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Abstract

In this paper structural analysis of nonhomogeneous nanotubes has been carried out using
nonlocal elasticity theory. Governing differential equations of nonhomogeneous nanotubes
are derived. Nonlocal theory of elasticity has been employed to include the scale effect of the
nanotubes. Nonlocal parameter, elastic modulus, density and diameter of the cross sections
are assumed to be functions of spatial coordinates. General Differential Quadrature (GDQ)
method has been employed to solve the governing differential equations of the nanotubes.
Various boundary conditions have been applied to the nanotubes. Present results considering
nonlocal theory are in good agreement with the results available in the literature. Effect of
various geometrical and material parameters on the structural response of the nonhomogene-
ous nanotubes has been investigated. Present results of the nonhomogeneous nanotubes are
useful in the design of the nanotubes.
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Introduction

Nano sized tubes hold an important area of research
for the future structural developments and design in mod-
ern aerospace engineering. This is due to their novel
mechanical and electronic properties. These nano-tubes
have got highly promising applications in nanotube-rein-
forced ultra-strong composites, MEMS/NEMS devices
and smart structures. Analysis of nano tubes are useful in
the design of advanced aerospace nano structures. Since
the discovery of carbon nanotubes (CNT) by Iijima [1]
good amount of research work has been reported in the
literature. Review work related to behavior of the CNTs
due to novel electronic and mechanical properties are
reported by Thostenson et al. [2] and Ronald et al. [3].
Conducting experiments with nanoscale size specimens is
found to be difficult and costly. Therefore, development
of appropriate mathematical models for CNTs became an
important issue. Generally, three approaches have been
developed to model CNTs. These approaches are (a)
atomistic (b) hybrid atomistic-continuum mechanics and
(c) continuum mechanics. Atomistic approach uses (i)
classical molecular dynamics simulation, (ii) tight binding
molecular dynamics and (iii) density functional models.

These models are discussed by Ball [4] and Baughman et
al. [5]. But these approaches are computationally intensive
and very expensive. So hybrid atomistic-continuum me-
chanics approach was tried by Bodily and Sun [6] and Li
and Chou [7, 8]. In this hybrid approach the CNTs are
represented by structural elements. The strain energy is
considered to be equivalent of the steric energy. This
hybrid approach is computationally less expensive than
the atomistic approach. Some researchers employed con-
tinuum mechanics approach for the analysis of CNTs.
Here single wall carbon nanotubes are modeled by a
continuum beam or cylindrical shell elements. This con-
tinuum mechanics approach is ideal in analyzing large
scale systems containing CNTs. For multi walled CNTs a
multi beam model has been proposed by Yoon et al. [9,10].
For more accurate analysis shear deformation theories of
beam have been proposed by Wang et al [11], Wang and
Vardan [12] and Aydogdu [13]. Eringen [14, 15] devel-
oped nonlocal elasticity theory. In this nonlocal elasticity
theory scale effect is included. While classical elasticity
theory is indifferent to scale effects. Peddieson et al. [16]
proposed analysis of nanostructures based on Eringens
nonlocal elasticity theory. The nonlocal elasticity theory

Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, Kharagpur-721 302, West Bengal, India,
Email : scp@aero.iitkgp.ernet.in
Manuscript received on 18 Aug 2008; Paper reviewed, revised, re-revised and accepted on 12 Jun 2009



has been further applied to the static and dynamic analysis
of single walled and multi walled CNTs by Wang et al.
[17], Wang and Varadan [18] and Pin et al. [19].

 In all the above mentioned work, analysis of the
homogeneous nanotubes (CNT) has been carried out. See-
man [20] found that nonhomogeneous nanotubes are fre-
quently encountered in DNA nanotechnology
applications. He observed that different proteins are
chemically glued to form nano-architectures of the nano-
tubes. Rothemund et al. [21] reported that DNA nanotubes
are similar in size and shape as carbon nanotubes. They
suggested that DNA nanotubes could be easily modified
and connected to other structures. Important applications
of DNA nanotubes include nano-wires and nano-pipes.
Nonhomogeneous nanotubes can be addressed similar to
CNTs. To the authors best knowledge no work has been
addressed for the analysis of nonhomogeneous nanotubes
employing continuum mechanics approach. Therefore in
the present work bending, vibration and buckling analyses
of a nonhomogeneous nanotube have been carried out and
results are discussed.

