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Abstract

Analytical solutions of Functionally Graded Material (FGM) shells with embedded magne-
tostrictive layers are presented in this study. These magnetostrictive layers are used for the
vibration suppression of the functionally graded shells. The higher order shear deformation
theory (HSDT) is employed to study the vibration suppression characteristics. The exact
solution for the FGM shell with simply supported boundary conditions is based on the Navier
solution procedure. Negative velocity feedback control is used. The parametric effect of the
location of the magnetostrictive layers, material properties, and control parameters on the
suppression effect are investigated in detail. Higher order shear deformation theory has
significant influence on prediction of vibration response of thick shells. Further, it is found
that (i) the shortest vibration suppression time is achieved by placing the actuating layers
farthest from the neutral plane (ii) the use of thinner smart material layers leads to better
vibration attenuation characteristics, and (iii) the vibration suppression time is longer for a
smaller value of the feedback control coefficient.
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Nomenclature vy, Vv, = Poissons ratios of material 1 and material 2

Agy, Ay = Magnetostrictive coefficients Vigm = Poissons ratio of FGM material 1 and

Bay, By Capy Cap material 2 . .

Vi = Poissons ratio of magnetostrictive material
o, B = positive real number K th
- surf . p( ) = density of k™ layer

0y, 0, = surface matrices P = density of magnetostrictive material
€1, €, €5, = total strains Gy, Gy, Gy, = Stress components
Y415 Oc, Og

00 0 _ . . 0y = damping frequency
€1, €, &, = strains from classical shell theor

172" 76 y a = length of the shell
1 b = breadth of the shell

L1 1 b, = coil width
€1, €, €5, = strains from HSDT ¢ (t) = control gain
%11 , vé ’ gi , sg ’ gi dA, , dA, =elementary areas across the thickness

. . of the shell
&1, &, ¢ = orthogonal curvilinear co-ordinates ds = square of the distance on the middle surface
% . | ds = square of the distance
= eigen value Kok L o ” ]
o = arbitrary constant €31, €35, = Magnetostrictive material properties
k
. . €xe, of kth layer

¢, 9, = rotational displacements 36 y
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91,9, =tangentsto &, &,

h = thickness of the shell

h, = thickness of magnetostrictive layer

K. = magnetostrictive coil constant

m, m;, = positive integers

m,, n

n. = number of soil turns

nm = number of constituent materials in the FGM

q = uniformly distributed load in the transverse
direction

r = position vector on the middle surface

re = coil radius

t, = normalised value of t

t = suppression time ratio

Uy, U,, Uz = displacements at the middle surface
Uy, Uy, U =displacements along &, &,, &
z = thickness co-ordinate

[]0 = contribution due to classical shell theory

[]'VI = contribution due to magnetostrictive layer

Ay By Dy = stiffness coefficients of FGM material

Eij Fijp Hj

C,,C, = constants which depend on thickness of the
shell

E;,E,  =Youngs modulus of material 1 and material 2

E]cgm = Youngs modulus of FGM material

En = Youngs modulus of magnetostrictive material

Gfgm = shear modulus of FGM material

H = magnetic field intensity

| = coil current intensity
I3, 15, I3, = moment of inertia
|

wlsle 7

I, Ji = terms which depend on inertia terms
i=1,5

L,, L, L4 = lame coefficients

M,, M,, M= moments applied on the edges of the shell
MM = moments due to the magnetostrictive layer
N = number of layers assumed for computation
N,, N,, Ng = forces applied on the edges of the shell
NM = forces due to the magnetostrictive layer
P_;, P;, =FGM material constants

Py, Py

Pfgrn = material property of the FGM material
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P = material properties of the FGM constituent
materials

Q, Q,  =shear forces applied on the edges of the shell

Ky, K, =shear forces

Q ) = stiffness coefficients of k™ la

i = yer

R = position vector of arbitrary point

Ry, R, =principal radii of curvature of the middle
surface of the shell

R, = positive real number

Sij Cyjs My = coefficients of stiffness, damping and mass
matrices

§ij = coefficients of solution matrix

T = temperature

V. = volume fraction of ceramic material

Vi = volume fraction of the constituents of FGM
material

Vin = volume fraction of metal material

Wiax = maximum amplitude in transverse direction

Z, = transverse location of magnetostrictive layer

in the FGM shell

Introduction

A number of materials have been used in sensor/actua-
tor applications. Piezoelectric materials, magnetostrictive
materials, shape memory alloys, and electro-rheological
fluids have all been integrated with structures to make
smart structures. Among these materials piezoelectric,
electrostrictive and magnetostrictive mat4erials have the
capability to serve as both sensors and actuators. Piezo-
electric materials exhibit a linear relationship between the
electric field and strains for low field values (up to
100V/mm). This relationship is nonlinear for large fields,
and the material exhibits hystersis (Uchino [1]). Further,
piezoelectric materials show dielectric aging and hence
lack reproducibility of strains, i.e. a drift from zero state
of strains is observed under cyclic field applications
(Cross and Jang [2]).

Crawley and Luis, [3] demonstrated the feasibility of
using piezoelectric actuators for free vibration reduction
reduction of a cantilever beam. Baz, et al. [4] investigated
vibration control using shape memory alloy and carried
out their characterization. Choi, et al. [5] demonstrated the
vibration reduction effects of electro rheological fluid
actuators in a composite beam. An ideal actuator, for
distributed embedded application, should have high en-
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ergy density, negligible weight, and point excitation with
a wide frequency bandwidth. Terfenol-D, a magnetostric-
tive material, has the characteristics of being able to pro-
duce strains up to 2000 and an energy density as high as
0.0025Jm™ in response to a magnetic field. Goodfriend
and Shoop [6] reviewed the material properties of Ter-
fenol-D with regard to its use in vibration isolation. An-
janappa and Bi [7] investigated the feasibility of using
embedded magnetostrictive mini actuators for smart struc-
ture applications, such as vibration suppression of beams.
Bryant et al. [8] presented experimental results of a mag-
netostrictive Terfonol-D rod used in dual capacity of pas-
sive structural support element and an active vibration
control actuator. Krishna Murty et al. [9] proposed mag-
netostrictive actuators that take advantage of ease with
which the actuators can be embedded, and the use of
remotely excitation capability of magnetostrictive particle
as new actuators for smart structures. This work is limited
to flexible beam theory.

