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Abstract

Here, the axisymmetric free flexural vibrations and thermal buckling characteristics of
functionally graded spherical caps are investigated employing a three-noded axisymmetric
curved shell element based on field consistency approach. The formulation is based on
first-order shear deformation theory and it includes the in-plane and rotary inertia effects.
The material properties are graded in the thickness direction according to the power-law
distribution in terms of volume fractions of the constituents of the material. The effective
material properties are evaluated using homogenization method.  A detailed numerical study
is carried out to bring out the effects of shell geometries, power law index of functional graded
material and base radius-to-thickness on the vibrations and buckling characteristics of
spherical shells.

Keywords : Functionally graded,  Vibration, Spherical shell, Thermal buckling, Power law
index

Introduction

The demand for improved structural efficiency in
space structures and nuclear reactors has resulted in de-
velopment of a new class of materials, called Functionally
graded materials [1-3] (FGMs). FGMs are microscopi-
cally inhomogeneous, in which the material properties
vary smoothly and continuously from one surface of the
material to the other surface and thus, distinguish FGMs
from conventional composite materials. Typically, these
materials are made from a mixture of ceramic and metal,
or a combination of different materials. Further, varying
the properties in FGMs in a continuous manner is achieved
by gradually changing the volume fraction of the constitu-
ent materials. The advantages of using these materials are
that they are able to withstand high-temperature gradient
environment while maintaining their structural integrity,
and they avoid the interface problem that exists in homo-
geneous composites. Furthermore, a mixture of ceramic
and metal with a continuously varying volume fraction
can be easily manufactured [4-6]. Although these materi-
als are initially designed as thermal barrier materials for
aerospace structural applications and fusion reactors, they
are now employed for general use as structural elements
for different applications [7]. For example, a common
structural element for such applications is the rectangular

plate, for which several recent studies on static buckling,
vibration and dynamic behaviors have been performed
[8-12].

Among various structural elements, shell elements
form an important class of structural components with
many significant engineering applications such as vessels
or vessel’s enclosures. Studies pertaining to FGMs shell
structures are mainly limited to thermal stress, deforma-
tion, and fracture analysis in the literature [13-19]. Makino
et al. [13] Obata and Noda [14], and Takezono et al. [15]
have investigated thermal stress of FGM shells whereas
the discs and rotors have been examined based on analyti-
cal approach by Durodola and Adlington [16], and Oh et
al [17]. The elasto-plastics deformation of FGM shell is
studied in the work of Dao et al. [18], and Weisenbek et
al [19]. Few transient dynamic analyses of cracked FGM
structural components are also reported in the literature
[20-22]. Li et al. [20,21] have analyzed the stress intensity
factor of FGMs under dynamic situation whereas Zhang
et al. [22] studied the dynamic responses of cracked FGM
structural components. The parametric instability analysis
of functionally graded cylindrical shells under harmonic
axial loading has been carried out [23 and 24]. However,
to the author’s knowledge, it must be stressed that work
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on the vibrations and stability behavior of functionally
graded material spherical shells is not commonly yet
available in the literature, and such study is immensely
useful to the designers while optimizing the designs of
FGMs spherical shell structures.

In the present work, a three-noded shear flexible axi-
symmetric curved shell element developed based on the
field-consistency principle [25,26] is employed to analyze
the axisymmetric vibration and thermal buckling charac-
teristics of functionally graded spherical caps. The mate-
rial properties are graded in the thickness direction
according to the power-law distribution in terms of vol-
ume fractions of the material constituents. The present
formulation is validated considering isotropic case for
which solutions are available. Numerical results are pre-
sented considering different values for geometrical pa-
rameter, power law index, and boundary conditions on the
axisymmetric vibration and thermal stability behavior of
functionally graded spherical caps.