Formulation

Nonhomogeneous Nanotube

Non-homogeneity imparts additional complexity to
the analysis of the nanotubes in the following ways. The
material properties viz elastic modulus, nonlocal parame-
ter and density are functions of spatial coordinates. For the
beam structure these variations are assumed be in the axial
direction. The internal characteristic lengths are different
for different materials. Thus variation of nonlocal parame-
ter along the nanotube axial direction needs to be consid-
ered. Similarly, different bond lengths will result in
variation of the nanotube diameter. Therefore in the analy-
sis of nonhomogeneous nanotubes variation of elastic
modulus, density, nonlocal parameter and nanotube di-
ameter along the axial direction are to be included. In the
present study a nonhomogeneous nanotube is modeled by
nonlocal elastic continuum Euler-Bernoulli beam of annu-
lar crossection. Elastic modulus, density, scale factor and
diameter of nanotube are assumed to be functions of axial
coordinate. For modeling the double walled nonhomo-
geneous nanotube multi Euler-Bernoulli beam has been
employed.

 
According to Eringen [14] the nonlocal constitutive

behavior of a Hookean solid can be represented by the
following differential constitutive relation

(1 − τ 2 l2 ∇2
) σ  =  t, τ  =  

e0 a
l (1)

Here e0 is a material constant, ‘a’ and l are external and
internal characteristic lengths respectively. t is the macro-
scopic stress at a point which is related to strain by gener-
alized Hookes law:

t (x)  =  C (x) : ε (x) (2)

where C is the fourth order elasticity tensor and ‘:’ denotes
the double dot product. It is assumed that nonlocal behav-
ior is significant in axial direction of the nanotube. Thus,
nonlocal constitutive relation mentioned in equation (1)
takes the following form for an isotropic Euler-Bernoulli
beam.

σ (x)  −  μ d
 2 σ (x)

dx2   =  Eε (x) (3)

Here, μ  =  (e0a)2 is the scale factor. E is the elastic
modulus. As it is a differential relation, non-homogeneity
can be incorporated in this equation. For nonhomogeneous
case this differential relation (3) takes the following form

σ (x)  −  μ (x) d
 2 σ

dx2   =  E (x)  ε (x) (4)

From the definition of resulting bending moment and
strain displacement relation in Euler-Bernoulli beam

M  =  ∫  
A

z σ dA (5)

ε  =  − z ∂
2 w

∂x2 (6)

Using equation (4), (5) and (6) we get following mo-
ment-displacement relation

M (x)  −  μ (x) d
 2M (x)

dx2   =  E (x) I (x) d
 2w

dx2 (7)

Bending Analysis of Single Walled Nanotube
(SWNT)

For an Euler-Bernoulli beam acted by distributed load
q(x), the equilibrium equation is expressed as
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q (x)  =  d
 2M (x)

dx2 (8)

 Differentiating twice equation (7) and substituting
from equation (8), we get the following governing equa-
tion for bending of nonhomogeneous beam

Ω5
 bn d

 4w
dx4   +  Ω4

 bn d
 3w

dx3   +  Ω3
 bn d

 2 w

dx2   +  Ω0
 bn  =  0 (9)

Ω0
 bn, Ω3

 bn, Ω4
 bn,  and Ω5

 bn are defined in Appendix.

Vibration Analysis SWNT

For free vibration we have the following equation for
equilibrium

∂
2 M

∂x2   =  ρ (x) A (x) ∂
2 w

∂t2
(10)

ρ (x) and A (x) denote density of the material and area of
cross section, respectively. Differentiating twice equation
(7) and substituting in equation (10), we get the following
governing equation for vibration of nonhomogeneous
beam

γ
5

vb
 ∂

 4
w

∂ x
4  + γ

4

vb
 ∂

 3
w

∂ x
3  + γ

3

vb
 ∂

 2
 w

∂ x
2  + Θ

5

vb
 ∂

 4
w

∂ x
2
 ∂t

2 + Θ
4

vb
 ∂

 3
w

∂ x ∂t
2 + Θ

3

vb
 ∂

 2
w

∂t
2  = 0

(11)

γ3
 vb, γ4

 vb, γ5
 vb, Θ3

 vb, Θ4
 vb and Θ5

 vbare defined in the Appen-
dix. The above equation is converted to an eigenvalue
problem by assuming the periodic function

w (x, t)  =  w (x) e i ω t (12)

Substituting equation (12) into equation (11), we have

Ω
5
 vb

 d
 4

w

dx
4  + Ω4

 vb
 d

 3
w

dx
3  + Ω

 3
 vb

 d
 2

 w

dx
2  + Ω

 2
 vb

 dw
dx  + Ω

 1
 vb

 w  =  0

(13)

Ω1
 vb, Ω 2

 vb, Ω3
 vb, Ω 4

 vb and Ω5
 vb are defined in the Appen-

dix.