Friedmann et al. [10] used magnetostrictive material
Terfenol-D in high speed helicopter rotors and studied the
vibration reduction characteristics. Vibration and shape
control of flexible structures is achieved with the help of
actuators and a control law. Response of FGM shells are
also studied by He, et al. [11], Woo and Meguid [12],
Pradhan, et al. [13] and Loy, et al. [14]. Many modern
techniques have been developed in recent years to meet
the challenge of designing controllers that suit the function
under required conditions. There have been a number of
studies on vibration control of flexible structures using
magnetostrictive materials (Anjanappa and Bi, [7]; Bryant
et al. [8]; Krishna Murty et al. [9]; Giurgiutiu et al. [15];
Pradhan et al. [16]; Pradhan [17]). Higher order shear
deformation theory is discussed in Reddy [18], Reddy [19]
and Reddy [20]. Although there have been important
research efforts devoted to characterizing the properties of
Terfelon-D material, fundamental information about vari-
ation in elasto-magnetic material properties in a thick
functionally graded shell is not available.

In the present study vibration control of functionally
graded shells are studied using the higher order shear
deformation theory. Exact solutions are developed for
simply supported doubly curved functionally graded
shells with magnetostrictive layers. This closed form so-
lution exists for FGM shells where the coefficients Aqg,
A261 BlG' BZG' Dlﬁ, D26' A45 are equal to zero. A Simple
negative velocity feedback control is used to actively
control the dynamic response of the structure through a
closed loop control. Numerical results of vibration sup-
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pression effect for various locations of the magnetostric-
tive layers, material properties, and control parameters are
presented. Influence of HSDT on the thick shells is also
investigated.

Theoretical Formulation
Kinematic Description

Figure 1a contains a differential element of a doubly
curved shell element with constant curvatures along two
coordinate directions ( &g, &,), where (&g, &,, €) denote

the orthogonal curvilinear coordinates such that &; and
&, curves are the lines of curvature on the middle surface

(€ =0). Thus, the doubly curved shell panel considered
here, the lines of the principal radii of curvature of the
middle surface are denoted by R; and R,. The position
vector of a point (&g, &, 0) on the middle surface is
denoted by r, and the position of an arbitrary point
(&, &, €) is denoted by R (Fig.1b). The square of the
distance ds between points (&, &5, 0) and

(& +dEy, &y +dEy, 0) is determined by

@)’ =dr.dr=af [@d&) +a5dE)’ )

in which dr=g,d¢&, +g,d¢&, the vectors g; and g,

9= %_) are tangent to the &, and &, coordinate lines and
1

a4 and a., are the surface metrics

2 2
o =9,.9, o,=0,.0, @)

The square of the distance dS between ( &, &,, §) and
(& +d&q, &y +dEy, €+ dC) is given by

@)’ =dR.dR = Lo@dg ) + L5, +L5d0)]
3)

. . O0R OR R
in which dR = 5_?';J dg, + {Ej dg,+ [6_&;] d¢ and

L;, L, and L, are the Lame’ coefficients

L, = q [1+Rij, L, = a, [1+R£], L=1 @

1 2
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(C)

Fig.1 Geometry and Stress Resultants of Doubly Curved Shell

Displacement Field

We assume the following form of the displacement
field that his consistent with the assumptions of a thick
shell theory as explained in Reddy and Liu [21].
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_ Ll
Oy (B Ep 6D = Uy (6 Ep D)
1

6u3

oy 08

FCh, (B EpD-C,C |0y +

_ LZ
U2 (‘217 ézl Cl t) = OL_Z U2 (E.:li ézv t)
ou

3
Oy Gy 506 0t ;%2
U (6 8, 61 = Uy (B, 6 D) ®)
where
1 11 .
a—xi=;ia—§i(l=l,2) (6)

(U, Uy, Uy) are the displacements of a point (&, &,, €)
along the (&, &,, €) coordinates; and (uy, Uy, Uy) are dis-
placements of a point (§,, &,, 0) on the mid surface of the

shell. Substituting equation (5) into strain-displacement
relations for the third-order shear deformation theory, one
obtains

c 0 1 2
1 & & &
0 1 3|2
€ =
2 &, +C &, +C €y
. 0 1 2
6| |% & &6
’ 0 1
Y 2 1Y
=i ™
5| |75 Vg
where
Mo
0 ox, R 3
€ 1 1
20~ R "3
5 6x2 )
€
6x1 6x2
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8X1 8X2 o, 0 0 0 o Qes 6 €6
, ] ] (11)
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~ T 1 : th
X, ox where Q.. are the stiffnesses of k™' layer.
2 1 1 1
€
1 2
2l _¢ % 0 Uy and
2 1 X + (3X2
2 2
& ? 2 _ Efgm Vfgm fgm _
op, 0p, Oy Qu 2 Qp 7 Qp=0Qy
o Tt t2 1- fgm 1= Vigm
Ox; 0%, OX0X, Y Y
ouy Qu = Qg5 = Qg = Cpgny (12)
YO (|)2 + 07
g = 6u2 The superscript k on Q;; as well as on the engineering
i3 b, + _3 constants E¢gp, , vigm and so on are omitted for brevity. In
! Xy equation (11), H denotes the intensity of the magnetic
field. H is applied normal to the thickness of the shell. g;;
ou, are the magnetostrictive material coefficients.
A
1= =6 au ®
5 o, +— Feedback Control
1 ox,

and (¢, ¢,) are rotations of a transverse normal line about
the &, and &, coordinate axes, respectively.

b= by = ©)

C =—,C =3C (10)

Constitutive Relations

Suppose that the shell is composed of N functionally
graded layers. The stress-strain relations of the K layer,
whether structural layer or actuating/sensing layer, in the
shell coordinate system are given as

A velocity feedback control is used in the present
study. In the velocity feedback control, the magnetic field
intensity H is expressed in terms of coil current

(& & D)

HEp 8yt = k 1(ELEpnD (13)
Current 1 is related to the transverse velocity U, compo-
nent as

ou

1&gt = c—7 (14)

where k. is the magnetic coil constant and is related to the
number of coil turns n coil width b, and coil radius r,

K = ———— (15)
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The parameter c(t) is known as the control gain.

