
ASIML-1553: A MARKUP LANGUAGE FOR MIL-STD-1553B AVIONICS BUS

SCHEDULER AND INTERFACE CONTROL

Neeta Trivedi

Scientist

Aeronautical Development Establishment

Defence Research and Development Organisation

New Thippasandra Post

Bangalore-560 075, India

Email : neeta@ade.drdo.in

Abstract

Modern avionics is highly software intensive with various software components residing on

different subsystems interfaced through avionics bus. Avionics system designer is responsible

for defining the bus frame timings, message transmission schedules and details of interfaces.

These are translated into design and finally into source code by the designers of individual

subsystems. Growing complexity of avionics software coupled with frequent changes has

necessitated use of highly layered architecture with tight partitions and open standards in

order to obtain better maintainability, testability, portability and ease of upgrade. Textual

configuration files offer benefit over embedding the configuration details into the code in terms

of development, testing and certification efforts. XML is emerging as the worldwide standard

for defining configuration files. This paper proposes ASIML-1553, a markup language for

defining configuration files for avionics bus scheduler and interface control for MIL-STD-

1553B bus. Data from a typical combat aircraft are taken as case study to discuss the

advantages ASIML-1553 offers in terms of turn-around time, quality and reliability. ASIML-

1553 can easily be adapted for interfaces other than MIL-STD-1553B such as ARINC-429 or

Ethernet.

Keywords: Avionics, MIL-STD-1553B, ARINC, Ethernet, XML, Software Quality and Reli-

ability, Open Standards

Introduction

Avionics is taking up increasingly large share of the

cost and schedule of modern aircraft programmes. From

the modest 100-200 4-8 bit words of assembly code for

fire control in the fighters of 1960s [1] to the billions of

32-bit words of higher level language code for flight

control, electronic warfare, cockpit displays, engine man-

agement, stores management, mission management, built-

in-test, in-flight planning and so on, software size and

complexity is growing substantially. Declining hardware

costs are not able to compensate for the escalating software

costs [2].

Technological advancements and changing threat per-

ceptions cause the avionics segment to evolve continu-

ously. Newer and better equipment gets added; older ones

removed. New functionality is implemented, functional

integration happens, sensors get added that provide newer

inputs, avionics gets upgraded.

The flexibility software offers for accommodating

changes is a significant attraction to have as much of

functionality built in to software as possible. The growing

complexity of avionics software coupled with frequent

changes calls for robust architecture, tight partitioning and

open interfaces to minimize perturbations to the system

and also reduce testing efforts.

Digital serial multiplexed communication buses are

being widely used for interfacing aircraft subsystems due

to the advantages they offer in terms of reduced intercon-

nects, driver-receiver electronics and weight. The bus

TECHNICAL NOTE

Paper Code : V63 N4/728-2011. Manuscript received on 31 Aug 2010. Reviewed and accepted as a Technical Note on 24 Jun 2011

most commonly used in most military aircraft, missiles,

and many other aerospace platforms is the Unites States

time-division-multiplexed digital serial MIL-STD-1553B

[3]. The standard specifies the physical layer and medium

access sublayer specifications for the interface. The MIL-

STD-1553B standard follows command-response proto-

col with one node identified as the Bus Controller (BC)

and others as Remote Terminals (RT). BC controls trans-

fer of all data on the bus.

For a given aircraft programme, avionics systems de-

signer specifies the bus frame timings, message schedul-

ing scheme and the BC-to-RT and RT-to-RT interface

control details. These details are communicated to the

designers of individual subsystems where they get trans-

lated into design and finally into source code. The frame

timings and the message scheduling schemes (frequency,

frame assignment) form part of what is typically known

as ‘Bus Scheduler’ or BCX for short. There may be various

phases of aircraft operation such as Initialization, Opera-

tional Flight Programme, Post-flight Data Retrieval etc.

Some messages may be common across these phases,

some may be unique to a particular phase.

The details of the messages in terms of the sender ID,

receiver ID, transmit subaddress, receive subaddress,

number of words as well as contents of each word and their

meanings form part of what is typically called the Interface

Control Details (ICD).

Any addition, removal or upgrade of subsystems or

their functionalities result in changes to the BCX and/or

the ICD, motivating the need to absorb these changes with

minimal impact. An effective way of absorbing these

changes in least perturbing manner is to use configuration

files for structured static data that are accessed by device

managers. Configuration files provide a concise method

for defining configuration in implementation-independent

manner. These are not to be accessed by the application

program; however, they are not built as part of the device

drivers, either. EXtended Markup Language (XML) [4] is

emerging as the language of choice for defining configu-

ration files.