Formulation

An axisymmetric functionally graded shell of revolu-
tion (radius a, thickness h) made of a mixture of ceramics
and metals is considered with the coordinates s, θ and z
along the meridional, circumferential and radial/thickness
directions, respectively as shown in Fig.1. The materials
in outer (z = h/2) and inner (z = -h/2) surfaces of the
spherical shell are ceramic and metal, respectively. The
locally effective material properties are evaluated using
homogenization method that is based on the Mori-Tanaka
scheme [27, 28]. The effective bulk modulus K and shear
modulus G of the functionally gradient material evaluated
using the Mori -Tanaka estimates [27-29] are as
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where,

f1  =  
Gm (9 Km + 8 Gm )

6 ( Km + 2 Gm )

Here, V is volume fraction of phase material. The
subscripts c and m refer the ceramic and metal phases,
respectively. The volume-fractions of ceramic and metal
phases are related by Vc + Vm = 1, and Vc  is   expressed
as

Vc (z) = 


2 z + h
2h





k

(3)

where k is the volume fraction exponent (k ≥ 0).

The effective values of Young’s modulus E and Pois-
son’s ratio υ can be found as from

Fig.1a  Geometry and the co-ordinate system of a
spherical cap

Fig.1b  Curved axisymmetric quadratic shell element
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E (z) = 9KG
3 K + G

   and υ (z) = 3 K − 2 K
2 (3 K + G )

(4) 

The locally effective heat conductivity coefficient κ is
given as [Ref.30].
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The coefficient of thermal expansion α is determined
in terms of the correspondence relation [Ref.31].

α − αm
αc − αm

  −  


1
K − 1

Km




  ⁄  


1
Kc

 − 1
Km





(6)

The effective mass density ρ can be given by rule of
mixture as [Ref. 32].

ρ ( z )  =  ρc Vc + ρm Vm (7)

The temperature variation is assumed to occur in the
thickness direction only and the temperature field is con-
sidered constant in the xy plane. In such a case, the
temperature distribution along the thickness can be ob-
tained by solving a steady-state heat transfer equation

− d
dz 


κ ( z ) d T

d z  

 = 0  ,     T  =  Tc  at  z = h ⁄ 2 ;

T  =  Tm  at  z =  − h ⁄ 2 (8)

The solution of this boundary value problem provides
the temperature distribution through the thickness of the
plate [33].

By using the Mindlin formulation, the displacements
at a point (s, θ, z) are expressed as functions of the
mid-plane displacements uo, vo and w, and independent
rotations βs, and βθ of the radial and hoop sections, respec-
tively, as

u ( s, θ, z, t ) = uo ( s , θ, t ) + z βs ( s, θ, t )

v ( s, θ, z, t ) = vo ( s , θ, t ) + z βθ ( s, θ, t )

w ( s, θ, z, t ) = w ( s , θ, t ) (9)

where t is the time. The various strain components such as
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where r, R and φ are the radius of the parallel circle, radius
of the meridional circle and angle made by the tangent at
any point in the middle-surface of the shell with the axis
of revolution.

If {N} represents the stress resultants (Nss, Nθ θ , Ns θ)
and {M} the moment resultants (Mss, Mθ θ , Ms θ), one can
relate these to membrane strains 


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 and bending strains
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  through the constitutive relations as
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where the matrices [Aij] , [Bij] and [Dij] (i, j = 1, 2, 6) are
the extensional, bending-extensional coupling and bend-
ing stiffness coefficients and are defined as

[Aij , Bij , Dij] =  ∫ 
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where the thermal coefficient of expansion α ( z ) is given
by Eq. (6), and ∆ T ( z ) = T ( z ) − T0  is temperature rise
from the reference temperature T0 at which there are no
thermal strains.

 
Similarly the transverse shear force  Q  representing
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Here [Eij]  (i, j = 4, 5) are the transverse shear stiffness
coefficients, κi is the transverse shear coefficient for non-

uniform shear strain distribution through the shell thick-
ness. Q

__
 ij are the stiffness coefficients and are defined as
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where the modulus of elasticity E(z) is given by Eq.(4).

The strain energy functional U is given as
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where δ is the vector of the degree of freedom associated
to the displacement field in a finite element discretisation
and  [K] is element linear stiffness matrix.

The kinetic energy of the shell is given by
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where p = ∫
−h ⁄ 2

h ⁄ 2

 ρ (z) dz ,  I = ∫
−h ⁄ 2

h ⁄ 2

 z2 (z) dz and ρ (z)  and ρ ( z )

is mass density which var ies through the thickness of the
spher ical shell  and is given by Eq. (7), [M] is the mass
matr ix. The dot over  the var iable denotes der ivative with
respect to time.
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The shell is subjected to temperature filed and this,
in turn, results in-plane stress resultants
(Nxx

th , Nyy
th , Nxy

th). Thus, the potential energy due to ther-

mal pre-buckling stresses (Nxx
th , Nyy

th , Nxy
th) developed un-

der thermal load can be written as
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By minimization of total potential energy obtained from
Eqs. (17-b) and (19), the governing equations are derived
for thermal stability case as [35].

