CLδ e 0.265

Cmo 0.052

Cmα -0.496

Cmδ e -1.008
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where CX (k) and CZ (k) can be computed using Eqs.(13.1-

13.2).

C
X
 (k)  =  ma

x

CG
 (k) ⁄ ( q

_
 (k) S ) (13.1)

C
Z
 (k)  =  ma

Z

CG
 (k) ⁄ ( q

_
 (k) S ) (13.2)

The output vector Z(k+1) at (k+1)
th

 instant required for

building flight dynamic model be constructed as per

Eq.(14).

Z (k+1) = 

α (k+1)  θ (k+1)  q (k+1)  V (k+1)  a

x
 (k+1)  a

z
 (k+1)



 T
(14)

Since the neural mapping uses measured motion vari-

ables, the performance and applicability of the method can

also be influenced by data quality. The selection of number

of iteration and number of neuron in hidden layer plays an

important role during neural modeling while handling

flight data with noise.

The algorithm of NGN method can be summarized

with the help of Fig.7 as follows:

a) As a first step, the measured flight data undergoes

data compatibly check. The measured motion vari-

ables are then transferred to center of gravity for

further use during estimation process (Block: 1-3 of

Fig.7).

b) The procedure followed for neural training using

FFNNs is explained in blocks 3-8.

c) Block 9 checks the convergence criteria for FFNNs

training. Once training is accomplished the trained

neural model is used for parameter estimation.

d) Once aerodynamic model is chosen, the already

trained neural model is used to calculate system

output Y(k). Input U(k) is constructed in block 10

using aerodynamic model fed through block 15. The

input U(k) is fed to block 5 to estimate system output

Y(k). 

e) The computed response Y(k) and ∂ Y (k) ⁄ ∂ Θ (from

block 11) (where Θ = ζ , ξ) are fed to block 12 and

13 to update aerodynamic parameter. The aerody-

namic model is updated using this new set of aerody-

namic parameters in block 15. The computation

through steps (d) to (e) is continued till the conver-

gence criterion (block 14) is achieved. Once conver-

gence is achieved, parameters are estimated along

with associated standard deviation.

Results and Discussion

First, the suitability of NGN method for parameter

estimation was ascertained through the application of the

method on the data pertaining to 3-2-1-1 control input. The

estimates obtained using NGN were compared with ML

estimates to establish the method. The estimates were also

validated using doublet control input. The established

NGN algorithm was, then, applied to the real flight data

gathered using QSSM for nonlinear aerodynamic model-

ing and parameter estimation.

Parameter Estimation from Real Flight

Data: 3-2-1-1 Input

The NGN algorithm was applied to real flight data

pertaining to 3-2-1-1 elevator control input with a motive

to establish NGN method for parameter estimation. The

aim was to estimate unknown parameter vector (ζ) con-

sisting of aerodynamic parameters namely, CDo
 CDα

 

CDδ e
  CLo

 CLα
 … … Cmδ e

as given in Eq.(9). The neural

model was developed using input vector U(k) and output

vector Z(k+1) for longitudinal parameter estimation. The

input vector U(k) was reconstructed by keeping the same

initial conditions α(k), θ(k), q(k), V(k) used for training,

however, CD (k) , CL (k) and Cm (k) corresponding to

identical control input, used for generating flight data,

were modified as per the aerodynamic model in the esti-

mating algorithm.

To start the estimation algorithm, it was necessary to

specify some suitable initial guess values of the unknown

parameters vector (ζ), consisting of non-dimensional pa-

rameters used for the description of aerodynamic model

of  CD (k) , CL (k) and Cm (k). Using the initial guess

values of the aerodynamic parameters, the coefficients
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CDe
 , CLe

 and Cme
 were computed. Next, the estimated

response of the aircraft Y(k+1) at (k+1)
th

 instant was

computed using input vector U(k) having same measured

flight data with  CD (k) , CL (k) and Cm (k) replaced by

CDe
 , CLe

 and Cme
. Let this estimated response be repre-

sented by output vector as given below.

Y (k+1) = 

α (k+1)  θ (k+1)  q (k+1)  V (k+1)  a

x
 (k+1)  a

z
 (k+1)



 T

Next, the residual error E(k) between measured flight

data Z(k+1) and neural output Y(k+1) was minimized to

estimate the unknown parameter vector (ζ). the residual

error E(k) and covariance matrix of the residual (R) were

computed using Eqs.(15-16).