Equations of Motion

The governing equations of motion is being derived
from the dynamic version of the principle of virtual work
for the laminated shell. By integrating the displacement
gradients by parts and setting the coefficients of
duy, du,, dus, 3¢ and d¢, to zero separately (the moment
terms in the first two equations are omitted) we get

2 2 2

oN, ) oN, _I_au1 +I_Za¢1 _I_Sau3
-1

ox; 0, ot ot ot

2 2 2
N, N, _du, _ 3, _ du,
—_—t+ — = \]1 2 + \]2 2 — Y3 2
X 0%, ot ot ot

2 2 2
oQ, an__C [6Kl 8K2}+-c oP, P, P,
2 1

—+2
6X1 axz axl axz 8xi axl aXz 6x§
NN, A 39, dy,
———R—+q:I3 > +1s R >
1 2 axlat 6x16t 6x28t
634)2 82u3 2 64u3 64u3
+Jg R N 2 N A B R W,
8x2 ot ot axl ot ax2 ot
oM oM oP oP
6x1 8x6_Q1+CZK1_C1671 676
1 2 1 2
2 2 3
_ou 0 0 ug
=h—5 +la—5 - 1s 2
ot ot 8x1 ot
oM oM oP oP
6x6 ax2 Qo Gk =6 a—x6 8_x2
1 2 1 2
S, %, _
=, — +J,— - (16)
2 ot dx, ot
where
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N
k 3 .
NMPY =Y [ o® e cddei=126
k=1 Ck-1
N
k 2
QuK) =Y [ ol achic
k=1 ck-1
N gk
Kk 2
QK=Y [ o @ehde (17)
k=1 Ck-1
L=1+50
1
- 2
I =1+ =1
171 TR 2
T, =1 +iI—C I +=1
2= 587 R 3 1(4 ) 5)
- 1 1
J2 =|3+R—2|3—Cl(|4+R—2|5)
1
l,=C. (1, +—I
3 1(4 R, 5)
J3:c1(|4+Ri|5)
2
,=1,-C 2l,-C,1l)
=1,
L =C@1,-C, 1)
5=k (18)

The inertia terms are defined as

Kk

e

G(k) (1,(;,8;2,§3,Q4,C6)dc

N
(g 11 1) = >
k=1 Ck-1

=~

(19)
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where p(k) being the density of the K layer and N is the
number of layers in the laminate.

Shell Constitutive Equation

Using equations (7) and (11) in equation (17) we get
the following constitutive equations for the actuator em-
bedded shell

N 0 N
N oe e (][N
MIL_tE o1 [F1| L - M
P (B2 [P
(20)
M
Q) rm won 47 [Q o
= 1(
® | o m\| e
where the shell stiffness coefficients
(Aij, Bij, Dij, Eij, Fij, Hij fori,j =1, 2, 6) are defined by
N Ck+1
—(k 2 .3 6
(B, D, EuFuH) =Y | Q) e’ et chae
k=1 ¢k
(22)
and the shell stiffness coefficients (Aij, Dij» Fij fori,j =4,
5) are defined by
N Ck+1
—(K 2
A0 F) = [ QY ac’chae =45 (9
k=1 ¢k

The magnetostrictive stress resultants {NiM}, { MiM} and
{KiM} for (i = 1, 2) are defined as
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A31 8u3
- ot 24
{A32Jl ot (24)
{MlM} N Ck+ Jlégl}
=2 I | p GH, dg
M —
{MZ} k:ml‘mz“' ck { 2 ¢
N ck+1 (g
1| ou
3
= kg z I (5.1 ECdC
k=m_m_ .. Ck 32
12
|
{lef ou,
~ Byl [ ot (25)
1732
‘{KlM} N Ck+1 {@1}
3
M = Z .[ {E } (; HC dc
{KZ } k:mlymz. Qk 3
N e {§31} ou
3.3
k=m_m_... ¢k 2
12
|
{ 31 au3
- T 26
[Cyy [ ot (26)
where
A = ck _ (k) 230212
ij_cc z eij (gk+1_€k)‘ i=3; =1,
k=m ,m
12
1 _( 2 2.
BiJZECkC z eij (Ck+1_ck)’ i=3;j=12
k:mlmz..
1 G N
Cij:ZCkc Z eij (Ck+1_ck)1 i=3;j=12
k=ml,m2 .
(27)

and my, m,, ... denote the layer numbers of the magne-
tostrictive (or any actuating/sensing) layers.
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Functionally Graded Material

FGM are basically particles in matrix composite ma-
terials, which are made by mixing two or more different
materials. Most of the FGM are bending used in high
temperature environment and their material properties are
temperature dependent. A typical material property P; can
be expressed as a function of the environment temperature
T(K)

-1 2 3
Po=Py(P T +1+P T+P, T +P,T)

where, Py, P_;, P, P, and P, are temperature coefficients

and are unique to the constituent materials. The material
properties Pfng of FGM are controlled by volume fractions

V;, and individual material properties P, of the constituent
materials.

nm
Pfgm = Z PiVii (29)
i=1

In the present case two different materials are particle
mixed to form the FGM material. A schematic of FGM
shell with magnetostrictive layers is shown in Figs.2a and
2b. In Fig.2a, it is shown that two layers of magnetostric-
tive materials are placed symmetrically away from the
neutral plane of the FGM shell. A zoomed view of section
AA of Fig.2a is shown in Fig.2b. Assuming there are no
defects like voids and foreign particles in the FGM mate-
rial, sum of the volume fractions of all the constituent
materials is unity.