This paper proposes a COTS way of implementing the

device-independent 1553B I/O software component in

avionics subsystems viz. using XML to define configura-

tion files. The author proposes ASIML-1553, a Markup

Language for BCX and ICD for MIL-STD-1553B bus.

Any XML parser can be used in the preprocessing step for

parsing ASIML-1553 file and generating an internal data

structure to be used by the application. ASIML-1553 also

provides constructs for specifying typical configuration

details for MIL-STD-1553B interface devices. This helps

in initialization of the device.

Some of the lifecycle details related to the BCX and

ICD of a typical combat aircraft are taken as case study to

demonstrate the power of the language and the interfacing

logic.

With the huge installation base as well as the robust-

ness characteristics, MIL-STD-1553B plays a vital role in

a wide variety of military systems. The interface of choice

in case of civil aircraft industry has been ARINC-429.

While MIL-STD-1553B and ARINC-429 are still consid-

ered good for control applications, high-speed networking

solutions such as Ethernet are also fast emerging as alter-

natives for bandwidth-critical applications. ASIML-1553

can be adapted to such alternatives with ease.

Section 2 describes related work and standards. Sec-

tion 3 shows functional layers of typical avionics software

and discusses how changes are being incorporated in most

avionics systems at present. Section 4 describes the pro-

posed approach, details the features of the proposed lan-

guage and discusses the change cycle in the new scenario.

A theoretical quantitative analysis of benefits is presented

in section 5. Conclusions are drawn in section 6.

Related Work and Standards

The eXtensible Markup Language (XML) [4] is a

subset of SGML (ISO 8879). The XML standard is main-

tained by the World Wide Web Consortium (W3C). In this

paper, XML (V 1.0) has been used to describe the configu-

ration data. XML-Schema (V 1.0) is used to define the

format of the XML data.

Much has been discussed in the literature about use of

XML for defining the configuration details. ARINC

Specification 653 uses XML to specify the scheme for

defining ARINC 653 configuration data [5]. For MIL-

STD-1553B, software for bus protocol validation and bus

traffic analysis systems [6,7] use XML for defining con-

figuration files. While these can be viewed as MAC and

network layer details, ASIML-1553 can be roughly

viewed as the language for the transport layer, where

header, data words, sequencing etc. is defined. The XML

can be used during developmental testing by Bus Monitors

to display the data along with its semantics.

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 319

To the best of the knowledge of the author, no schema

has been specified for defining MIL-STD-1553B interface

at this layer.

Bus Interface Design

The avionics bus interface design involves designing

of the bus scheduler and the interface details by the avion-

ics system designer and the device configuration and I/O

design by the designer of individual units (typically called

Line Replaceable Units or LRU).

Bus Scheduler

As discussed earlier, the bus scheduler must specify

the frame timings and message scheduling scheme. Al-

though the naming conventions may vary, most avionics

programmes define a ‘Minor Frame’, which is the smallest

time interval or the highest frequency of data. Once the

frequency of all the data sets is established, the minor

frame duration can be taken as the greatest common divi-

sor of all the frequencies.

Another term often used is ‘Major Frame’. A number

of minor frames constitute a major frame. This number is

usually taken such that every message occurs at least once

in a major frame. Once the frequency of all the data sets is

established, the major frame duration can be taken as the

least common multiplier of all the frequencies.

The next part to be included in the BCX is the sched-

uling of various messages in each frame for each of the

avionics operational phases. Usually this is done in such a

manner as to group related elements together and yet

achieve a balanced load in different minor cycles. An

example instance of BCX is shown in Table-1. Note that

an aircraft may have more than one avionics buses, for

increased reliability, isolation of unrelated messages,

avoiding bus overloading, or because one bus may have

finished the maximum possible 30 ‘remote terminals’. The

BCX provides details of scheduling on each of these buses

for each operational phase.

Interface Control Details

The ICD is responsible for providing details on the

interpretation of each message.

MIL-STD-1553B defines 3 types of messages: Trans-

mit, Receive, and Mode Codes. Transmit/receive com-

mand word contains RT address, subaddress and number

of words to transmit/receive. Mode Code command word

contains RT address, transmit/receive flag, mode code

type and mode code number. Maximum number of words

for any command are 32; however, receive commands can

be indexed, in which case multiple sets of words are

received on the same subaddress and are multiplexed

based on some ID.

