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Abstract

It is difficult to determine natural frequencies and modal shapes of a Dynamic system having
large number of degrees of freedom (DOF) and, in addition, expensive. It is always desirable
to reduce the DOF of the system. Of various methods Guyan’s condensation and Component
modal analysis are quite popular for reducing the problem size. The present work deals with
Guyan’s approach and improvements in its basic form to suit for dynamic problems. The
Guyan’s Reduction method ignores the mass in calculating the transformation matrix, hence
for dynamic problems its accuracy is usually low. This problem is overcome, by adopting an
iterative technique in which the inertia terms are improved by a linearization process. Another
important aspect in the implementation of a condensation procedure is the selection of the
primary and slave DOF. In the present work, a two step approach is attempted wherein, first,
a primary DOF set is selected on the basis of energy method or Ritz vectors and later, the
inertial contribution of the transformation matrix is improved through an iterative procedure.
The effectiveness of the proposed method is illustrated with two examples.
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Notations

[C] = damping matrix
DOF = degrees of freedom
[D] = dynamic stiffness matrix
FRF = frequency response functions
{F} = force vector
[K] = stiffness matrix
[K] = generalized stiffness matrix
[M] = mass matrix
[M] = generalized mass matrix
N = size of matrices
[T] = transformation matrix
{u} = displacement vector
{u
..
} = acceleration vector

ω = natural frequency
[φ] or [Φ] = eigen vector matrix
Λ = eigen value 

Subscripts

c = connected DOF
i = interior DOF
m = master DOF
s = slave DOF

Introduction

Finite Element Method is a popular tool for solving
structural problems. Particularly in dynamics, the finite
element solutions can approach close to the real situation
within a wide frequency range. However, to make sure
that the results have the necessary accuracy, the finite
element model with finer meshing is required, which
inturn leads to large number of degrees of freedom (DOF)
in the system. As a consequence, the stiffness, mass and
damping matrices will be of large dimensions, requiring
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huge computer storage and solution time. The analysis
may, therefore be carried out more efficiently if the un-
wanted DOF can be eliminated by some reduction proce-
dure before solving the Eigen problem. Numerous
reduction techniques have been proposed over the last
three decades. The most popular reduction methods are
Guyan Condensation method and Component Mode Syn-
thesis.

The Guyan’s reduction method ignores the mass (in-
ertia effect) in calculating the transformation matrix. The
relation between the primary and secondary DOF is there-
fore found by establishing the static relation between
them. Hence the process is only exact for static problems.
In order to reduce the mass matrix of the system, the same
static relation is assumed to remain valid for the dynamic
problems. Hence, for dynamic problems the accuracy is
usually low. This problem is overcome, by adopting an
iterative technique in which the inertia terms are improved
by a linearization process.

Another important aspect in the implementation of a
condensation procedure is about the selection of the mas-
ter and slave DOFs. The selected master degrees should
describe the lowest modes accurately. The difficulty is in
a given problem to determine which and how many master
DOF should be included in the analysis. Improper selec-
tion of primary DOF or an insufficient number of them
would give erroneous result.

Investigations by Ki-Ook Kim and Young-Jae Choi
[1] and Arnold et. al [2] have showed that by comparing
energy distribution over the DOF /or by using Ritz vectors
the primary DOF can be selected effectively. As a princi-
ple, in system condensation the energy should be pre-
served in each eigen mode. Hence, the reduced stiffness
and mass matrices conserve the strain energies. Neverthe-
less the equation of motion in the reduced subspace does
not satisfy the equilibrium of the original system [3]. The
incorrect energy distribution over the retained degrees of
freedom is the major source of error in a condensation
process.

Arnold et. al [2] showed that a sequential elimination
of the secondary degrees of freedom is based on the
highest ratio of diagonal terms of the structural matrices
(Kii/Mii). It is shown [2] that the lowest one-third of the
eigen values of the condensed system will be within the
engineering accuracy of 5%. The minimisation of the
energy unbalance has been successfully applied to the
structural optimization of dynamic systems [4-6] using the

primary set of DOF dominating the energy distribution.
Because there are no priori exact eigenmodes available,
Ritz vectors are calculated for the energy estimation. The
energy distribution varies from mode to mode and so does
the primary set. For proper selection of the DOF, two
approaches are considered: 

• A sequential selection, where in a union of finite num-
ber of DOF with the largest energy in each mode.

