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Abstract

An energy based smeared stiffener model is developed to obtain equivalent stiffness coeffi-
cients of a general grid-stiffened composite cylindrical shell. These equivalent stiffness
coefficients are used in the Ritz buckling analysis of the shell. Transverse shear properties are
important in a stiffened shell and results are obtained for First order Shear Deformation
Theory (FSDT) as well as for Classical Laminated Shell Theory (CLST). Parametric study is
carried out to find out the effects of various design parameters on specific buckling load of
the shell.
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Notations

a = spacing of helical ribs
A, B, = extensional stiffness matrix, extension-bending
D, S     coupling stiffness matrix, bending stiffness

    matrix and transverse shear stiffness matrix
    respectively for the ribs / skins

A*, B* = extensional compliance matrix,
D*, S*     extension-bending coupling compliance

    matrix, bending compliance matrix and 
    transverse shear compliance matrix
    respectively for the ribs / skins

Aeq, Beq, = extensional stiffness matrix,
Deq, Seq     extension-bending coupling stiffness matrix,

    bending stiffness matrix and transverse
    shear stiffness matrix respectively for the
    equivalent shell

Aeq
∗  , Beq

∗ = extensional compliance matrix,

Deq
∗  , Seq

∗    extension-bending coupling compliance
    matrix, bending compliance matrix and
    transverse shear compliance matrix respectively
    for the equivalent shell 

Aij, Bij = elements of stiffness matrices of the
Dij, Sij     stiffening ribs / skin

Aijeq, Bijeq = elements of stiffness matrices of the
Dijeq, Sijeq     equivalent shell

ba, bc, bh = cross-sectional widths of axial,
    circumferential and helical ribs respectively

D = diameter of the shell
hk = z co-ordinate of the kth ply
k = shear correction factor 
L = length of the shell
m, n = half wave numbers

Mx, My, = moments per unit length applied on the
Mxy     system of stiffening members 

Mxeq, = moments per unit length of the equivalent 
Myeq,Mxyeq    shell

na, nc, nh = numbers of axial, circumferential and
    helical ribs respectively

N, M, Q = vectors of unit in-plane forces, moments
    and transverse forces respectively for
    the ribs / skins

Neq, Meq = vectors of unit in-plane forces, moments
Qeq     and transverse forces respectively for the

    equivalent shell

Nx, Ny, = in-plane forces per unit length applied
Nxy     on the system of stiffening members

Nxeq, = in-plane forces per unit length of the
Nyeq, Nxyeq    equivalent shell

Qxz, Qyz = transverse forces per unit length applied
     on the system of stiffening members

Qxzeq = transverse forces per unit length of the
Qyzeq      equivalent shell
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Q = reduced transformed stiffness matrix of the
    composite laminate making the ribs / skins

Rs, R = radii of the imaginary cylinder through the
     system of stiffening members and the
     equivalent shell

u, v, w = displacements at a point (x,y,z) in the
     x, y, z directions respectively

uo, vo, wo = displacements at a point in the mid-plane

U, V, Π = strain energy, work done by external forces
    and total potential energy respectively
    of the shell

Umn, Vmn = amplitudes of generalized displacements
Wmn, Rmn, Tmn

x, y, z = axial, circumferential and radial co-ordinates
    as per cylindrical co-ordinate system (Fig.1)

φx , φy = rotations of transverse normal

εx , εy , γxy= in-plane normal and shear strains

γyz , γxz = transverse shear strains

εx
0 , εy

0 , = in-plane normal and shear strains in the

γxy
0      mid-plane

 γyz
0  ,  γxz

0 = transverse shear strains in the mid-plane

εx
1 , εy

1 , = changes in curvatures in mid-plane

γxy
1

ε0, ε1, γ = vectors of in-plane strains, changes in curva-
     tures and transverse strains respectively

Δ = surface area
θ = angle of orientation of helical ribs

     w. r. t. meridian

Introduction

Cylindrical shells are used in many aerospace and
other high end applications that demand weight effi-
ciency. A common loading condition for such a structure
is axial compression. In these applications, buckling be-
havior of the structure is of critical importance. Composite
shells, in general, and composite grid-stiffened shells, in
particular, provide very high specific strength and stiff-
ness properties making them very attractive in such appli-
cations. In these shells a grid of stiffening ribs is made by
filament winding along grooves cut in foam or plaster
layer on a metallic mandrel. Either an inner skin or an

outer skin or both are laid by filament winding. In certain
applications no skin is used. The stiffening ribs are basi-
cally unidirectional composite and they form a very effi-
cient system of load bearing elements. As a result, grid-
stiffened composite shells provide better buckling resis-
tance and there is a growing interest in them; but they still
are a subject of relatively recent origin.