([ K ] + ∆ T [ KG]
th )  δ   =   o  (20)

Here, [KG]th is the geometric stiffness due to thermal
loads and ∆T (=Tc - Tm) is the critical temperature differ-
ence, respectively.

Similarly, substituting Eqs. (17-b) and (18-b) in La-
grange’s equation of motion, the governing equation for
the free vibration case is obtained as [35]

[ M ]  


δ
..

  +  [ K ]  δ   =   0  (21)

where  


δ
..

  is the acceleration vector.

For free vibration case, assuming harmonic vibration,


δ
..

  =  − ω2  δ  , Eq. (21) leads to

([ K ] )  δ


  − ω2  [ M ] δ   =   o  (22)

where ω is the natural frequency.

The frequency and the critical temperature difference
can be calculated using standard eigenvalue extraction
algorithm.

Element Description

The axisymmetric three-noded curved shell element
used here is a C0 continuous shear flexible one and has 5
nodal degrees of freedoms. If the interpolation functions
for three-noded element are used directly to interpolate the
five field variables uo , vo , wo , βs  and β θ in deriving the
transverse shear and membrane strains, the element will
lock and show oscillations in the shear and membrane
stresses. Field consistency requires that the membrane and
transverse shear strains must be interpolated in a consis-
tent manner. Thus, βs term in the expression for  εs 



  given

in Eq. (10) has to be consistent with field function ∂w
∂s

  as

shown in the works of Prathap and Ramesh Babu [25].
Similarly the w and (uo, vo) terms in the expression of


 ε p

 L  given in Eq. (10) have to be consistent with the field

functions 
∂uo
∂ s

  and  
∂vo
∂ s

 , respectively. This is achieved by

using the field redistributed substitute shape functions to
interpolate those specific terms that must be consistent as
described in Refs. [25] and [26]. The element derived in
this fashion behaves very well for both thick and thin
situations, and permits the greater flexibility in the choice
of integration order for the energy terms. It has good
convergence and has no spurious rigid modes.

Results and Discussion

In this section, we use the above formulation to inves-
tigate the effect of parameters like gradient index, shell
geometrical parameter on the axisymmetric free flexural
vibration characteristics and thermal buckling of function-
ally graded material spherical caps. Since the finite ele-
ment used in this study is based on field consistency
approach, an exact integration is employed to evaluate all
the strain energy terms. The shear correction factor, which
is required in a first order theory to account for the vari-
ation of transverse shear stresses, is taken as 5/6. For the
present study based on progressive mesh refinement, a
15-element idealization is found to be adequate in model-
ing the spherical caps.

Figure 2a shows the typical variation of the volume
fractions of ceramic in the thickness direction z for the
FGM spherical cap. The outer surface is ceramic rich and

140 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.59, No.2



the inner surface is metal rich. The typical temperature
variation through the thickness direction is presented in
Fig. 2b and it can be noted that the temperature variation
in the thickness of functionally graded shell is nonlinear
compared to those of pure ceramic and metal cases (k=0
and k=100). The FGM spherical shell considered here
consists of aluminum and alumina [36]. The Young’s
modulus, conductivity and the coefficient of thermal ex-
pansion for alumina is Ec = 380 Gpa, Kc = 10.4 W/mK,
αc = 7.4 x 10-6 1/°C, and for aluminium is Em =700 Gpa,
Km = 204 W/mK, αm = 23 x 10-6 1/°C,  respectively. The
shell is of uniform thickness and boundary conditions
considered here are :

Simply supported :

u = v = w = 0     o n    r = a

Clamped support :

u = v = w = βs = β θ = 0      o n    r = a .

Before  proceeding  for  the free flexural vibration
character istic study of FG spher ical cap, the formulation
developed  herein  is  simplified  for  pure metallic case

and validated against the available clamped isotropic
spher ical shells results per taining to the free vibrations and
thermal buckling cases in Table-1a and 1b respectively.
Here, the nondimensional frequency Ω  is defined as
ω ( a ⁄ h)  (ρa2 ⁄ E )

1⁄2 , where  ρ and E  are the mass density
and Young’s modulus of metal, respectively. The results
are found to be in good agreement with the existing
solutions [37,38].