• A row sum selection, the components of energy distri-
bution matrix along the row is added. The DOF with
the largest sum are selected for the primary set.

With the mass normalisation of mode shapes, not only
the energy of the DOF in each eigen mode (column sum)
but also the energy of each DOF wherein the row sum
becomes (for the whole eigen modes) unity. Hence, the
partial row sum of a DOF indicates the importance of DOF
to the modes of interest. So this DOF can be used as a
primary DOF. Whereas, the partial column sum shows the
contribution of the selected set in each mode and can be
used to predict the solution accuracy [7-9].

In  the  present  work, a  two  step  approach  is at-
tempted by judiciously combining the approaches given
in Refs. [1] and [10] to get accurate solution for a given
eigen value problem viz; a) first, master DOF set is se-
lected based on the energy method or using Ritz vectors
and b) inertial contribution of these master DOF is im-
proved through an iterative procedure. The effectiveness
of the proposed method is illustrated with two examples
a) An ‘L’ shaped beam and b) Dynamic response of a
floating raft isolation system. The results of these exam-
ples are compared with the solutions given by Ref. [10]
and [13].

Theoretical Basis

In the following sections, the mathematical expres-
sions related to the condensation process are briefly de-
scribed.

Energy Method [1] for Selection of Primary DOF

The method is based on the energies associated with
the degrees of freedom in the eigenmodes of structural
systems. For the energy estimation Ritz vectors (which are
calculated using the stiffness and mass matrices) are used.
The energies added through the modes of the energy
distribution matrix can be used as an effective guideline
for the retained degrees of freedom as the primary DOF
in the analysis. Another approach is the sequential selec-
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tion, in which a finite number of DOF with the largest
energy are taken in each mode. The energy of the selected
DOF or the column sum of the matrix can be used to
predict the accuracy of solution in each mode.

Energy for Modes and Degrees of Freedom

In finite element analysis a general eigenproblem for
undamped free vibration is given as

[K]  ⎧⎨⎩Φ ⎫⎬⎭  =  λ [M] ⎧⎨⎩Φ ⎫⎬⎭ (1)

where [K] and [M] are stiffness and mass matrices. The
Eigen pair (Eigen value and Eigen vector) is denoted as
λ  and ⎧⎨⎩Φ ⎫⎬⎭. Assuming the Eigen problem given by Eqn.
(1) has N eigenmodes, these can be written in compact
form as 

[K] [Φ ]  =  [M ] [Φ ] [Λ] (2)

where  [Λ] is a diagonal matrix for the eigen values.
Pre-multiplying Eqn. (2) by [Φ ]T gives

[Φ]T [K ] [Φ]  =  [Φ]T [M ] [Φ] [Λ]  or  [K
_

 ] = [M
_

 ] [Λ]
(3)

where [K] and [M] are generalised stiffness and mass
matrices, respectively. Eqn. (3) shows not only the ortho-
gonality of the Eigen modes but also the equilibrium of
the strain and kinetic energies in each mode. Eqn. (3) is
equivalent to Eqn (2). A set of L (< N) vectors satisfying
the orthogonality may not be the eigenvectors of the
structure (Eqn. (3) is only a necessary condition for the
vectors). Introducing cross multiplication of matrices [1]
as given below

[C]  =  [A]  ⊗ [B]     or   cij = aij  bij (4)

Equation (2) can be written as

[Φ]  ⊗  [K] [Φ] = [Φ] ⊗ [M] [Φ] [Λ] (5)

Equation (5) shows the equilibrium in terms of energies
which states that each degree of freedom should be in
equilibrium with respect to the strain and kinetic energies
in each eigenmode. For illustration, generalised mass ma-
trix will be considered first

[G] = [Φ] ⊗ [M] [Φ] or gij = ∑
k = 1

N

Φij Mik Φkj (6)

The energy distribution matrix [G] represents the rela-
tive magnitude of energy associated with the degrees of
freedom. The column sum of matrix [G] is the total energy
of the degrees of freedom in the corresponding mode with
Jth diagonal term of [Φ]T [M] [Φ] = [I]

∑ 
i = 1

N

   gij = ∑ 
i = 1

N

    ∑ 
k = 1

N

   Φij Mik Φkj  =  1     j = 1 , .... , N

(7)