Vasiliev et. al [1] give a note on the development of
grid-stiffened composite shells. A design and analysis
procedure that considers transverse shear properties is
discussed. Initial design/analysis is based on a continuum
model where stiffening ribs are smeared to arrive at an
equivalent shell. Three basic methods are used in the
buckling analysis of a stiffened shell (i) smeared stiffener
model, (ii) discrete model and (iii) branched plate and
shell model. Smeared stiffener approach is based on
mathematical models that smear the stiffening ribs into an
equivalent ply. This is very efficient in global buckling
analysis and especially useful to narrow down the choice
of design elements in the initial design phase. Several
authors [1-7] have adopted the smearing approach in
buckling analysis of stiffened shells. Vasiliev et. al [1] and
Jones [2] have used rib spacing in relation to rib cross
sectional width as the criterion to smear the ribs. Wode-
senbet et. al [3] and Kidane et. al [4] present a global
buckling analysis model wherein smeared stiffener ap-
proach is used through force/moment analysis of a unit
cell to determine stiffness contribution of the stiffeners.
Transverse strain and shear strains are neglected. An
improved smeared stiffener model that accounts for trans-
verse shear flexibility is used by Jaunky et. al [5, 6] and
Damodar et. al [7]. In this model skin-stiffener interaction
effects are included by considering a neutral surface pro-
file of the skin-stiffener combination. Smearing criterion
is based on equivalence of strain energies and the method
involves considering the strain energies of the skin and
stiffeners through the use of strain compatibility equa-
tions. Slinchenko et. al [8] used the smearing approach,
on the basis of rib spacing, to determine structural stiffness
matrix for finite element analysis of grid-stiffened struc-
ture. The discrete approach and branched plate/shell ap-
proach are computationally more involved and these
methods are normally used in the final design phase of a
grid-stiffened shell. Several authors have worked in these
directions e.g. Huybrechts et. al [9] and Wang [10].

Issues involved in buckling analysis of composite
structures are complex and the subject is still evolving as
is evident from a large number of publications that are
appearing regularly. For example Jaunky et. al [11] give
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an assessment of shell theories as applied to buckling of
cylindrical laminated composite shell. Geier et al [12]
present some simple solutions for buckling behavior of
cylindrical shell.

Publications on grid-stiffened shell are limited and a
sizable portion of it is on FEA, manufacturing and testing.
Finite element analysis of grid-stiffened shells is complex
and time consuming and it is difficult to accommodate
changes in the grid configuration [8]. Filament wound
composite grid-stiffened shells throw up numerous possi-
ble design configurations in terms various design elements
e.g. (i) types of stiffening ribs - helical, circumferential,
axial or a combination thereof, (ii) number of ribs, (iii)
cross sectional details, (iv) spacing of ribs, (v) skin details,
etc. In the initial design phase, wherein broad choice of
design elements is made, one needs to consider numerous
possible configurations. FEA in such a situation is time
consuming and it is more economical to use a quick tool
such as smeared stiffener model to find global buckling
load.

The primary aim of this work is to present a simple and
efficient analytical model for global buckling analysis that
would be useful in the initial design phase. A cylindrical
composite shell stiffened by a grid of continuous ribs is
considered. Smearing the ribs into an equivalent shell is
done by equating the strain energy of the stiffened shell to
that of the equivalent shell and the methodology involves
use of stress/moment resultants in the formulation of strain
energy. Ritz buckling analysis of the equivalent composite
shell is carried out to find out the critical buckling load as
well as the mode shapes. Due to the presence of several
parameters optimal design of a grid-stiffened shell is
always a challenge. In this work, all the design parameters
mentioned in the previous paragraph have been consid-
ered; thus, effect of change in any of the design parameters
on the final buckling response can be readily found out.
Towards this a parametric study is carried out as an aid
and broad conclusions are arrived at. Transverse shear
properties are important in a stiffened shell and transverse
shear terms are included in the formulations. Results as
per CLST and those as per FSDT are compared.