Buckling Analysis SWNT

The equilibrium equation for buckling of an Euler-
Bernoulli beam under axial compressive load P is given
by

d 2M

dx2   =  P d
 2 w

dx2 (14)

Differentiating twice equation (7) and substituting
from equation (14) we get governing equation for buckling
of nonhomogeneous nanotube

Ω5
 bk d

 4w

dx4   +  Ω4
 bk d

 3w
dx3   +  Ω3

 bk d
 2 w

dx2   =  0 (15)

Ω3
 bk, Ω4

 bk and Ω5
 bk are defined in the Appendix.

Boundary Conditions

All four classical boundary conditions have been con-
sidered in the analysis. These are (i) Simply supported -
Simply supported (S-S) (ii) Clamped  Free (C-F) (iii)
Clamped  Simply supported (C-S) and (iv) Clamped -
Clamped (C-C). As we are solving fourth order differen-
tial equations (equations 9, 13, 15) on w we need four
boundary conditions in w in each case. The displacement
and stress boundary conditions associated with S-S, C-F,
C-S and C-C cases are listed in Table-1.

Here L denotes the length of the beam. To get four
boundary conditions on w we must convert the stress
boundary conditions to corresponding displacement
boundary conditions. However for C-C cases we have four
inherent displacement boundary conditions and no stress
boundary conditions, so no need of any conversion. The
conversion from stress to displacement boundary condi-
tions must be done by suitable stress-strain relationship
given by nonlocal elasticity theory. We can use the mo-
ment-displacement relationship of equation (7) to get
these nonlocal boundary conditions.

Conversion  of M (x) |x = 0  =  0 for S-S boundary condi-
tion :

Using equations (7) and (8) and putting x = 0,

d 2w

dx2 |x = 0  =  − μ (0) q (0)
E (0) I (0)

(16)
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Conversion of M (x) |x = L  =  0 for S-S, C-F, C-S boundary
condition :

Using equations (7) and (8) and putting x = L,

d 2w

dx2 |x = L  =  − μ (L) q (L)
E (L) I (L)

(17)

Conversion of d M (x)
dx |x = L  =  0 for  C-F boundary condi-

tion :

Differentiating equation (7), substituting in equation
(8) and putting x = L we obtain,

d 3w

dx3 |x = L  =  − 1
E (L) I (L)

  d (μ (x) q (x))
dx |x = L

 − μ (L) q (L)  d (1 ⁄ E (x) I (x))
dx |x = L (18)

Thus we get four boundary conditions on w for all the
boundary conditions considered in the present analysis.

GDQ Method

The governing equations for bending, vibration and
buckling of nonhomogeneous SWNT are presented in
equations (9), (13) and (15), respectively. These equations
have been solved by the differential quadrature method
(DQM) as introduced by Bellman et al. [22]. The DQ
method has been proved to be an efficient numerical

technique for the solution of initial and boundary value
problems. Bert et al. [23] first employed this method to
solve structural mechanics problems. This method has also
been applied successfully to a variety of structural prob-
lems by Bert and Malik [24] and Shu [25]. The fundamen-
tal concept of DQ method is to approximate the partial
derivative of a function with respect to a space variable at
a grid point by the weighted linear sum of the function
values at all grid points in the whole domain. In the present
case the computational domain for the problem is
0  ≤  x  ≤  L. So we have

d ng

d n |x = L  =  ∑ 
j = 1

N

 Aij
n g (x j) (19)

N is the number of grid points. g is the function to be
approximated. Aij

n are DQ weighting coefficients which
can be calculated from the coordinates of the grid points
as follows

Aij
l   =  

M (xi)

(xi − xj) M (x j)
 , for  i  ≠  j (20)

Aii
l   =    − ∑ 

j = 1 , j ≠ i

N

    Aij
l (21)

Aij
m  =  m 

⎛
⎜
⎝

⎜
⎜
Aii

m −1  −  
Aij

m − 1

xi − xj

⎞
⎟
⎠

⎟
⎟
 ,   for   i  ≠  j (22)

Table-1 : Displacement and Stress Boundary Conditions for Various Classical end Conditions
End Boundary

Condition
Displacement Boundary Condition Stress Boundary Condition

S-S w (x)| x = 0  =  0,   w (x)| x = L  =  0 M (x)| x = 0  =  0,   M (x)| x = L  =  0