Kammer [11] suggested that a partial sum of the en-
ergy ranging from 0.4 to 0.5 would be sufficient for the
primary set to describe an eigenmode accurately

Ecj  =    ∑ 
i

   gij = ∑ 
i

    ∑ 
k = 1

N

   Φij  Mik  Φkj (8)

In a similar line the row sum can be obtained. ith

diagonal term of [Φ]T [M] [Φ]T = [I] as

∑ 
j = 1

N

   gij = ∑ 
j = 1

N

    ∑ 
k = 1

N

   Φij Mik Φkj  =  1     i = 1 , .... , N

(9)

The row sum of each degree of freedom becomes
unity, representing the same degree of importance to the
whole Eigen system. For the lowest L eigenmodes the
partial row sum is written as

Erj  =    ∑ 
j = 1

N

   gij = ∑ 
j = 1

N

    ∑ 
k = 1

N

   Φij  Mik  Φkj (10)

Both the column and the row sums have unit value
when all DOF and eigen modes are considered. Hence, the
partial column sum represents the contribution of the
selected DOF in each mode and can be used to estimate
the accuracy of the solution. Where as the partial row sum
of a DOF indicate the degree of importance to the modes
of interest and can be used as a selection criterion.

Ritz Vectors [5, 6, 14, 15]

Ritz vectors calculations are simple for dynamic prob-
lems for the estimation of the energy distribution. The
diagonal terms of the mass matrix are used to get the first
Ritz vector. For the sake of completeness a brief descrip-
tion of Ritz vector iteration and stiffness and mass matrix
normalization process is given in Appendix.

NOVEMBER 2007 AN IMPROVED DYNAMIC CONDENSATION APPROACH 261



[K ii] 
⎧
⎨
⎩X

 (1)⎫⎬
⎭  =  [M ii] (11)

where X(1) is the first set of Ritz vectors. Additional sets
of Ritz vectors are obtained through inverse iteration and
ortho-normalisation with respect to the mass matrix.

[K] 
⎧
⎨
⎩X

 (k + 1)⎫⎬
⎭  =  [M]  

⎧
⎨
⎩X

 (k)⎫⎬
⎭ (12)

Condensation Technique [12]

As stated earlier, in Guyan condensation, the inertia
terms are ignored while constructing the transformation
matrix; hence the process is only exact for static problems.
For dynamic problems, the accuracy is usually low. Zu-
Quing Qu and Panneer Selvam [10] have shown that by a
successive iteration process the inertial contributions of
the transformation matrix can be improved. In the follow-
ing sections, the procedure for carrying out both static
condensation (Guyan’s reduction) and improvement in
this process using an iterative process (which happened to
be the main theme of the present work) is briefly dis-
cussed.

Static Condensation

The dynamic equation of an undamped system is given
by

[M]  ⎧⎨⎩ U
..
 ⎫⎬⎭  +  [ K ]  ⎧⎨⎩ U ⎫⎬⎭  =  ⎧⎨⎩ F ⎫⎬⎭ (13)

where ⎧⎨⎩ F ⎫⎬⎭ is an external force vector and ⎧⎨⎩ U ⎫⎬⎭ and ⎧⎨⎩ U
..

 ⎫⎬⎭are
the displacement and acceleration response vectors of the
structure under the force ⎧

⎨
⎩ F ⎫⎬⎭. If the total degrees of

freedom of the full model are divided into the master and
slave degrees of freedom and denoted by m and s, respec-
tively. Eqn. (13) can be rewritten in a partitioned form as

⎛

⎜

⎝

⎜

⎜

 Mmm  Mms 

Msm   Mss 

⎞

⎟

⎠

⎟

⎟
 
⎧

⎨

⎩

⎪

⎪

 U
..
  m  

 U
..
  s   
⎫

⎬

⎭

⎪

⎪
  +  

⎛

⎜

⎝

⎜

⎜

 Kmm  Kms 

Ksm   Kss 

⎞

⎟

⎠

⎟

⎟
 
⎧

⎨

⎩

⎪

⎪

 Um 

 Us 

⎫

⎬

⎭

⎪

⎪
  =  

⎧

⎨

⎩

⎪

⎪

 Fm 

 FS 

⎫

⎬

⎭

⎪

⎪

(14)