Analytical Formulation

Kinematic Relations

Classical Laminated Plate/Shell Theory is based on the
following displacement field [13]:
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Displacements and the co-ordinate directions are de-
fined in Fig.1. Following Kirchhoff hypothesis,

εz  =  γxz  =  γyz  =  0  and the strain-displacement rela-
tions for CLST are given by :
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The strains are given by :
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In the First order Shear Deformation Theory, the as-
sumption regarding perpendicularity of a  tranverse nor-
mal to the laminate mid-plane is relaxed and the
displacement field for a cylindrical shell is obtained as :
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Consequently, the strain-displacement relations for
FSDT are given by :
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where C1 and C2 are ‘tracer’ coefficients that take the
values as follows [11] :

C1 = 1, C2 = 1   Sanders-Koiter shell theory

C1 = 1, C2 = 0   Love’s shell theory

C1 = 0, C2 = 0   Donnell’s shell theory

The strains are given by :
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Constitutive Relations

In the Classical Laminate Plate/Shell theory, the trans-
verse shear terms do not appear and the linear constitutive
relations can be expressed as :
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Transverse shear terms are included in the First order
Shear Deformation Theory and the constitutive relations
are modified as :
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Fig.1 Co-ordinate system and displacements
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The vectors and matrices in Eqn. (7) and Eqn. (8) are
defined as :
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Energy Formulations

The total potential energy of the grid stiffened com-
posite shell is given by the sum of the strain energy and
work done by external forces.

Π  =  U + V (10)

Strain energy is given by :

U  =  12 ∫ ∫ ∫ ⎛⎝σxεx + σy εy + σz εz

+ τxy γxy + τyz γyz + τxz γxz ) dz dx dy (11)

In Classical Laminate Plate/Shell Theory, transverse shear
strains are zero and we obtain the following :
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In the First order Shear Deformation theory, transverse
shear strains are included and we get the following :
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A convenient way to express the strain energy for Ritz
buckling analysis is in terms of the generalized strain
vector and stiffness matrix:

For CLST :
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and, for FSDT : 

U  =  ∫
0

2πR

  ∫
0

L

   

⎧

⎨

⎩

⎪

⎪

 ε0 
 ε1 
γ

⎫

⎬

⎭

⎪

⎪
    
⎡

⎢

⎣

⎢

⎢

 A      B     0
 B    D     0
 0     0     S

⎤

⎥

⎦

⎥

⎥
    

⎧

⎨

⎩

⎪

⎪

 ε0 
 ε1 
γ

⎫

⎬

⎭

⎪

⎪
 dx dy (17)

The work done by in-plane loads are given by [14] :

V  =  ∫
0

2πR

   ∫
0

L

  
⎡
⎢
⎣
Nx 

⎛
⎜
⎝

∂w
∂x

⎞
⎟
⎠

2

+  Ny 
⎛
⎜
⎝

∂w
∂y

⎞
⎟
⎠

2
⎤
⎥
⎦

+  ⎡⎢
⎣
Nx y 

⎛
⎜
⎝

∂w
∂x

  ∂w
∂y

⎞
⎟
⎠

⎤
⎥
⎦
 dx dy (18)

Smeared Stiffener Model

Figure 2 shows a sector of a cylindrical system of
helical, axial and circumferential stiffening members.
This system is converted into a set of equivalent plies
(Fig.3) represented by a set of equivalent stiffness coeffi-
cients. The procedure involves applying axial force, lat-
eral force, in-plane shear force and lateral shear forces

independently on the stiffening members as well as on the
equivalent shell. These forces are also applied eccentri-
cally w. r. t. the mid plane of the stiffening members.
Figs.2 and 3 show the stiffening members and the equiva-
lent plies under axial compression Px that result the fol-
lowing:

Nx  =  
Px

2 nh bh  ⁄  cos θ + na ba

Nxeq  =  
Px

2 π R
(19)

Expressions for the moment resultants and the remain-
ing stress resultants are obtained by constructing figures
similar to Figs.2 and 3. Finally, all stress/moment resul-
tants of the stiffening members are related to those of the
equivalent plies and the resulting relations are summa-
rized in Eqn. (20).