C-F
w (x)| x = 0  =  0,   dw (x)

dx | x = 0  =  0 M (x)| x = L  =  0,   dM (x)
dx | x = L  =  0

C-S
w (x)| x = 0  =  0,   dw (x)

dx | x = 0  =  0,

w (x)| x = L  =  0

M (x)| x = L  =  0

C-C
w (x)| x = 0  =  0,   dw (x)

dx | x = 0  =  0,

w (x)| x = L  =  0,   dw (x)
dx | x = L  =  0

- -
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Aii
m  =    − ∑ 

j = 1 , j ≠ i

N

    Aij
m (23)

for i, j = 1, 2, 3 ..... , N
       m = 2, 3, 4 ..... , N -1

Here

M (xi)  =      Π
k = 1, k ≠ i

N
     (xi − xk) (24)

To choose grid point distribution the well accepted mesh
governed by the following rule for calculating interpola-
tion points has been adopted

xi  =  12  ⎡⎢
⎣
1 − cos  ⎛⎜

⎝

π i
n
⎞
⎟
⎠

⎤
⎥
⎦
 ,   i  =  0 , ...., n (25)

By applying DQ rule to equations (9), (13) and (15)
we obtain following discretized formulation for equations
(9), (13) and (15), respectively.

Ω5
bn (Xi) ∑ 

k = 1

N

  Aik
4  wi  +  Ω4

bn (Xi) ∑ 
k = 1

N

  Aik
3  wi

+  Ω 3
 bn (Xi) ∑ 

k = 1

N

  Aik
2  wi  +  Ω 0

 bn (Xi) = 0 (26)

Ω
5
vb

 (X
i
) ∑ 
k = 1

N

  A
ik
4

 w
i
  +  Ω

4
vb

 (X
i
) ∑ 
k = 1

N

  A
ik
3

 w
i
  =  Ω

 3
vb

 (X
i
) ∑ 
k = 1

N

  Aik
2

 wi

Ω
 2
 vb

 (X
i
) ∑ 
k = 1

N

  A
ik
1

 w
i
  +  Ω

 1
 vb

 (X
i
) w

i
  =  0 (27)

Ω
5

 bk
 (X

i
) ∑ 
k = 1

N

  A
ik

4
 w

i
  +  Ω

 4

 bk
 (X

i
) ∑ 
k = 1

N

  A
ik

3
 w

i
  +  Ω

 3

 bk
 (X

i
) ∑ 
k = 1

N

  A
ik

2
 w

i
 = 0

(28)

Ω5
 bn (Xi) , Ω 4

  bn (Xi) , Ω 5
  vb (Xi) , Ω 5

 bk (Xi) etc. denote val-

ues of Ω5
 bn , Ω4

 bn , Ω 5
 vb , Ω5

 bk … at the grid coordinate
(Xi). These contain first or higher order derivatives of
elastic modulus, scale coefficient etc. which can be com-
puted numerically by applying DQ approximation for
derivatives. It should be noted that the discretized eigen-

value equations (27) and (28) have been reduced to general
eigen-value problems. The GDQM technique presented
by Shu [25] could efficiently implement the four classical
boundary conditions. The systematic algorithm adopted
here for implementing the boundary conditions for bend-
ing analysis is as follows

Step 1 : Apply discretized governing equations at internal
(N-4) grid points (leaving two leftmost and two rightmost
grid points) only.

Step 2 : Apply discretized boundary conditions on leftmost
and rightmost grid points. This will give four equations
corresponding to four boundary conditions.

Step 3 : Express displacements at two leftmost and two
rightmost grid points in terms of other displacements at
internal (N-4) grid points, using the four equations ob-
tained in step 2.

Step 4 : Substitute for these four displacements of step 3
in the discretized equations obtained in step 1.

Step 5 : Solve these (N-4) equations of step 4 to compute
displacements at internal (N-4) grid points.

Step 6 : Update the displacements of two leftmost and two
rightmost grid points using the computed displacements
in step 5 and expressions obtained in step 3.

For vibration and buckling analyses one needs to solve
the general eigen-value problem arising in Step 4.

Results and Discussions

Convergence study of differential quadrature method
with various grid points is conducted and results are shown
in Fig.1. In this particular example bending analysis has
been carried out. Cubic variation of elastic modulus, non-
local parameter, density and diameter of the nanotube are
considered in this convergence study. From Fig.1, one
could observe that ten grid points are good enough for
reasonably accurate results. Also it was observed that
fifteen grid points are enough to achieve reasonably accu-
rate vibration and buckling results. So in all the following
computations fifteen grid points are employed. This also
reveals the efficiency of DQ method in analyzing nonho-
mogeneous nanotubes.