As stated earlier, the master DOF can be selected on
the basis of either the energy or Ritz vectors criteria as
given in the previous sections. In addition, the master DOF
should include 1) the boundary DOF in case of a sub-struc-
ture analysis, 2) those DOF on which excited forces are
located, and 3) those DOF whose displacements are of
interest. Based on the selection of these master DOFs, the

sub vector ⎧⎨
⎩
FS

⎫
⎬
⎭
  are made equal to zero. Hence, the second

equation of Eqn.(14) is reduced to

M sm U
..
  m  + M ss U

..
  s  + K sm U m + K ss U s = 0 (15)

which leads to

Us = − Kss
 −1  ⎛

⎝
M sm U

..
  m  + M ss U

..
  s  + K sm U m       ⎞

⎠
(16)

Assuming in Eq. (16),

U
..
  s   =  0  and   U

..
  m   =  0 (17)

Us  =  − Kss
 −1 Ksm Um  =  R(0) Um   where   R(0)  =  − Kss

 −1 Ksm

(18)

The relation matrix R(0) defined in Eqn. (18) repre-
sents the static transformation matrix. The inertia forces
are not considered for obtaining the relation matrix R(0) .
Hence, it is exact only for static problems. A co-ordinate
transformation matrix T(0) can defined as

T(0)  =  

⎛

⎜

⎝

⎜
⎜
⎜
⎜

 I 

 R(0)

⎞

⎟

⎠

⎟
⎟
⎟
⎟

(19)

The displacement vector ⎧
⎨
⎩U

⎫
⎬
⎭ and acceleration vector

⎧
⎨
⎩ U
..

 ⎫⎬⎭ can be expressed in terms of  T(0) as

⎧
⎨
⎩ U ⎫⎬⎭  =  T(0) ⎧⎨⎩ Um

⎫
⎬
⎭   and   U

..
  =  T(0)  ⎧⎨⎩ U

..
  m

⎫
⎬
⎭ (20)

Introducing Eqn. (20) into Eqn. (13) and pre-multiply-
ing both sides of the equation by the transpose of matrix
T(0) and on simplification one can get

[Ms
(0)]  ⎧⎨⎩ U

..
  m

⎫
⎬
⎭  +  [Ks

(0)]  ⎧⎨⎩ Um ⎫⎬⎭  =  ⎧⎨⎩ Fm ⎫⎬⎭ (21)

where Ks(0) and Ms
(0) are stiffness and mass matrices of

the static system model given by

K s
 (0) = (T(0) )T [K ] T(0)   and   M s

 (0)  =  (T(0) )T [M] T(0)

(22)
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Iteration Approach to Improve the Relation Matrix
for Dynamic Problems

To improve the solution accuracy of dynamic problem
using static condensation, the relation matrix R(0) is modi-
fied as follows. The free vibration of the system corre-
sponding to Eqn. (21) is

Ms
 (0)  ⎧⎨⎩ U

..
  m

⎫
⎬
⎭  +  Ks

(0)  ⎧⎨⎩ Um ⎫⎬⎭  =  0 (23)

Equation (23) leads to 

⎧
⎨
⎩ U
..
  m

⎫
⎬
⎭  =  − (Ms

(0) )−1  Ks
(0) Um (24)

By differentiating both sides of Eqn. (18) with respect
to time twice, one obtains

⎧
⎨
⎩ U
..
  s

⎫
⎬
⎭  =  R(0)  ⎧⎨⎩ U

..
  m

⎫
⎬
⎭ (25)

Substituting Eqn. (24) into the right side of Eqn. (25)

U
..
   s   =  − R(0)  (Ms

 (0)
)
 −1  Ks

(0)  Um (26)

Using Eqns.(24) and (26), in Eqn.(16), the resulting equa-
tion can be written as

Us = Kss
 −1 ⎡⎢

⎣
(Msm + Mss R

(0) ) (Ms
(0)
)
−1 Ks

(0) − Ksm
⎤
⎥
⎦
  Um

(27)

According to the definition of the relation matrix R0

given in Eqn. (18), its first approximation results from
Eqn. (27) is written as

R(1) =  Kss
 −1 ⎡⎢

⎣
(Msm + Mss R

(0) ) (Ms
(0)
)
−1  Ks

(0) − Ksm
⎤
⎥
⎦
(28)