> V=1 (30)

For example, metal and ceramic materials (nm = 2) are
mixed to form the FGM shell. Average volume fraction of
the metal and ceramic materials are calculated by simple
integration of the distribution over a domain. Different
problems of interest have different expressions of volume
fractions. For bending problems of plates and shells the
volume fractions of metal (V,,) and ceramic (V) materials
are defined as

h ZZR”
="z

Vo=1-V_ (31)
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Fig.2 (a) Functionally Graded Shell with Embedded Magne-
tostrictive layers with an (b) Exploded Section View

where z is the thickness co-ordinate
(-h/2 £z = < h/2)and h represents the shell thick-
ness. R, is the power law exponent (0 < R < o). Here

volume fraction of the metal material (V,,) varies from 100
percent to O percent as z varies from -h/2 to h/2. Similarly
volume fraction of the ceramic material (V) varies from
0 percent to 100 percent as z varies from -h/2 to h/2. for
various R, values the average volume fractions of metal
(V) and ceramic (V) materials are depicted in Figs.3a
and 3b, respectively. The Young’s modulus and Poissons
ratio of a FGM shell made up of two different materials
are expressed as

+E (32)

2z+h) "
Vigm = (vz—vl)[ oh J + v, (33)
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E; E> and Eggy, are the Youngs moduli of the constitu-
ent materials and the FGM material, respectively. v v,

and vggmare the Poissons ratios of the constituent materials

and the FGM material, respectively. From these equations
(32, 33), it is interesting to note that at z = -h/2, FGM
material properties are same as those of material 1. While
at z = h/2, FGM material properties are same as those of
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material 2. Thus, the FGM material properties very
smoothly across thickness, from material 1 at the inner
surface to material 2 at the outer surface.

Two different FGM materials are considered for the
present study viz. FGM1 and FGM2. FGM1 consists of
Stainless Steel and Nickel materials (Fig.2a). FGM2 con-
sists of Nickel and Aluminum Oxide materials. Material
properties of Stainless Steel, Nickel materials and Alumi-
num Oxide are listed in Table-1. In the present work, we
have used the room temperature to calculate the material
properties of the FGM shells.

Analytical Solution

The equations of motion (16) can be expressed in terms
of displacements (U4, u,, U, ¢1, ¢,) by substituting for the
force and moment resultants from Egs.(20, 21). For homo-

geneous shells, the equations of motion (16) take the
following form

o o o P o’y &
u u u u u u
A 21+i—3 +A 2 +i—3 + 22+ L
1 R ox 12|ox ox. R ox 16 OX_ oX
axl 1%% 172 27" 3X1 1772

2 2 2 3
a4, a4, 29, 04 o9, du,

B2t Bua g 6] .2 " oxox | C1u| 273
ox, ¥ % ox; ¥ 0% ox,  0x

0% PX 0% 0% PX

u u

-CE, 23 -C,E, 2 L2 3
aﬁaﬁ 6ﬁag

_ . . _ Ju, o'y, du, 4 ou,
Fig.3 Volume Fract!ons of Metal and Ceramic Materials - A31 ot + A16 3% ox R i Al T2t R ™
in the FGM Shell 1 197 19% 6x2 297
Table-1 : Material Properties of FGM Constituent Materials
Stainless Steel Nickel Aluminium Oxide
Density (kg m™ 7900 8909 3970
Coefficient E (Nm2) v E (Nm2) v E (Nm™2) v
Po 201.04E09 0.3262 244.27E09 0.2882 349.55E09 0.260
P 0 0 0 0 0 0
P1 3.079E-04 -2.002E-04 -1.371E-03 1.133E-04 -3.853E-04 0
P2 -6.534E-07 3.797E-07 1.214E-06 0 4.027E-07 0
P3 0 0 -3.681E-10 0 -1.673E-10 0
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Exact solution for the partial differential equations
(16) on arbitrary domains and for general boundary con-
ditions is not possible. However, for simply supported
shells whose projection in the x4, Xo-plane is a rectangle
and for a lamination scheme of antisymmetric cross-ply or
symmetric cross-ply type equations (16) are solved ex-
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actly. The Navier solution exists if the following
stiffnesses are zero (Reddy 1984a).

Ag=B,=D, =E =F =H =0 (i=1,2) and
Ays=Dy5=Fy5=0 (39)

The simply-supported boundary conditions for the
higher order shear deformation theory (HSDT) are as-
sumed to be

u, (xl, 0,t)=0, u (X1’ b, t) =0, u, O, X, t)=0, u, (a, X t)=0

u, (xl, 0,t)=0, u, (xz, b, t) =0, u, O, X, t)=0, u, (a, X t)=0

Nl (0, X t) =0, Nl (a, X 1) =0, N2 (X1’ 0,t)=0, N2 (X1’ b,t)=0
M1 (0, X t) =0, M1 (a, X t) =0, M2 (xl, 0,t)=0, M2 (X1’ b,t)=0
Pl (0, X, t)=0, P1 (a, X t) =0, P2 (xl, 0,t)=0, P2 (X1’ b,t)=0

¢1(xl, 0,t)=0, ¢1(xl, b, t)=0, ¢2(O, xz,t)=0, ¢2(a,xz, t)=0

(40)

where a and b denote the lengths along x; and x, direc-
tions, respectively. The boundary conditions in equation
(40) are satisfied by the following expansions (Reddy
1997).

o0 o0

U (X X, ) = > > U (1) cos ax, sinBx,
n=1m=1
o0 o0

Uy (X, Xos ) = D D7 V() sinax, sinBx,
n=1m=1

Uy (X, X ) = D0 D W (1) sinax, sinpx,
n=1m=1
o0 o0

0 (XX ) = > DT X () cos X, sinBx,
n=1m=1
o0 o0

0y (X X 1) = D0 DY () sinox, cos Bx,
n=1m=1

(41)
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Substituting equation (41) into equation (38) we obtain