At first, bending, vibration and buckling results are
obtained by employing local elasticity theory. These re-
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sults are compared with those obtained by Yang [26]
employing distributed transfer function method (DTFM)
for all four boundary conditions. After this validation,
bending, vibration and buckling results are obtained em-
ploying nonlocal elasticity theory. These results are also
compared with corresponding results available in litera-
ture. Further, nonhomogeneous solutions with nonlocal
elasticity theory are obtained. Various variations of elastic
modulus, nonlocal parameter, density and diameter of
nanotube along the axial direction are included in the
investigation.

Validation of Beam Results with Local Theory

Beam with following parameters is considered for the
analysis. E = 1 N/m2, L = 1 m, A = 1 m2, q = 1 N/m, ρ =
1 kg/m3 and I = 1 m4. Maximum deflections, natural
frequencies and critical buckling loads have been normal-
ized as follows:

ŵ  =  w × EI

qL4 ,  f̂  =  f × L2  √⎯⎯  ρA
EI   and  P̂cr  ×  L

2

EI (29)

Employing the classical local elasticity theory bend-
ing, vibration and buckling results are obtained. The non-
dimensional maximum deflection (ŵ), natural frequencies
( f̂  ) and critical buckling loads (P̂cr) are listed in Tables-
2 to 4, respectively. These results are compared with
DTFM (Yang [26]) results. It is observed that present
DQM results are in good agreement with results obtained
employing DTFM.

Validation of Beam Results with Nonlocal Theory

Reddy [27] obtained bending, vibration and buckling
solutions of simply supported beams with nonlocal elas-
ticity theory. Peddieson et al. [16] obtained bending solu-

Fig.1 Convergence Study of Differential Quadrature Method
with Various Grid Points

Table-2 : Non-Dimensional Deflection (ŵ)   of
Beams

Boundary
Condition

Non-Dimensional
max. Deflection
(ŵ)  (Yang [26])

Non-Dimensional
max. Deflection
(ŵ)  (Present)

S-S 0.0130 0.0130
C-F 0.1240 0.1249
C-S 0.0054 0.0054
C-C 0.0026 0.0026

Table-3 : Non-Dimensional Natural Frequencies
( f̂  ) of Beam

Bound-
ary Con-

dition

Mode
No.

Non-
Dimensional

Natural
Freq.( f̂  ) (Yang

[26])

Non-
Dimensional

Natural
Freq.( f̂  )
(Present)

S-S 1
2
3

9.8690
39.5570
89.0040

9.8696
39.4684
88.8249

C-F 1
2
3

3.5231
22.0340
61.8208

3.5160
22.0345
61.6999

C-S 1
2
3

15.4490
50.0650
104.4560

15.4182
49.9648

104.2471
C-C 1

2
3

22.3730
61.7960
121.1450

22.3733
61.6728

120.9021

Table-4 : Non-Dimensional Critical Buckling
Loads (P̂cr ) of Beam

Boundary
Condition

Non-
DimensionalCritical 
Buckling Load (P̂cr )

(Yang [26])

Non-
DimensionalCritical 
Buckling Load (P̂cr )

(Present)
S-S 9.8696 9.86960
C-F 2.4670 2.47490
C-S 20.1900 20.1907
C-C 39.4800 39.4784
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tion for cantilever beam employing nonlocal elasticity
theory. Wang et al. [28] employed nonlocal elasticity
theory and obtained buckling solutions for columns with
S-S, C-F and C-C boundary conditions. Murmu and Prad-
han [29] studied the effect of nonlocal parameter on the
response of carbon nanotubes embedded in an elastic
medium based on nonlocal continuum mechanics. All

these above mentioned solutions reported by Reddy [26],
Peddieson et al. [16] and Wang et al. [28] are analytical in
nature. But in the present analysis DQ method is employed
because of complexity of the governing differential equa-
tions for nonhomogeneous naotubes. Material properties
and geometrical dimensions of the beams are assumed to
be same as mentioned by Reddy [27], Peddieson et al. [16]

Table-5 : Non-Dimensional Deflections (ŵ) of the Beam with Non-Nonlocal Theory of Elasticity
Nonlocal
Parameter

(μ)

Boundary
Condition

Non-Dimensional max.
Deflection (ŵ) 
(Reddy [27])

Non-Dimensional max.
Deflection (ŵ)  

(Peddieson et al. [16])