The first order approximation of stiffness matrix Ks
(1)

and mass matrix M s
 (1) of the system can be obtained from

Eqs. (19) and (22) by using relation matrix R(1). The
accuracy of the matrices Ks

(1) and Ms
(1) is higher than the

matrix Ks
(0) and Ms

(1) because the inertia terms are im-
proved in relation matrix R(1). Repeating the procedure
from Eqs. (19 - 28), (i-1) times, the ith approximation of
the relation matrix, stiffness matrix, and mass matrix of
system are defined as

R(i) =  Kss
 −1 ⎡⎢

⎣
(Msm + Mss R

(i−1) ) (Ms
(i−1)

)
−1  Ks

(i−1) − Ksm
⎤
⎥
⎦

(29)

Ks
(i) = (T(i))T K  T(i)   and   Ms

(i) = (T(i))T M  T(i)

with   T(i)  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢

 I 

 R(i)

⎤

⎥

⎦

⎥
⎥
⎥
⎥

It is shown in Eqs. (18) and (29) that an inversion of
matrix Kss is required for a relation matrix. When the
number of rigid degrees of freedom of the system is larger
than the number of master degrees of freedom, the matrix
is singular and cannot be inverted directly. In such a case
pseudo inverse of the singular Kss matrix can be used
which is given in the form [Kss

T   Kss]
 −1  Kss

T.

In case of analysis by substructure-method, the bound-
ary DOF are part of primary set and the mass contribution
of these DOF gets included in the condensed Ms matrix.
However, sometimes the degrees of freedom correspond-
ing to rotational coordinates (as in such case of flat plate)
have no mass contribution, and as such the Ms matrix is
singular. In such a case also pseudo inverse can be carried
out and is given as [Mss

T   Mss]
 −1  Mss

T.

Numerical Examples

Two examples are considered to illustrate the effec-
tiveness of the present approach. First the primary DOF
of a given problem are obtained using either energy/or
Ritz vector approaches as stated in the previous sections
and followed by iterative condensation process given in
the previous section using Eqn. (29). The example prob-
lems considered are 1) ‘L’ shaped cantilever beam [1,13]
and 2) Dynamic response of a floating raft system [10].

‘L’ Shaped Cantilever Beam

An ‘L’ shaped cantilever beam is shown in Fig. 1 with
its geometric and material properties. The total degrees of
freedom for the beam are 15. The natural frequencies for
the beam are shown in Table-1. Degrees of freedom sets
(labelled as Case A, Case B, Case C, and Case D) based
on Energy method and Ritz vectors for both sequential
selection and partial row-sum schemes are given in Table-
2. Table-3 gives the energy distribution for each mode
corresponding to each DOF. Both for Ritz vectors and
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eigen vectors happen to be the basis for sequential or row
sum selection of DOFs. The errors [ωreduced - ωexact) /
ωexact] of frequencies for these cases from A to D are
shown in Figs. 2 to 5 respectively for zeroth, first, second,
third and fourth iterations. Ki-Ook and Young [1] ob-
tained the solution by selecting the primary DOF using

sequential selection process where the DOF with largest
energy in each mode ( exact modes/Ritz vectors) and no
attempt is made to improve the frequencies where as focus
of the current work is to improve the estimated frequencies
using the iterative process. While in the work done by
Suarez and Singh [13] uses both Matt’s and Shah and
Raymund’s schemes in the selection of primary DOF for
Guyan’s reduction. While in the current approach as stated
earlier, exact eign modes and Ritz vectors are selected by
either sequential process or by row sum process and are
further improved by updating the inertial contribution by

Fig.1 L-Shaped cantilever beam

Table-1 : Natural frequencies of ‘L’ shaped beam
in rad/sec

1. 29.88 6. 2245.41
2. 97.31 7. 2853.73
3. 378.06 8. 4257.61
4. 743.35 9. 4631.99
5. 1121.7 10. 6680.66

Table-2 : Primary Degre of fredom for different
schemes

Sequential Selection
Energy Method (Case A) 10  14  4  11  1  9  12
Ritz Vector (Case B) 10  14  1  4  11  5  9

Row sum Selection
Energy Method (Case C) 14  1  4  11  12  6  3
Ritz Vector (Case D) 14  11  4  1  9  12  10