Siio S Sz Sy Sgs U
mn
Sy S Sy Su Sy v
Sy S; Sz Sy Sy W
X
S Sip Si S Sss Ym n
Ss1 Ss2 Ss3 S5y Ses mn
0 0 Cc, 0 0] ,
o 0 c. o o |.m
23 Vr_n o
+(0 0 Cy 00 Winn
0 0 C, 0 0 ém n
mn
0 O C53 0 O
My 0 My My, 0 U
0 M, M, 0 M o 0
2 Vo3 25| |V o 0
+| Mg Mg Mgy My, My Winn b = 2Qn
X 0
n O My M, 0 Y.’.“ n 0
mn
0 Mg, Mgz 0 Mg
} } (42)
Where Sij, Cij and Mij (i, j = 1,2, ... 5) are written in

equations (48-50) in the appendix. For vibration control,
we assume g = 0 and seek solution of the ordinary differ-
ential equations in equation (42) in the form

At At At
U ®=Ug V. (H=Ve W (H=Wge,

t

A At
X () =Xg Y (0)=VYge (43)

Substituting equation (43) into equation (42), for a non-
trivial solution we obtain the result
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[Si1 S12 Siz S Sis]
S;i S22 S;z Su Sy
Ss1 S:2 Ss3 Sm S| g (44)

Sit Si;z Siz Sus Sus

Ss1 Ssp Ss3 Ssa Sss

where
§ij=sij+mij+x2 M, (for i,j=1,2,3,45) (45)

This equation gives five sets of eigenvalues. The low-
est one corresponds to the transverse motion. The eigen-
value can be writtenas A = — a. + i wg, so that the damped

motion is given by

nmx nmX
sin
b

(46)

1
—e
@y

2

-at . .
Ug (X, X, t) = sin o, t sin

In arriving at the last solution, the following boundary
conditions are used:

Uy (X, X, 0)=0, 0 (X, X, 0)=0, u,(x;,x,,0)=0,
U, (x;, X5, 0)=0, Uy (X3, X, 0)=0, 03 (X %, 0)=1,
0y (X} %5 0)=0, ) (X, %, 00 =0, ¢, (x;, X, 0)=0,
$, (X}, %5, 0) =0 (47)

Results and Discussions

In the present work a theoretical analysis of a function-
ally graded material (FGM) shell, consisting of layers of
magnetostrictive material. The magnetostrictive material
is assumed to impart vibration control through a velocity
dependent feedback law that controls the current to the
magnetic coils energizing the magnetostrictive material.
Higher order shear deformation theory (HSDT) is used in
the derivation. Numerical simulation results are presented.
Effect of various parameters on the vibration suppression
time is studied. These parameters are (a) location of mag-
netostrictive layer from the neutral plane (b) thickness of
magnetostrictive layer (c) higher modes of vibration (d)
material properties of magnetostrictive material and (e)
material properties of FGM material. Further influence of
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Table-2a : Various Coefficients of FGM1 (Stainless Steel-Nickel) Shell

Zm F11 Hi1 D11 F12 Hi2 D12 F22 H22 D22
m Nm?® Nm® Nm Nm® Nm® Nm Nm?® Nm® Nm
(ah | @® | @® | @ | @ | @’ | @ = @0% @10
0.0095 0.624 0.375 0.124 0.178 0.103 0.366 0.624 0.375 0.124
0.0085 0.752 0.534 0.132 0.222 0.157 0.393 0.752 0.534 0.132
0.0075 0.843 0.622 0.139 0.253 0.187 0.417 0.843 0.622 0.139
0.0065 0.904 0.668 0.145 0.274 0.203 0.438 0.904 0.668 0.145
0.0055 0.942 0.689 0.150 0.287 0.210 0.456 0.942 0.689 0.150
0.0045 0.964 0.698 0.155 0.294 0.213 0.471 0.964 0.698 0.155
0.0035 0.976 0.701 0.158 0.298 0.214 0.483 0.976 0.701 0.158
0.0025 0.981 0.702 0.161 0.300 0.215 0.492 0.981 0.702 0.161
0.0015 0.983 0.702 0.163 0.301 0.215 0.498 0.983 0.702 0.163
0.0005 0.983 0.702 0.164 0.301 0.215 0.501 0.983 0.702 0.164

Table-2b : Various Coefficients of FGM1 (Stainless Steel-Nickel) Shell

Zm Fe6 Hee De6 Fas Dag Asq Fss Dss

m Nm® Nm° Nm Nm® Nm® Nm? Nm® Nm
(10%) (1073 (10% (10%) (10%) (109 (10%) (10%

0095 0.223 0.136 0.438 0.223 0.438 0.156 0.223 0.438
0085 0.265 0.188 0.464 0.265 0.464 0.156 0.265 0.464
0075 0.295 0.217 0.487 0.295 0.487 0.156 0.295 0.487
0065 0.315 0.232 0.507 0.315 0.507 0.156 0.315 0.507
0055 0.328 0.239 0.525 0.328 0.525 0.156 0.328 0.525
0045 0.335 0.242 0.539 0.335 0.539 0.156 0.335 0.539
0035 0.339 0.243 0.551 0.339 0.551 0.156 0.339 0.551
0025 0.340 0.244 0.559 0.340 0.559 0.156 0.340 0.559
0015 0.341 0.244 0.565 0.341 0.565 0.156 0.341 0.565
0005 0.341 0.244 0.568 0.341 0.568 0.156 0.341 0.568

higher order shear deformation shell theory on vibration
response of thick shells are investigated.