Nx
Nxeq

  =  
Mx

Mxeq
  =  

Nx z
Nxzeq

  =  
2 π Rs cos θ

2 nh bh + na ba cos θ

Ny
Nyeq

  =  
My

Myeq
  =  

Ny z
Nyzeq

  =  L sin θ
2 nh bh + nc bc sin θ

Nx y
Nxyeq

  =  
My

Mxyeq
  =  

2 π Rs cos θ

2 nh bh + na ba cos θ
(20)

It may be noted that in the above formulation, it is
inherently assumed that axial members do not share lateral
force and the circumferential members do not share axial
force. 

Fig.2 A combination of helical, axial and
circumferential stiffening members

Fig.3 Equivalent plies
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Different possible load combinations are applied in
Eqn. (13) and Eqn. (15) and comparing the strain energies,
elements of the equivalent compliance matrix are ob-
tained. For example, a non-zero load combination of Nx,
Nxeq would give A11eq

∗   =  X1 X4 A11
∗  other non-zero load

combinations are considered and the final expressions for
compliance matrices of the equivalent plies are obtained
as given in Eqn. (21).

⎡
⎢
⎣
Aeq
∗ ⎤
⎥
⎦
  =  X4  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 X1 A11
∗      X3 A12

∗      X1 A16
∗  

                X2 A22
∗      X3 A26

∗  

                Symm      X1 A66
∗

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎢
⎣
Beq
∗ ⎤
⎥
⎦
  =  X4  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 X1 B11
∗      X3 B12

∗      X1 B16
∗  

X3 B21
∗      X2 B22

∗      X3 B26
∗  

X1 B61
∗      X3 B62

∗      X1 B66
∗

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎢
⎣
Deq
∗ ⎤
⎥
⎦
  =  X4  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 X1 D11
∗      X3 D12

∗      X1 D16
∗  

                X2 A22
∗       X3 D26

∗  

                Symm       X1 D66
∗

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎢
⎣
Seq
∗ ⎤
⎥
⎦
  =  X4  

⎡

⎢

⎣

⎢

⎢

 X2 A44
∗        X3 A45

∗  

 Symm        X1 A55
∗

⎤

⎥

⎦

⎥

⎥
(21)

The parameters X1, X2, X3 and X4 are given by :

X1  =  
⎛
⎜
⎝

⎜
⎜

2π Rs cos θ

2 nh bh + na ba cos θ

⎞
⎟
⎠

⎟
⎟

2

X2  =  ⎛⎜
⎝

L sin θ
2 nh bh + nc bc sin θ

⎞
⎟
⎠

2

X3  =  
⎛
⎜
⎝

⎜
⎜

π Rs sin 2 θ

(2 nh bh + na ba cos θ)  (2 nh bh + nc bc sin θ )

⎞
⎟
⎠

⎟
⎟

X4  =  

⎛

⎜

⎝

⎜

⎜

2nh bh L

cos θ
  +  na bh L + 2nc πbc Rs

2πRL

⎞

⎟

⎠

⎟

⎟ (22)

Then, the equivalent stiffness coefficients are obtained
by :

⎡

⎢

⎣

⎢

⎢

Aeq     Beq

Beq     Deq

⎤

⎥

⎦

⎥

⎥
  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

Aeq
∗      Beq

∗

Beq
∗T     Deq

∗

⎤

⎥

⎦

⎥
⎥

⎥
⎥

and

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

Aeq     Beq     0

Beq     Deq     0

0         0        Seq

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢
⎢

Aeq
∗      Beq

∗      0

Beq
∗T     Deq

∗      0

0         0        Seq
∗

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥

  −1

(23)

where

⎡
⎣
Aeq⎤⎦

  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 A11eq     A12eq       A16eq

                A22eq      A26eq

                Symm      A66eq

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎣
Beq⎤⎦

  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 B11eq     B12eq       B16eq

                B22eq      B26eq

                Symm      B66eq

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎣
Deq⎤⎦

  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 D11eq     D12eq       D16eq

                D22eq      D26eq

                Symm      D66eq

⎤

⎥

⎦

⎥
⎥

⎥
⎥

⎡
⎢
⎣
Seq
∗ ⎤
⎥
⎦
  =  

⎡

⎢

⎣

⎢

⎢

 A44eq       A45eq

 Symm        A55eq

⎤

⎥

⎦

⎥

⎥
(24)

The equivalent plies together with the plies of the
inner/outer skins (if present) constitute an equivalent com-
posite cylindrical shell and global equivalent stiffness
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coefficients are obtained by adding the stiffitess matrices
of the equivalent plies to those of the inner/outer skins.