Fig.2 Errors of frequencies for diferent iterations Case-A

Fig.3 Errors of frequencies for diferent iterations Case-B
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Table-3 : Energy Distribution over DOF for each Mode
3A : Ritz Vectors

3B : Eigen Vectors
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iterative process. Figs. 2-5, show that the accuracy of
frequencies obtained with the present approach is very
high and that with increase in number of iterations the
accuracy is further improved. Figs. 2-5 also shows that the
errors in frequencies for the lowest modes (lowest 5 in
above problem) after first iteration are very low (less than
0.0001%) and thus first iteration is itself sufficient to meet
the required acceptable accuracy.

From Tables-2 and 3, it can be seen that the DOF set,
selected on the basis of energy method is almost identical
to that selected on basis of Ritz vectors. Also, by compar-
ing Figs.2 to 5, it can be seen that the accuracy of frequen-
cies by selecting the primary set based on Ritz vectors is
as good as that when the set is selected based on energy
method. Thus Ritz vectors, which can be easily calculated

compared to eigenvectors (which are not known prior to
the solution) can be used for choosing the master DOF.
The energy criteria used to select the primary DOF can
also provide a guideline on how many DOF should be
included for a given problem.

Floating-Raft Isolation System

The efficiency of the present approach both for the
extraction of modes and for response of a system is shown
by a floating- raft isolation system [10]. The floating- raft
isolation system will protect the equipment in ships or
submarines from damage and let them work normally
when the ships or submarines are subjected to strong
external loads or shocks. It is a compound dynamic sys-
tem. It contains springs, dampers, machines to be isolated,
a raft frame and a foundation system.

Problem description

A floating-raft isolation system (Fig. 6) is considered
here for the illustration of dynamic condensation. For
convenience, the damping is not considered for this exam-
ple. The machines to be isolated are denoted by m1 = 100
Kg and m2 = 120 Kg. A and B are rectangle plates and
denote the raft frame and base flat frame, respectively.
Their lengths, widths and thicknesses are 1.2, 0.8, and
0.02m and 2.8, 0.8, and 0.04 m, respectively. Their modu-
lus of elasticity = 2.0E11 N/m2 and their mass density =
7800Kg/m3. Here, k1 = 1.0E5 N/m and k2 = 5.0E5 N/m.
The two short sides of plate B are simply supported, and
the two long sides are free, where as all the four sides of
plate A are free.

Finite element model for the floating- raft system

The finite element model of the raft frame (plate A) is
shown in Fig.7. The model has 24 rectangle elements, 35

Fig.4 Errors of frequencies for diferent iterations Case-C

Fig.5 Errors of frequencies for diferent iterations Case-D Fig.6 Schematic of a floating-raft isolation system [10]
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nodes, and 105 DOF (Z-translation, X-rotation and Y-rotation;
3 DOF/node). The nodes that are connected with spring’s
K1 are 17 and 19. The nodes connected with springs K2
are 1, 3, 5, 7, 15, 17, 19, 21, 29, 31, 33, and 35 (shown by
circle marks in Fig 7). The finite element model of the base
(plate B) is showing in Fig.8. The model has 14 rectangle-
elements, 24 nodes, and 66 DOF. The nodes connected
with springs K2 are 3, 4, 5, 6, 11, 12, 13, 14, 19, 20, 21
and 22 (shown by circle marks in Fig. 8).

Application of the condensation technique

Assuming [K]A, [M]A and [K]B, [M]B are the stiffness
and mass matrices for plate A and B respectively. Energy
distributions over the DOF for both plates are calculated.
Based on the energy distribution, primary DOF for each
plate are selected. In addition the common DOF between
the two plates are also retained in the primary DOF set.
Table-4 shows the primary DOF set for both the plates.

The iteration procedure as explained in the previous sec-
tion  is worked out for each plate. Denoting reduced
stiffness and mass matrices by [Kr]A, and [Mr]A for plate
A and by [Kr]B and [Mr]B for plate B, and denoting Kc and
Mc as stiffness and mass matrices pertaining to the springs
and machines, the global stiffness and mass matrices for
the floating-raft isolation system is obtained as below.