The FGM shell is considered to be of 1m x 1m dimen-
sion. Two different types of FGM shells (FGM1 and
FGM2) are considered for the present study. FGM1 is
made up of Stainless Steel and Nickel. FGM2 is made up
of Nickel and Aluminum Oxide. For most of the present
work FGML1 is employed. IN the present work if it is not
mentioned FGM2 means it is FGML1 shell. The material

properties of constituent materials, Stainless Steel, Nickel
and Aluminum Oxide of the FGM shells are listed in
Table-1. Two layers of magnetostrictive materials are
placed symmetrically away from the neutral plane of the
FGM shell. These layers are shown in Fig.2a. A zoomed
view of section AA of Fig.2a is shown in Fig.2b. Magne-
tostrictive material properties are considered to be

-3 4
E =265GPa, v =00, p =9250 ky—m , c(t)r =10
(48)
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Table-2c : Various Coefficients of FGM1 (Stainless Steel-Nickel) Shell
Zm C1 C2 I1 I3 Is 17 -Ba1 -Ca1
m m2 m? kg|m'2 kg kgm2 kgm4

(104 (10°) (109 (102 (105 (101 (10%) (102

0095 0.333 0.100 0.849 0.288 0.175 0.126 0.841 0.761
0085 0.333 0.100 0.849 0.288 0.175 0.126 0.752 0.545
0075 0.333 0.100 0.849 0.285 0.171 0.126 0.664 0.375
0065 0.333 0.100 0.849 0.284 0.170 0.121 0.575 0.244
0055 0.333 0.100 0.849 0.283 0.169 0.120 0.487 0.148
0045 0.333 0.100 0.849 0.282 0.168 0.120 0.398 0.082
0035 0.333 0.100 0.849 0.281 0.168 0.120 0.310 0.039
0025 0.333 0.100 0.849 0.281 0.168 0.120 0.221 0.014
0015 0.333 0.100 0.849 0.280 0.168 0.120 0.133 0.003
0005 0.333 0.100 0.849 0.280 0.168 0.120 0.044 0.000

Table-3a : Various Coefficients of FGM2 (Nickel-Aluminum Oxide) Shell

Zm Fi1 Hi1 D11 F12 Hi2 D12 F22 H22 D22
m Nm® Nm® Nm Nm® Nm® Nm Nm® Nm° Nm
(10% 103 (10% (10%) 103 (10°) (10h (103 (105
0.0095 0.801 0.478 0.161 0.207 0.119 0.426 0.801 0.478 0.161
0.0085 0.974 0.691 0.171 0.258 0.182 0.457 0.974 0.691 0.171
0.0075 1.095 0.809 0.181 0.294 0.218 0.485 1.095 0.809 0.181
0.0065 1.177 0.871 0.189 0.318 0.236 0.509 1.177 0.871 0.189
0.0055 1.228 0.899 0.196 0.333 0.244 0.530 1.228 0.899 0.196
0.0045 1.258 0.911 0.202 0.342 0.248 0.547 1.258 0.911 0.202
0.0035 1.274 0.915 0.207 0.347 0.249 0.561 1.274 0.915 0.207
0.0025 1.281 0.916 0.210 0.349 0.249 0.572 1.281 0.916 0.210
0.0015 1.283 0.916 0.212 0.349 0.249 0.579 1.283 0.916 0.212
0.0005 1.283 0.916 0.214 0.349 0.249 0.583 1.283 0.916 0.214

The numerical values of various materials and struc-

tural constants based on different locations of magne-
tostrictive layers and FGM material properties are listed
in Tables-2 and 3. In this study, the vibration suppression
time (t;) is defined as the time required to reduce the
uncontrolled vibration amplitude to one-tenth of its initial
amplitude. In the present numerical simulations the sup-
pression time, thickness of the magnetostrictive layer are
denoted by tg and hm, respectively. Z, represents the
distance between the location of the magnetostrictive layer
and the neutral plane.

Effect of Magnetostrictive Layer Location

Effect of location of magnetostrictive layers on the
vibration suppression is studied. Fig.2a and 2b show the
location of magnetostrictive layers in the FGM shells.
Transverse deflection versus time for Z,, of 3.5mm,
5.5mm 7.5mm and 9.5mm are plotted in Figs.4a, 4b, 4c
and 4d respectively. For Z,, equals to 9.5mm, Fig.4d
shows shortest suppression time (t5) of 0.22 Seconds and
for Z,, equals to 3.5mm, Fig.4a shows longest suppression
time (t)) of 0.59 Seconds. From Figs. 4a-4d, shortest
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Table-3b : Various Coefficients of FGM2 (Nickel-Aluminum Oxide) Shell
Zm Fee Hee Des Fas4 D44 Asq Fss Dss
m Nm® Nm° Nm Nm® Nm° Nm?t Nm® Nm
(10% 103 (10°) (10% (10%) (101 (10% (10°)
0.0095 0.297 0.179 0.591 0.297 0.591 0.212 0.297 0.591
0.0085 0.358 0.254 0.628 0.358 0.628 0.212 0.358 0.628
0.0075 0.401 0.296 0.661 0.401 0.661 0.212 0.401 0.661
0.0065 0.429 0.317 0.690 0.429 0.690 0.212 0.429 0.690
0.0055 0.447 0.327 0.715 0.447 0.715 0.212 0.447 0.715
0.0045 0.458 0.332 0.736 0.458 0.736 0.212 0.458 0.736
0.0035 0.463 0.333 0.752 0.463 0.752 0.212 0.463 0.752
0.0025 0.466 0.333 0.765 0.466 0.765 0.212 0.466 0.765
0.0015 0.467 0.333 0.773 0.467 0.773 0.212 0.467 0.773
0.0005 0.467 0.333 0.777 0.467 0.777 0.212 0.467 0.777
Table-3c : Various Coefficients of FGM2 (Nickel-Aluminum Oxide) Shell
Zm C1 C2 I1 I3 Is 17 -Ba1 -Ca1
m m? m? kg|m'2 kg kgm2 kgm4
(104 (10°) (109 (102 (105 (1019 (10%) (102
0.0095 0.333 0.100 0.672 0.240 0.152 0.113 0.841 0.761
0.0085 0.333 0.100 0.672 0.235 0.144 0.103 0.752 0.545
0.0075 0.333 0.100 0.672 0.230 0.138 0.097 0.664 0.375
0.0065 0.333 0.100 0.672 0.226 0.134 0.094 0.575 0.244
0.0055 0.333 0.100 0.672 0.223 0.131 0.093 0.487 0.148
0.0045 0.333 0.100 0.672 0.220 0.130 0.092 0.398 0.082
0.0035 0.333 0.100 0.672 0.218 0.129 0.092 0.310 0.039
0.0025 0.333 0.100 0.672 0.216 0.129 0.092 0.221 0.014
0.0015 0.333 0.100 0.672 0.215 0.129 0.092 0.133 0.003
0.0005 0.333 0.100 0.672 0.215 0.129 0.092 0.044 0.000

suppression time is observed when the magnetostrictive
layers are placed farther away from the neutral plane.
Similarly, from Figs. 4a-4d one can observe that, longest
suppression time occurs when the magnetostrictive layer
is located closest to the neutral plane of the shell.