Non-Dimensional max.
Deflection (ŵ) 

(Present)
0.5 S-S

C-F
C-S
C-C

0.0756
----
----
----

----
0.1250

----
----

0.0755
0.1249
0.0237
0.0026

1.0 S-S
C-F
C-S
C-C

0.1382
----
----
----

----
0.3750

----
----

0.1380
0.3749
0.0422
0.0026

Table-6 : Non-Dimensional Natural Frequencies ( f̂  ) of the Beam with Non-Nonlocal Theory of Elasticity
Nonlocal
Parameter

Boundary
Condition

Mode No. Non-Dimensional Natural
Frequency ( f̂  ) (Reddy [27])

Non-Dimensional Natural
Frequency ( f̂  ) (Present)

0.5 S-S

C-F

C-S

C-C

1
2
3
1
2
3
1
2
3
1
2
3

4.0489
8.6643
13.1743

----
----
----
----
----
----
----
----
----

4.0513
8.6689
13.1809
2.2498
11.9413
49.8439
5.8851
10.6399
15.2169
8.2756
12.4545
17.4647

1.0 S-S

C-F

C-S

C-C

1
2
3
1
2
3
1
2
3
1
2
3

2.9919
6.2019
9.3674

----
----
----
----
----
----
----
----
----

2.9936
6.2051
9.3720
1.1236
7.1276
25.7857
4.3182
7.6211
10.8302
6.0566

8.895400
12.45250
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and Wang et al. [28]. Present results of bending, vibration
and buckling for all classical boundary conditions are
listed in Tables-5 to 7 respectively. In these tables present
results are compared with those available in the literature.
From these tables one could observe that the present
results are in good agreement with corresponding results
reported in the literature. Present deflection results for CS
and CC boundary conditions, frequency results for CS, CC
and CF boundary conditions and critical loads for CS
boundary conditions are new. These results for the above
specific boundary conditions are not available in literature.
From Table-5 it is observed that the maximum deflections
for CC, CS, SS and CF boundary conditions are in increas-
ing order. From Table-6 it is observed that the natural
frequencies for CF, SS, CS and CC boundary conditions
are in increasing order. From Table-7 it is observed that
the critical loads for CF, SS, CS and CC boundary condi-
tions are in increasing order. Further from Table- 5 to 7, it
is observed that increase in nonlocal parameter leads to
increase in deflection and decrease in natural frequency
and critical buckling load. This is attributed to the fact that
increase in nonlocal parameter decreases the effective
stiffness of the nanotube.

Nonhomogeneous Nanotubes

Young’s modulus, nonlocal parameter, density and
diameter of the nanotubes are assumed to vary along the
axial direction. These parameters are expressed as

E  =  E0  
⎧
⎨
⎩
1 + k ⎛⎜

⎝

x
L
⎞
⎟
⎠

α
⎫
⎬
⎭
 ,  μ  =  μ0  

⎧
⎨
⎩
1 + k ⎛⎜

⎝

x
L
⎞
⎟
⎠

α
⎫
⎬
⎭
 ,

ρ  =  ρ 0  
⎧
⎨
⎩
1 + k ⎛⎜

⎝

x
L
⎞
⎟
⎠

α
⎫
⎬
⎭
 , d  =  d 0  

⎧
⎨
⎩
1 + k ⎛⎜

⎝

x
L
⎞
⎟
⎠

α
⎫
⎬
⎭

(30)

E0 , μ 0 , ρ 0  and d0 are assumed to be the values of
elastic modulus, nonlocal parameter, density and diameter
at left end (x =0). E0 , μ 0 , ρ 0 and d0 are considered to be
1 TPa, 0.0136 nm2 and 2.3 gm/cm3 and 0.7 nm, respec-
tively. Length (L) and wall thickness (t) of the nanotubes
are considered to be 35 nm and 0.35 nm, respectively. In
equation (38) α equals to 1, 2 and 3 represent linear,
quadratic and cubic variations of the parameters, respec-
tively. Eighty per cent variation of diameter (d) , Young’s
modulus (E), nonlocal parameter (μ) and density (ρ) has
been assumed in the nonhomogeneous analysis. SS
boundary condition is considered for the nanotubes. Non-
dimensional maximum deflections, natural frequencies
and critical buckling loads are defined as follows

w
__

  =  w × 
E0 I0

qL4  ,   f
_
  =  f × L2  √⎯⎯⎯

  ρ
 0

 A
0

E
0
 I

0   and  P
_

cr  ×  L2

E0 I0

(31)