K
_

 = 

⎡

⎢

⎣

⎢
⎢

⎢
⎢

[Kr]A     [0]       0        0
[0]        [Kr]B    0        0
0            0          0       0
0            0          0       0

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 + Kc  and

M
_

 = 

⎡

⎢

⎣

⎢
⎢

⎢
⎢

[M r]A     [0]       0        0
[0]        [M r]B    0        0
0            0          0         0
0            0          0         0

⎤

⎥

⎦

⎥
⎥

⎥
⎥

 + M c (30)

The global Finite element model of the floating-raft
isolation system has 173 DOF. However, the reduced
finite element model constructed by using the present
approach has 36 DOF, which is much fewer than the
global model. The first 10 natural frequencies obtained for
this problem in the study based on a) the global model, b)
Component Synthesis method (CMS) and c) that from the

Fig.7 Finite element model of the raft frame (Plate A)

Fig.8 Finite element model of the base (Plate B)

Table-4 : Primary DOF set for plates A and B
Plate Primary DOF set (Z-Translation)

A 1 2 3 5 7 8 9 15 17 18 19 21 29 31 32 33 34 35
B 2 3 4 5 6 7 10 11 12 13 14 15 19 20 21 22
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reduced model. These frequencies are listed in Table-5
along with the percentage errors. The errors of frequencies
are shown in Fig.9 for zeroth, first, second, third and fourth
iterations.

From Fig. 9 it can be seen that the accuracy of the first
three natural frequencies, which are obtained from the
reduced finite element model based on the present ap-
proach with initial approximation of the system, is very
high. The results of Ref. [10] (obtained using 179 DOF for
full model and 26 DOF for the reduced model) and the
present solutions (apart from full and reduced models

CMS approach is used) are identical. However, in both the
solutions the errors become larger and larger with increase
in frequency. When iteration is applied, the accuracy of
frequencies of the reduced model improves. However this
does not have much effect on the accuracy of the first three
frequencies. Accuracies of the first three frequencies of
the reduced model reduced when iterations are adopted.
Fortunately, the errors of these frequencies are still less
than 0.3% for the first ten modes considered (with first
iteration) and have little effect on the accuracy of re-
sponse.

Table-5 : Natural frequencies of the floating-raft isolation system

Mode No.
Natural Frequencies (Hz) % Error (after 1st iteration)

⎛
⎜
⎝

ω red − ω exact
ω exact

⎞
⎟
⎠
 ∗ 100Full Model CMS Reduced Model

1. 4.3755 4.3755 4.3760 0.01
2. 4.8916 4.8916 4.8921 0.01
3. 10.8502 10.8497 10.8513 0.01
4. 36.5761 36.5213 36.6492 0.20
5. 36.7144 36.6778 36.7878 0.21
6. 37.7791 37.7734 37.8547 0.25
7. 56.4048 56.1242 56.4499 0.08
8. 66.7382 66.7032 66.8049 0.1
9. 86.1166 85.6711 86.3749 0.30

10. 88.9686 88.4820 89.0220 0.06
Size (DOF) 173 36 36

Fig.9 Errors of the frequencies of condensed model
for diferent iterations

Fig.10 Comparison of FRFs for zeroth and first iteration
with exact solution
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Frequency response of the floating-raft system

The frequency response function for the raft is calcu-
lated. Fig.10 shows the frequency response functions
(FRFs) for the exact model and for reduced model with
zeroth and first iteration. The excited force is located on
m1 in the Z direction and the response degree of freedom
is the displacement at node 12 (plate B) in the same
direction. For convenience, only the absolute values of
FRFs are shown in Fig.10. The results show that the
accuracy of the reduced model can be efficiently improved
by use of the current approach.

Conclusions

An approach to improve the dynamic results using
Guyan’s static condensation process by improving the
mass contribution in the condensation process by an itera-
tive approach is illustrated. Further, the initial vector
(primary DOF) is selected using energy method or Ritz
vectors. The effectiveness of the present method is vali-
dated with two examples 1) An ‘L’ shaped beam and 2)
Dynamic response of a floating-raft isolation system (in-
volving the application of the same procedure for sub-
structures). The proposed reduced model can be applied
to dynamic analysis both in time and frequency domains,
passive and active vibration control, test-analysis model
correlation etc. The present approach can also be applied
for large scale problem where sub-structuring technique
plays a critical role.
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Appendix