Next, the detailed investigations for free flexural vi-
brations of spherical caps are carried out for different
geometrical parameters and material power law index, k.
Fig.3 highlights the non-dimensional fundamental fre-
quencies of simply supported FGM spherical caps for
different values of thickness-to-radius ratio, material
power law index and different spherical angle. It is ob-
served that the increase in material power law index value
results in decrease in non-dimensional frequency value.
This is attributed due to the stiffness reduction because of
the increase in the metallic volumetric fraction and the

Fig.2  Variation of volume fraction of ceramic and
temperature through thickness :

(a) Volume fraction of ceramic; (b) Temperature

Table-1a : Comparison of fundamental frequency
for isotropic shallow spherical shell

 ω ( a ⁄ h)  (ρa2 ⁄ E )
1⁄2 

H/h
Fundamental frequency

Ref. [37] Present
2 6.14 6.42
5 13.08 13.37

Table-1b : Comparison of critical buckling thermal
strain εT for isotropic hemi-spherical shell

h/R
Critical buckling thermal strain

Ref. [38] Present % diff
0.01 0.00407 0.00424 -4.18%
0.02 0.00844 0.00840 0.47%
0.03 0.01204 0.01251 -3.90%
0.04 0.01624 0.01657 -2.03%
0.05 0.02034 0.02052 -0.88%
0.06 0.02379 0.02446 -2.82%
0.07 0.02764 0.02844 -2.89%
0.08 0.03164 0.03222 -1.83%
0.09 0.03530 0.03584 -1.53%
0.10 0.03927 0.03944 -0.43%
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Fig.3  Variation of non-dimensional frequency Ω for a simply supported FG spherical shell for different gradient index
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Fig.4  Comparison of non-dimensional frequency, Ω for simply supported  and clamped FG spherical shells
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Fig.5  Variation of axisymmetric critical  buckling temperature difference, ∆Tcr (°C) for a simply supported FG spherical shell
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introduction of different stiffness couplings due to elastic
properties variation through the thickness of FGM shell.
It can also be opined that the frequency value increases
with the increase in thickness-to-radius ratio. However,
the rate of increase in non-dimensional frequency value is
high for shallow spherical cases compared to deep shells.
The effect of boundary conditions on frequency can be
further viewed from Fig.4 for two values of material
index. It is noticed from Fig.4 that the frequency values
for clamped case is higher than those of simply supported
shell, as expected and the difference in frequency values
is with respect to thickness-to-radius however less for
deep shells.

Similar analysis for the thermal buckling behavior of
FGM spherical caps with simply supported boundary con-
dition has been done considering different values of thick-
ness-to-radius ratio and geometrical parameter. The
results are plotted in Fig.5. It can be concluded that the
influence of material power law index and spherical in-
cluded angle on critical values is qualitatively similar to
those of vibration case, i.e. reduction in thermal buckling
temperature difference with increase in the values of ma-
terial index and deepness of the shell. However, the criti-
cal buckling temperature difference is quite high for very
shallow shells compared to those of deep cases. For mod-
erately deep shell structures, the change in the buckling
values is noticeable for higher values of thickness-to-ra-
dius ratio. The critical buckling temperature for ceramic
is higher than the microscopically heterogeneous mixture
of ceramic and metal, as expected and this is mainly due
to the increase in metallic volumetric fraction. Further-
more, the results pertaining to FGM hemi-spherical shells
are highlighted in Fig.6 and the observation is similar to
those of other spherical caps.

Conclusion

Axisymmetric free flexural vibrations and thermal
buckling characteristics of FGM spherical caps have been
investigated using a three-noded axisymmetric curved
shell element employing a field consistency approach.
Numerical results obtained here for an isotropic case are
found to be in good agreement with the previous findings.
From the detailed parametric study, it is observed that the
frequency and critical buckling temperature decrease with
the increase in metallic volume fraction and spherical
angle whereas they increase with the increase in thickness-
to-radius ratio of the shells. It is hoped that this study will
be useful for the designers while optimizing the FGM
based spherical shell structures.
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