These non-dimensional parameters are computed em-
ploying DQ method for S-S boundary condition. Effect of
linear, quadratic and cubic variation of individual parame-
ters has been investigated. Inter relation of these parame-
ters are also investigated. Effect of linear, quadratic and
cubic variation of elastic modulus for bending, vibration
and buckling are shown in Figs.2-4, respectively. From
these figures it is observed that maximum deflection de-
creases with increase in nonhomogeneous parameter.
While natural frequency and critical load increase with
increase in nonhomogeneous parameter. It has been
shown that variations of w, f and Pcr are most severe for
linear variation of E, μ, ρ, d and least severe for cubic
variation and midway for quadratic variation. To explain

Table-7 : Non-Dimensional Critical Buckling Loads (P̂cr ) of  the Beam with Non-Nonlocal Theory of Elasticity
Nonlocal
Parameter

Boundary
Condition

Non-DimensionalCritical Buckling Load
(P̂cr ) (Wang et al. [28])

Non-DimensionalCritical Buckling Load
(P̂cr ) (Present)

0.5 S-S
C-F
C-S
C-C

1.6627
1.1041
--------
1.9035

1.6630
1.1052
1.8197
1.9036

1.0 S-S
C-F
C-S
C-C

0.9079
0.7114
--------
0.9753

0.9080
0.7115
0.9528
0.0753
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this, let’s consider the variation of maximum deflection
(w) with Young’s modulus (E). From elementary strength
of materials results it is known that for homogeneous
beam, maximum deflection decreases if Young’s modulus
increases. In the present work, we have considered elastic
modulus of the non-homogeneous beam to be of the form:

Ex  =  E0  
⎧
⎨
⎩
1 + k ⎛⎜

⎝

x
L
⎞
⎟
⎠

α
⎫
⎬
⎭

Let ’s define the average Young’s modulus as :

Eavg  =  
∫ Ex dx

0

 L

∫ dx
0

 L    =   E 0  ⎛⎜
⎝
1 + k

α + 1
⎞
⎟
⎠

(32)

It can be easily derived from Eqn. (2) that (a) for
positive  values of k, Eavg  is  largest for linear variation

(α = 1) and lowest for cubic variation (α = 3) (b) for
negative values of k (please note that -0.8 k < k < 0.8), Eavg
is smallest for linear variation and largest for cubic vari-
ation. So for positive values of k, deflection will be mini-
mum for linear variation and maximum for cubic
variation. Similarly, for negative values of k, deflection
will be maximum for linear variation and minimum for
cubic variation. This is reflected in Fig.2 , where variation
of deflection can be seen to be most severe for linear
variation of elastic modulus and least severe for cubic
variation of elastic modulus.

Effect of linear, quadratic and cubic variation of non-
local parameter for bending, vibration and buckling are
shown in Figs.5-7, respectively. From Figs.5-7, one could
observe that variation of nonlocal parameter has little
effect on bending, vibration and buckling of nonhomo-
geneous nanotubes. So it can be concluded that though
nonlocal parameter is considered to be an important factor
for analysis of nano-structures, for nonhomogeneous
nanotubes an average constant value of nonlocal parame-

Fig.2  Variations of Non-dimensional Maximum Deflections
(w
__

 ) with Non-homogeneous Parameter (k) for Linear, Quad-
ratic and Cubic Variations of Elastic Modulus

Fig.3  Variation of Non-dimensional Fundamental Natural
Frequencies  (f

_
  ) with Non-homogeneous Parameter (k) for

Linear, Quadratic and Cubic Variations of Elastic Modulus

Fig.4  Variation of Non-dimensional Critical Buckling Loads
(P̂cr ) with Non-homogeneous Parameter (k) for Linear, Quad-

ratic and Cubic Variations of Elastic Modulus

Fig.5  Variations of Non-dimensional Maximum Deflections
(w
__

 ) with Non-homogeneous Parameter (k) for Linear, Quad-
ratic and Cubic Variations of Nonlocal Parameter
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ter can be considered for various nanotube applications
and designs. This could reduce substantially the complex-
ity of the formulation and computational effort. In Fig.8
effect of density on the vibration response of nanotubes
has been shown. In this figure natural frequency shows
greater rate of change for linear variation of nonhomo-
geneous parameter as compared to quadratic and cubic
variations.