Ritz Vectors and Normalization of Mass and
Stiffness Matrices

The major reason to compute eigen modes and mode
shapes (eigen values and eigen vectors) is that they are
used to uncouple the dynamic equations for sub-sequent
superposition and or for response analysis. The numerical
effort required to calculate the exact eigen solution can be
enormous for a structural system if a large number of
modes are required. With the development of high speed
computing systems the use of exact eigen vectors replaced
by the use of Ritz vectors as basis for large response
analysis. The Ritz vectors give accurate results with less
computational efforts than that of exact eigen vectors. In
this appendix, the analytical procedure for the generation
of Ritz vectors and their normalization process used with
mass and stiffness is presented.

Generation of Ritz Vectors

Initial Vector Calculation U1

• Triangularisation of stiffness Matrix. K = LtDL

• Solve for the initial set of static displacement vectors
resulting from spatial load patterns F in the form F Us
= K.

• Make this set of vectors Us, mass or stiffness orthogo-
nal as required.

Generation of sets of Ritz vectors i = 2,......N

• Make the set of vectors, Xi, stiffness and mass orthogo-
nal, Ui.

• Solve for sets of vectors, Xi, using the recursive rela-
tionship such that K Xi = MUi-1.

• Use Modified Gram-Schmidt method to make Ui or-
thogonal to all previously calculated vectors and
normalized so that Ui

 t MUi = I.

Making the vectors stiffness orthogonal

• The N x N eigen value problem [K - ω2 I] Z = 0 is solved
with K

_
  =  Ui

 t  K  Ui.

• Compute the stiffness orthogonal Ritz vectors, ϕ =  UZ.

A Physical Explanation

The physical explanation for the method is the recog-
nition that the dynamic response of a structure will be a
function of the spatial load distribution. For the case of
un-damped, dynamic equilibrium equations of an elastic
structure can be written in the following form

[M]  ⎧⎨⎩U
..
(t)⎫⎬⎭  +  [K]  ⎧⎨⎩U(t)

⎫
⎬
⎭  =  ⎧⎨⎩R(t)

⎫
⎬
⎭ (A-1)

where R(t), the time dependent loading acting on the
structure which can be separated into a spatial load vector
F and a time function G(t) in the form

R(t)  =  ∑ 
i = 1

n

   fi gi (t)  =  F G(t) (A-2)

The time function G(t) can always be expanded into a
Fourier series of sine and cosine functions. Hence, ne-
glecting damping, a typical dynamic equilibrium equation
to be solved as shown in Eqn. (A-3)

[M]  ⎧⎨⎩U
..
(t)⎫⎬⎭  +  [K]  ⎧⎨⎩U(t)

⎫
⎬
⎭  =  ⎧⎨⎩F Sin ω(t)⎫⎬⎭ (A-3)

Hence, the exact dynamic response for a typical load-
ing frequency is of the following form 

KU = F + ω
2
 MU (A-4)

This equation cannot be solved directly because of the
unknown frequency of the loading. However, a series of
stiffness and mass orthogonal vectors can be calculated
that will satisfy this equation using a perturbation algo-
rithm. The first set of vectors is a static deformation caused
by the spatial distribution of the dynamic load vector F
such that

K Us  =  F (A-5)

From Equation (A-5) it is apparent that the error in the
solution by neglecting the inertia forces, can be approxi-
mated by

F1  =  ω
2
 M Us (A-6)
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Therefore, an additional set of displacement vectors
U1 can be calculated from

KU1  =  F1 (A-7)

This first Ritz vector is mass-normalized as U1 = U1/
[U1

t M U1]1/2

The subsequent Ritz vectors are recursively generated
and the following recurrence relationship used to compute
the next Ritz vector Ui as

K Ui  =  M Ui-1 (A-8)

This is similar to the one given by Eqn. (12). The linear
independence of these Ritz vectors is achieved using the
Gram-Schmidt orthogonalisation (mass-orthogonalised
with respect to all the previous Ritz vectors followed by
mass normalisation of the current Ritz vector). A large
number of vectors can be generated by Eqn. (A-8). It is
interesting to note that the recursive equation, used to
generate the Ritz vectors, is similar to the Lanczos algo-
rithm for calculating exact eigen values and vectors, ex-
cept that the starting vectors are the static displacements
caused by the spatial load distributions.
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