Influence of the position of the magnetostrictive layers
in the thickness direction from the neutral plane of the shell
on the damping of the vibration response are listed in
Tables-4 to 8. In Tables-4 to 7, the value of A ; increases

when the magnetostrictive layer is located father away
from the neutral axis, indicating faster vibration suppres-
sion. This is due to larger bending moment created by
actuating force in the magnetostrictive layers. Further, it
is observed that the damping parameter B4, and associated
normalized value of By, increases as the magnetostrictive
layers are moved away from the neutral plane. These
damping parameters are listed in Tables-2 and 3. These
results qualitatively with the results presented in Pradhan
etal. [16], He et al. [11] and Pradhan [17].
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Table-4 : Suppression Time Ratio for Various
Locations of Magnetostrictive Layers in FGM1

Table-6 : Suppression Time Ratio for Various
Locations of Magnetostrictive Layers in FGM1

Shells hm = 1mm Shells hm = 3mm
Zm - Mo + o Wmax ts th Zm -2 + o Wax ts th
(m) (mm) | (S) (m) (mm) | (S)

0.0095 | 9.760 | 778.57 | 1.259 | 0.244 | 0.055

0.0085 | 25.702 | 562.13 | 1.636 | 0.092 | 0.179

0.0085 | 8.731 | 803.46 | 1.222 | 0.268 | 0.060

0.0075 | 22.669 | 661.05 | 1.401 | 0.107 | 0.208

0.0075 | 7.702 | 828.79 | 1.184 | 0.305 | 0.068

0.0065 | 19.637 | 723.98 | 1.318 | 0.124 | 0.241

0.0065 | 6.673 | 848.44 | 1.154 | 0.350 | 0.078

0.0055 | 16.607 | 772,53 | 1.252 | 0.140 | 0.272

0.0055 | 5.645 | 862.38 | 1.113 | 0.410 | 0.092

0.0045 | 13.578 | 812.17 | 1.196 | 0.172 | 0.334

0.0045 | 4.618 | 873.60 | 1.116 | 0.505 | 0.113

0.0035 | 10.553 | 839.35 | 1.160 | 0.226 | 0.439

0.0035 | 3.591 |886.54 | 1.097 | 0.647 | 0.145

0.0025 | 7.533 | 858.58 | 1.135 | 0.309 | 0.600

0.0025 | 2.564 | 893.99 | 1.087 | 0.909 | 0.204

0.0015 | 1.612 | 89253 | 1.091 | 1.501 | 0.336

0.0005 | 0.537 | 894.26 | 1.093 | 4.463 | 1.000

Table-5 : Suppression Time Ratio for Various
Locations of Magnetostrictive Layers in FGM1
Shells hm =2mm

Zm ) +od | Wmax ts tn

(m) (mm) | (S)

0.009 | 18.317 | 663.54 | 1.410 | 0.135 | 0.118

0.008 | 16.276 | 726.37 | 1.323 | 0.141 | 0.124

0.007 | 14.237 | 770.68 | 1.261 | 0.165 | 0.145

0.006 | 12.198 | 806.39 | 1.209 | 0.197 | 0.173
0.005 | 10.161 | 834.35 | 1.169 | 0.228 | 0.200
0.004 | 8.125 | 854.79 | 1.140 | 0.288 | 0.252
0.003 | 6.091 | 87541 | 1.110 | 0.382 | 0.335
0.002 | 4.060 | 881.40 | 1.105 | 0.579 | 0.507

0.001 | 2.029 | 893.62 | 1.089 | 0.141 | 1.000

Effect of Thickness of Magnetostrictive Layers

Vibration response of FGM1 shell for various thick-
nesses of the magnetostrictive layers (hm) are studied.
Magnetostrictive damping coefficients and natural fre-
guencies for various thicknesses of magnetostrictive lay-
ers are listed in Tables-4 to 7. These damping coefficients
and natural frequencie4s refer to the first mode of vibra-
tion. Vibration suppression time for hm equals to 1mm,
2mm, 3mm and 5m are listed in Tables-4, 5, 6 and 7
respectively. These computations are carried out for vari-
ous locations (Z,,,) of the magnetostrictive layers and listed

0.0015 | 4517 | 881.17 | 1.104 | 0.515 | 1.000

in Tables-4 to 7. The vibration suppression time (t;) versus
the distance of magnetostrictive layers from the neutral
plane (Z,,) for various thicknesses of magnetostrictive
layers (hy,) are plotted in Fig.5. This includes magne-
tostrictive layers of thicknesses (h,,) of Imm, 2mm and
3mm at various locations. From Fig.5 one can observe that
1mm, 2mm and 3m at various locations. From Fig.5 one
can observe that 1m thick magnetostrictive layer exhibits
better attenuation as compared to 2mm and 3mm thick
magnetostrictive layers.

Therefore, relatively thinner magnetostrictive layer
leads to better attenuation characteristics. These results
presented here agree qualitatively with the results pre-
sented in Pradhan et al. [16], He et al. [11] and Pradhan
[17].