E (k)  =  [Z (k) − Y (k)] (15)

R  =  
1

N
  ∑  

  k = 1

  N

[Z (k) − Y (k)]  [Z (k) − Y (k)]
 T

(16)

The cost function to be minimized using maximum

likelihood method to estimate ζ is given by Eq.(17).

J (ζ , R)  =  
1

2
  ∑  

  k = 1

  N

[Z (k) − Y (k)]
 T

 R
 −1

  [Z (k) − Y (k)]

(17)

The terms R, Z(k) and Y(k) are defined as measurement

covariance matrix, measured and estimated output at k
th

instant respectively.

Input vector U(k) consisted of time histories at k
th

instant of variables α (k) , θ (k) , q (k) ,V (k) , CD (k) ,

CL (k) and Cm (k)  whereas the output vector, Z(k+1) had

α(k+1), θ(k+1), q(k+1), V(k+1), ax(k+1), az(k+1) as its

elements. These two input-output vectors were used to

train the neural model shown in Fig.7.

The FFNN used a log-sigmoid and linear transfer

function as the activation function and Levenberg-Mar-

quardt algorithm was used for updating the neural network

weights. The mean square error criterion or the number of

iterations decided the termination of the iterative process.

A range of values of the network parameters was tried to

arrive at the final architecture of FFNN used for neural

modeling. The final FFNN structure consisted of one

hidden layer having five neurons with learning rate of 0.3

and the number of iterations equal to 4000. The network

parameters finally chosen gave a good match between the

true and the predicted values of the time histories of the

variables.

Figure 8 shows a well matched comparison of meas-

ured and trained response of various state and motion

variables obtained during the training process for flight

data of Hansa-3 aircraft pertaining to 3-2-1-1 control

input. After successful training of the neural model, the

parameters (Eq. 9) were estimated by minimizing the error

cost function J(ζ, R) using ML method following the

procedure explained in the previous section. Fig.9 presents

a well matched comparison of measured and estimated

response of various state and motion variables obtained

during the estimation process for flight data pertaining to

3-2-1-1 control input.

Table-4 presents the estimated aerodynamic parame-

ters from real flight data pertaining to 3-2-1-1 input using

NGN and maximum likelihood (ML) methods. It can be

observed that the estimated values of aerodynamic pa-

Table-4 : Parameter Estimates Using 3-2-1-1 Input

Derivatives ML NGN

CDo 0.076

(1.1e-4)

0.07

(2.9e-3)

CDα 0.083

(1.1e-2)

0.087

(2.1e-2)

CDδ e 0.010

(1.0e-2)

0.062

(2.1e-2)

CLo 0.068

(4.7e-3)

0.28

(5.6e-3)

CLα 5.813

(3.0e-2

5.528

(3.8e-2)

CLq 2.679

(1.5e+0)

23.84

(1.7e+0)

CLδ e 0.450

(5.6e-2)

1.233

(6.4e-2)

Cmo 0.094

(4.1e-4)

0.128

(8.1e-3)

Cmα -0.458

(1.9e-3)

-0.564

(5.5e-2)

Cmq -8.205

(1.3e-1)

-6.983

(2.5e+0)

Cmδ e -0.772

(5.2e-3)

-0.961

(9.4e-2)

( ) Cramer-Rao Bounds
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rameters using NGN method compares well with the val-

ues estimated using ML (Table-4) as well as with the wind

tunnel values (Table-3) except for the parameters

CDo
 , CLδ e

 and Cmo
which are slightly of higher magnitude.

It has been observed that the parameters CLq
 and CLδ e

are

weak derivatives and have negligible effect on aircraft

motion.

To gain more confidence on the method, the estimates

from NGN were used to carry out the validation process

using doublet input. The estimates obtained from real

flight data pertaining to 3-2-1-1 input were used to gener-

ate the response of various state and motion variables

using six degrees of freedom (DOF) model and doublet

elevator control input with initial conditions of the meas-

ured data. This generated response was compared with the

measured response of state and motion variables pertain-

ing to doublet elevator input.

Figure 10 presents a comparison between the meas-

ured response and the response for doublet control input

generated by using estimates obtained from 3-2-1-1 con-

trol input using ML and NGN methods. A reasonably good

match between the two responses validates NGN method

for the parameter estimation at low/moderate angles of

attack.