Buckling Analysis 

Ritz buckling analysis through minimization of total
potential energy of the equivalent composite shell is
adopted. Transverse shear characteristics are not consid-
ered in the classical laminated plate/shell theory but the
same are important in a grid-stiffened shell. Formulations
following CLST as well as FSDT are used in this study.
Given below is a description of the methodologies used in
the buckling analysis.

The total potential energy of the grid stiffened com-
posite shell is obtained from Eqn. (10), Eqn. (16) and Eqn.
(17). Strain-displacement relations given by Eqn. (2) and
Eqn. (5) are used in the energy expressions and the total
energy of the shell is expressed as an integrand of gener-
alized displacements. In the case of CLST, these displace-
ments are  uo , vo , and wo  whereas for FSDT these
displacements are uo , vo , wo , φx , and φy. These displace-
ments  are  expressed  as  kinematically  admissible ex-
pressions for simply supported boundary conditions as
follows [2]:

u = ∑ 
m = 1

∞

    ∑ 
n = 1

∞

  Umn cos α x   cos βy

v = ∑ 
m = 1

∞

    ∑ 
n = 1

∞

  Vmn sin α x   sin βy

w = ∑ 
m = 1

∞

    ∑ 
n = 1

∞

  Wmn sin α x   sin βy

φx = ∑ 
m = 1

∞

    ∑ 
n = 1

∞

  Rmn cos α x   cos βy

φy = ∑ 
m = 1

∞

    ∑ 
n = 1

∞

  Tmn sin α x   sin βy (25)

where,  α  =  mπL    and   β  =  nR

First derivatives of Π w.r.t. Umn, Vmn and Wmn (in case
of CLST) are equated to zero. In the case of FSDT deriva-

tives are also found w. r. t. Rmn andTmn. For equilibrium,
the total potential energy has to be minimum for which the
above derivatives are equated to zero and an Eigen value
problem is formed. For different values of α and β differ-
ent applied loads satisfy the equilibrium equations out of
which the minimum load is the critical buckling load.

Parametric Studies

Behavior of a grid-stiffened shell is influenced by a
number of variables that necessitates use of quick tools in
the preliminary design phase. Smeared stiffener models
are efficient in estimating the global buckling failure and
in this section influence of various variables on specific
buckling load (buckling load per unit length of circumfer-
ence per unit mass of the shell) of a 500mm diameter shell
is studied. Graphical representation of dependence of
specific buckling load on the independent variable is
made. Discontinuities in the graphs are noticed; these are
attributed to changes in the values of the half wave num-
bers m and n. As is evident the values of m and n vary from
place to place and for the test cases, covering all the
independent variables, carried out in this work these val-
ues vary between 1 and 18 for m and 1 and 9 for n. Material
system for the skin as well as the ribs considered in this
study is carbon/epoxy with the following values:

E1 = 170GPa, E2 = 6.5GPa, G12 = 5.6GPa, G23 =
2.8GPa, G13 = 5.6GPa and v12 = 0.35

Orientation of Helical Ribs

Three different configurations are considered: i) only
helical ribs, ii) helical and axial ribs and iii) helical and
circumferential ribs. (Fig. 4.) No skin was considered in
these configurations.

Fig.4 Stiffening rib patterns : (i) Helical ribs only, (ii) Helical
and axial ribs, (iii) Helical and circumferential ribs
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Angle of orientation (defined as the angle between the
local tangent at a point on the helical rib and the local
meridian, Fig. 4) of the helical ribs was varied from 5° to

85° and the results are shown in Figs. 5a and 5b. (The
choice of the range 5° to 85° is based on the fact that
although theoretically helical winding is possible at any
angle within the range 0° < θ < 90°, θ being the angle of
winding, from a practical point of view, helical ribs either
at very low angle or at very high angle are i) difficult/im-
possible to manufacture and ii) not common in most
product). It is observed that helical ribs at 30° to 60° result
in the highest specific buckling load. Presence of axial ribs
and circumferential ribs, in addition to the helical ribs,
make the occurrence of specific buckling load skewed
towards the high orientation angle and low orientation
angle respectively. Also, CLST, as compared to FSDT,
consistently overestimates the specific buckling load. This
is particularly true when the angle of helical rib is high.