Effect of Vibration Modes

Effect of higher modes of vibration on the vibration
suppression time is studied for the FGM1 shell. Transverse
deflection versus time for various cases of the FGM shells
are plotted in Figs.6-8. Figs.6a, 6b, 6¢ and 6d show the
transient response of modes 1, 3, 5 and 7, respectively. It
is observed that attenuation favours the higher modes. This
is clearly seenin Figs. 7aand 7b, where modes 1 and 3 are
compared for FGM1 and FGM2 shells. These figures
indicate that mode 3 attenuates at a significantly faster rate
as compared to mode 1. Present results in Figs.6a-6d also
show that the vibration suppression time decreases very
rapidly as vibration mode number increases. These vibra-
tion results for various modes agree qualitatively with the
results presented in Pradhan et al. [16] and Pradhan [17].
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Table-7 : Suppression Time Ratio for Two Different Control Gains and Various Locations of
Magnetostrictive Layers in FGM1 Shells hm = 5mm

C (t) re=10* C (t) rc = 10°

Zm -0 + og Wmax ts tn -0 + og Wmax ts tn

(m) (mm) (S) (mm) )
0.0075 | 37.086 | 414.69 | 2.071 0.079 0.414 3.709 | 416.33 | 2.356 0.623 0.303
0.0065 | 32.119 | 565.15 1.594 0.081 0.424 3.212 | 566.06 1.735 0.724 0.383
0.0055 | 27.154 | 669.16 1.377 0.096 0.503 2,715 669.70 1.445 0.856 0.453
0.0045 | 22.188 | 743.32 1.282 0.104 0.545 2.219 | 743.65 1.334 1.024 0.542
0.0035 | 17.228 | 792.14 1.219 0.137 0.717 1.723 792.33 1.258 1.303 0.689
0.0025 | 12.279 | 831.79 1.168 0.191 1.000 1.228 831.88 1.194 1.890 1.000

Fig.4 Comparison of Uncontrolled ( - - - - -

Locations of Magnetostrictive Layers, (a) Zm = 3.5m, (b) Zm =5.5mm, (¢) Zm=7.5mmand (d) Zm=9.5m

) and Controlled (-----

) Motion at the Midpoint of the FGM1 Shell for Various
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Effect of Intensity of Control Gain

Vibration suppression time (t;) for the intensity of
control gain C(t) r, values of 1,000 and 10,000 are com-

puted and the results are listed in Table-7. This shows that
increase of intensity of control gain results in proportional
increase in vibration suppression time. From the results
listed in Table-7, it is interesting to note that the suppres-
sion time ratio (tg) is directly proportional to the control
gain of the applied magnetic field.

Fig.5 Vibration Suppression Time ts for Various
Thicknesses of Magnetostrictive Layers (hm)

VOL.61, No.4

Effect of Material Properties of FGM Shell

Effect of material properties of the FGM shell on the
vibration suppression time is studied. Fig.8 displays the
vibration suppression for FGM1 (Stainless Steel - Nickel)
and FGM2 (Nickel - Aluminum Oxide) shells. For this
comparison study Z,,, is assumed to be 9.5mm. From Fig.8,
it is observed that FGM1 shell has lower frequency com-
pared to the FGM2 shell. This confirms that the FGM1
shell has lower flexural rigidity and thus a lower frequency
compared to the FGMZ2 shell. These results agree qualita-

Table-8 : Vibration Suppression Using FSDT and
HSDT

h/a Whax ts Wmax ts
(FSDT) | (FSDT) | (HSDT) | (HSDT)

(mm) (s) (mm) (s)
5 0.085 0.0395 0.129 0.0535
10 0.196 0.0294 0.258 0.0501
100 1.226 0.222 1.259 0.244

Fig.6 Vibration Suppression of Higher Modes at the Midpoint of the FGM1 Shell (@) n=1, (b)n=3,(c)n=5and (d)n=7)
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Fig.7 Comparison of Controlled Motion at the Midpoint
of the (a) FGM1 and (b) FGM2 Shells for Vibration
Modesn=1andn=3

Fig.8 Vibration Suppression of FGM1 and FGM2
Shells for Zm = 9.5 mm

tively with the results presented in Pradhan et al.[16] and
Pradhan [17].
Effect of Higher Order Shear Deformation Theory

From Table-7, itis observed that employing HSDT the
normalized suppression time ratio (t,) is dependent on the

VIBRATION CONTROL OF FGM THICK SHELLS 471

Fig.9 Vibration Suppression Using FSDT and HSDT
for a/h Ratio (a) 100 and (b) 10

intensity of control gain. While employing FSDT it is
observed that the normalized suppression time ratio (t,) is
independent of the intensity of control gain. These results
agree qualitatively with the results presented in Pradhan
etal. [16] and Pradhan [17]. Normalized suppression time
ratio (t,) is dependent on the intensity of control gain
reveals that HSDT takes into account the control gain in
the analysis. Results are obtained for various a/h ratios and
listed in Table-8. Here h and a represent the thickness of
the shell and the arc length of the shell boundaries. From
Rable-8 and Fig.9 one could observe that as the thickness
of the shell decreases the maximum deflection increases
for both FSDT and HSDT.

Further maximum deflections predicted by HSDT is
larger than those from FSDT. For a/h ratio of 5 maximum
deflection predicted by HSDT is 51 percent larger than
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that of FSDT. While for a/h ratio of 200 maximum deflec-
tion predicted by HSDT is only 2 percent larger than that
of FSDT. Further the suppression time (t5) predicted by
HSDT is larger than the corresponding results of FSDT.
This is due to the fact that HSDT takes into account the
shear forces along the thickness of the thick FGM shell.
This study suggests that HSDT should be considered for
the analysis of the thick FGM shell.

Conclusions

A theoretical formulation for a FGM shell with embed-
ded magnetostrictive layers has been presented. The ana-
Iytical solutions for the case of simply-supported
boundary conditions has been derived, and numerical
results are presented. The formulation is based on the
higher order shear deformation shell theory (HSDT), and
the analytical solution for the simply-supported shell is
based on the Navier solution approach. The effects of the
material properties of the FGM shell, thickness of magne-
tostrictive layers and location of the magnetostrictive lay-
ers on the vibration suppression time have been examined
in detail. It was found that attenuation effects were better
if the magnetostrictive layers were placed farther away
from the neutral plane. Attenuation effects were also better
when the magnetostrictive layers were relatively thinner.
Further, suppression time ratio was directly proportional
to the control gain of the applied magnetic field. Further-
more influence of higher order shear deformation shell
theory is significant for the thick FGM shells.
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