Nonlinear Aerodynamic Modeling Using Real

Flight Data: QSSM

Next, the real flight data at high angles of attack near

stall pertaining to a well designed quasi-steady stall ma-

neuver was used to model nonlinear aerodynamics. Aero-

dynamic model incorporated with unsteady effects at high

angles of attack using Kirchhoff’s quasi-steady stall model

was utilized to estimate the stall characteristics and aero-

dynamic parameters. Now, the aim was to estimate un-

known parameter vector ξ consisting of aerodynamic

parameters namely, a1  τ2  α∗
  CDo

  CDX
  CLo

 … … CmX

as given in Eq.(10). Both, ML and NGN methods were

applied to compatible flight data pertaining to QSSM for

the estimation of aerodynamic and stall characteristic pa-

rameters.

In a similar fashion as in the case of 3-2-1-1 control

input, the neural model was trained for the data pertaining

to QSSM by varying the network parameters one by one.

The final FFNN structure consisted of one hidden layer

with five neurons with learning rate of 0.35 and the num-

ber of iterations equal to 4000. Fig.11 shows a well

matched comparison of measured and trained response of

motion variables obtained during the training process us-

ing flight data pertaining to QSSM.

After successful training of the neural model, the pa-

rameter vector, ξ (Eq.10) was estimated by minimizing the

error cost function J(ξ, R) using ML method following the

procedure explained in the previous section.

Figure 12 presents a comparison of measured and

estimated response of various state and motion variables

obtained during the estimation process for flight data

pertaining to quasi-steady stall maneuver. It can be ob-

served that the matching for angle of attack (α), pitch rate

(q) and velocity (V) is quite good but the matching for

other variables (θ, ax and az) is slightly poor.

Table-5 presents the estimated aerodynamic parame-

ters and the parameters characterizing stall characteristics

from real flight data pertaining to quasi-steady stall ma-

neuver using NGN method. Table-5 also presents the

parameters for ATTAS and Hansa-3 aircraft using ML

method. It can be observed that the estimated values

(Table-5) of most of the aerodynamic parameters using

NGN method are in close agreement with the wind tunnel

values (Table-3) except for the parameters Cmo
 and Cmq

.

The value of the parameter Cmq
could not be estimated

correctly while the value of Cmo
was slightly of lower

magnitude. It can also be observed that most of the pa-

rameters characterizing stall characteristics (a1 , τ2 , and

CDX
 ) were having reasonable values as compared to AT-

TAS(10) aircraft results. However, the value of parameter

CmX
 could not be estimated correctly as it gave positive

value. Most of the parameters followed the trend in terms

of sign and value. The lacking in the accurate estimation

may be attributed to the not so good quality of data

gathered (due to distorted orientation of probes) during

flight testing.

Conclusion

The work presented the modeling of nonlinear aerody-

namic for Hansa-3 aircraft using NGN method. The use of

Kirchhoff’s quasi-steady stall model made to include the

unsteady effects in the aerodynamic model. First, NGN

method was applied to real flight data gathered at moderate

angles of attack using 3-2-1-1 elevator control input. Rea-

sonably good estimates established the NGN method for
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parameter estimation at moderate angles of attack (linear

models). Next, the method was successfully implemented

on the nonlinear data to model the nonlinear aerodynamics

of Hansa-3 aircraft using Kirchhoff’s quasi-steady stall

model. It was observed that most of the estimated parame-

ters followed the desired trend in terms of sign and mag-

nitude of estimated values. The departure between the

measured and estimated results in case of few parameters

may be attributed to the inappropriate attitude of the of

angle of attack and sideslip vanes during the dynamic

maneuver executed during the conduct of flight test. For

future scope of work, it is suggested that NGN method for

modeling nonlinear aerodynamics using Kirchhoff’s

quasi-steady stall model can be established in a more

authentic manner if sufficient real flight data of high

accuracy at high angles of attack near stall could be

generated.
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Fig.1 Plan Form of Hansa-3 Aircraft

204 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.3



Fig.2 Real Flight Data : 3-2-1-1 Elevator Control Input

Fig.3 Real Flight Data : Doublet Elevator Control Input

Fig.4 Real Flight Data : QSSM

Fig.5 Data Compatibility Check : QSSM
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Fig.6 Neural-architecture for Longitudinal Flight

Dynamic Model

Fig.7 Schematic of NGN Method

Fig.8 Measured and Trained Response Using NGN

Method : 3-2-1-1 Input

Fig.9 Measured and Estimated Response Using NGN

Method : 3-2-1-1 Input
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Fig.10 Parameter Estimation from 3-2-1-1 and

Validation Using Doublet Input

Fig.11 Measured and Trained Response Using

NGN Method : QSSM

Fig.12 Measured and Estimated Response Using

NGN Method : QSSM
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