Effects of diameter of the nanotube on bending, vibra-
tion and buckling are shown in Figs.9-11, respectively.
From these figures it is observed that maximum deflection
decreases with increase in nonhomogeneous parameter.
While natural frequency and critical load increase with
increase in nonhomogeneous parameter. Further maxi-
mum deflection, natural frequency and critical load show
greater rate of change for linear variation of nonhomo-

Fig.6  Variation of Non-dimensional Fundamental
Natural Frequencies  (f

_
  ) with Non-homogeneous

Parameter (k) for Linear, Quadratic and Cubic
Variations of Nonlocal Parameter

Fig.7  Variations of Non-dimensional Maximum Critical
Buckling Loads  (P̂cr ) with Non-homogeneous Parameter (k)

for Linear, Quadratic and Cubic Variations of Nonlocal
Parameter

Fig.8  Variations of Non-dimensional Fundamental
Natural Frequencies  (f

_
  ) with Non-homogeneous

Parameter (k) for Linear, Quadratic and Cubic
Variations of Density

Fig.9  Variations of Non-dimensional Maximum Deflections
(w
__

 ) with Non-homogeneous Parameter (k) for Linear, Quad-
ratic and Cubic Variations of Diameter

Fig.10  Variations of Non-dimensional Fundamental
Natural Frequencies  (f

_
  ) with Non-homogeneous

Parameter (k) for Linear, Quadratic and Cubic
Variations of Diameter
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geneous parameter as compared to quadratic and cubic
variations. Effects of linear variation of elastic modulus,
nonlocal parameter and diameter on bending, vibration
and buckling has been shown in Figs.12-14, respectively.
From Fig.12 it is observed that maximum deflection de-
creases with increase in nonhomogeneous parameter for
linear variation of elastic modulus and nanotube diameter.
Further it can be found that linear variation of diameter has
stronger influence on the maximum deflection than the
linear variation of elastic modulus.

From Fig.13 it is observed that natural frequency in-
creases with increase in nonhomogeneous parameter for
linear variation of elastic modulus and nanotube diameter.
While natural frequency decreases with increase in non-
homogeneous parameter for linear variation of density of
nanotube. Further it can be found that linear variation of
diameter has stronger influence on the natural frequency

than the linear variation of elastic modulus. From Fig.14
it is observed that critical buckling load increases with
increase in nonhomogeneous parameter for linear vari-
ation of elastic modulus and nanotube diameter. Further it
can be found that linear variation of diameter has stronger
influence on the critical buckling load than the linear
variation of elastic modulus. Maximum deflection, natural
frequency and critical buckling load are observed to be
most sensitive to change in nanotube diameter. While
these are observed to be insensitive to the change in
nonlocal parameter.

Conclusions

In this work, formulation and solutions methods are
developed for nonhomogeneous single walled and double
walled nanotubes. Analysis of nonhomogeneous nanotu-
bes has been carried out employing differential quadrature

Fig.11  Variations of Non-dimensional Critical Buckling
Loads  (P̂cr ) with Non-homogeneous Parameter (k) for
Linear, Quadratic and Cubic Variations of Diameter

Fig.12  Variations of Non-dimensional Maximum Deflections
(w
__

 ) with Non-homogeneous Parameter (k) for Linear
Variation of Elastic Modulus (E), Nonlocal

Parameter (μ) and Diameter (d)

Fig.13  Variations of Non-dimensional Fundamental Natural
Frequencies  (f

_
  ) with Non-homogeneous Parameter (k) for

Linear Variation of Elastic Modulus (E), Nonlocal
Parameter (μ), Density (ρ) and Diameter (d)

Fig.14  Variations of Non-dimensional Critical Buckling
Loads (P̂cr ) with Non-homogeneous Parameter (k) for Linear

Variation of Elastic Modulus (E), Nonlocal
Parameter (μ) and Diameter (d)
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method and nonlocal elasticity theory. Nonlocal theory
has been implemented to consider the scale effect. Present
results are validated with the results available in the litera-
ture for homogeneous nanotubes. Effect of linear, quad-
ratic and cubic variations of nanotube Youngs modulus,
nonlocal parameter, density and diameter on the structural
response of the nonhomogeneous nanotubes is studied. It
is observed that maximum deflection decreases with in-
crease in nonhomogeneous parameter. While critical load
increases with increase in nonhomogeneous parameter.
Further maximum deflection, natural frequency and criti-
cal load show greater rate of change for linear variation of
nonhomogeneous parameter as compared to quadratic and
cubic variations.

It has been observed that the nonlocal parameter has
little effect on the structural response of the nanotubes.
While diameter, elastic modulus and density of the nano-
tubes have substantial effect on the response of the nano-
tubes. Extension of the present research work to
incorporate shear deformation theories is under develop-
ment.
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