L/D Ratio

LID ratios of 0.75, 1.0 and 1.25 are considered. As
expected higher L/D ratios, as seen from Figs. 5a, 5b and
5c, result in lower specific buckling load.

Skin Thickness

Three cases of stiffening pattern (as shown in Fig. 4)
are considered. However, in addition to the stiffening ribs
two skins are also put. The lay-up sequence is: [90°/+45°/-
45°/0°]s. (Ply orientation is defined w.r.t. the local merid-
ian). Skin thickness is varied from 0 to 10 mm and the
results are shown in Figs.6a to 6c. It is observed that
irrespective of the stiffening rib pattern, a lattice structure
with stiffening ribs only (i.e. without any skin) is the most
efficient shell from specific buckling load. There is a
general tendency of specific buckling load to come down
to a minimum with gradually increasing skin thickness up

Fig.5a Effect of orientation of helical ribs
(only helical ribs without skin)

Fig.5b Effect of orientation of helical ribs
(helical and axial ribs without skin)

Fig.5c Effect of orientation of helical ribs
(helical and circumferential ribs without skin)

Fig.6a Effect of skin thickness (only helical ribs
with two skins)
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to about 4mm to 8mm after which specific buckling load
increases very gradually with increasing skin thickness. It
indicates that addition of a thin skin on to the system of
stiffening ribs adds to the overall weight with little addi-
tion to the global stiffness characteristics of the shell and
thereby the specific buckling load of the shell is reduced.
On continuous increase in the skin thickness, total mass
of the shell increases but the shell stiffness characteristics
improve at a lower rate. As a result, specific buckling load
of lattice structure without skin remains the maximum.

Rib Thickness

Configurations same as in the above section are con-
sidered here with the difference that here rib thickness is
varied from 0 to 10 mm and the skin thickness is kept
constant at 2mm. Results are shown in Figs. 7a to 7c. It is
observed that the specific buckling loads increase as the

Fig.6b Effect of skin thickness (Helical and axial ribs
with two skins)

Fig.6c Effect of skin thickness (Helical and
circumferential ribs with two skins)

Fig.7a Effect of rib thickness (only helical ribs
with two skins)

Fig.7b Effect of rib thickness (Helical and axial ribs
with two skins)

Fig.7c Effect of rib thickness (Helical and
circumferential ribs with two skins)
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rib thickness increases. It is in the expected line as the
stiffness characteristics are greatly improved with in-
crease in rib thickness.

Rib Spacing

Rib spacing depends on the number of helical winding
starts. Number of helical winding starts is varied from 3
to 45 for three stiffening rib patterns. For each start, rib
spacing is found out based on the angle of helical rib and
variations of specific buckling load w. r. t. a/b ratio (ratio
of spacing of helical rib to width of helical ribs) are plotted
in Figs. 8a to 8c. As is evident from the figures specific
buckling load is the highest for the least a/b ratio.

Conclusion

An energy based smeared stiffener model is developed
for global buckling analysis of a general grid-stiffened

composite cylindrical shell. This analytical method, in the
initial design phase, facilitates trying out several combi-
nations of design parameters in an efficient way and
thereby the designer can conte to an optimal configura-
tion.

Parametric study is carried out to find out the effects
of various design parameters on specific buckling load of
the shell. From the point of global buckling, a lattice
cylinder without any skin is found to be the most efficient;
in other words, minimum skin thickness corresponds to
the maximum specific buckling load. On the other hand,
specific buckling load is generally proportional to increas-
ing rib thickness. Another fact that comes out is that lower
is the rib spacing higher is the specific buckling load.

Ritz energy based approach is adopted in the buckling
analysis. Transverse shear properties are important in a
stiffened shell and so, First order Shear Deformation
Theory, in addition to Classical Laminated Shell Theory,
is considered to find out the stiffness matrices. Composites
are generally weak in transverse properties that are ig-
nored in CLST but considered in FSDT. It is found that
CLST as compared to FSDT, consistently overestimates
the specific buckling load of a grid-stiffened cylinder.
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