The ICD lists out the following for each transmit/

receive message.

• Source (Bus Controller or an RT address)

• Destination (Bus Controller, an RT address or broad-

cast)

• Transmit and receive subaddresses (1553B specifies 30

subaddesses plus two reserved for indicating ‘Mode

Code’, discussed later)

• Mux ID (if the message is multiplexed i.e. multiple

messages arriving on a single subaddress. This ID is

part of the message and is handled by the application.

The 1553B device does not recognize this as a control)

• Number of words in the message

• For each word, the details of its contents including its

type (e.g. unsigned number, 2s complement signed

number, binary-coded decimal, discrete, composite),

resolution value where applicable and so on. An exam-

ple is given in Table-2 and 3.

Device Configuration and I/O

The descriptor space in the 1553B devices must be

configured to handle the different messages, the required

number of words and required number of indexing for

various commands. This forms part of the device-depend-

ent I/O. The device-independent I/O layer must perform

sanity checks on the data in terms of the messages arrived

in a particular cycle, number of words in the messages,

Table-1 : An Example of a BCX

Bus 1, INIT Frame

Minor

Frame 0

Minor

Frame 1

Minor

Frame 2

Minor

Frame 3

BC-LRU1

LRU2-

LRU3

LRU3-BC

LRU5-BC BC-LRU1

LRU4-

LRU3

BC-LRU4

(Assuming 4 minor frames in a major frame)

320 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

correctness of message status words and so on. This re-

quires knowledge of the BCX and ICD at this layer.

Functional Layers in Avionics Software

Avionics software is typically designed in a layered

form as given in Fig.1. The 1553B protocol part is a

component in the device-dependent I/O layer and does not

call for changes once the bus I/O devices are fixed.

Typical interaction between the I/O modules and ap-

plication layer modules (possibly through software service

layers) is as shown in Fig.2, where the interaction between

application layer and device dependent I/O is quite infre-

quent. Individual modules have their own data structures

to store relevant local details.

The aircraft-specific scheduling and interface details

change more frequently. These are out of scope of the

device-dependent layer and hence can be easily decou-

pled. Of course, these changes are always application-spe-

cific and hence require changes to application layer

modules. However, in the present scheme, these changes

(for example change in number of words for a receive

message, multiplexing on a given subaddress etc.) addi-

tionally require changes in the device-independent I/O

modules. Assuming SDLC standard to be RTCA-DO-

178B [8] level C or above, these changes translate into

significant efforts towards documentation, implementa-

tion, testing, change cycle management and verification.

Both BCX and ICD are highly structured data items

and hence make perfect candidates for definition through

XML schemas. The pattern inherent in the BCX and ICD

can be exploited for reduction in time and efforts, and that

is the theme of this paper.

ASIML-1553

The ASIML-1553-Schema defines the structure of the

data needed to specify MIL-STD-1553B interface con-

figuration. The schema is the reference standard to which

instance files are defined. It consists of tagged pairs that

describe the attributes and their relationship to the whole.

Table-2 : Example ICD : Message Detail

Message ID LRU3-BC

Source LRU3

Dest BC

Word

count

4

Rate 12.5 Hz

Description Message from LRU3 to Bus Controller,

Gives health status

Message

Details

Word No. Word

Name

Description

00 Link 1 Link 1

Status

01 Port 1 Port 1

Status

02 Memory Memory

Status

03 Temp Device

Temperature

Table-3 : Example ICD : Word Details

Word ID LRU3-BC/00

Word

Name

LRU3-Link 1

Signal

Type

Binary Code Decimal

Units NA

Resolution NA

Remarks -

Word

Details

Bit No Variable

Name

Description

00-07 Link1-Local

Device

Failure

Code

08-15 Link1-

External

Failure

Code

Word ID LRU3-BC/03

Word

Name

LRU3-Temp

Signal

Type

2s Complement

Units Degrees Fahrenheit

Resolution 0.1

Remarks -

Word

Details

Bit No Variable

Name

Description

00-15 Decive_

Temp

Temperature

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 321

The graphical view of ASIML-1553 schema is pre-

sented in Appendix-A. The view was generated using the

Altova’s XMLSpy [9] version 2010 release 3 sp1. Appen-

dix-B specifies the structure of the ASIML-1553 instance

file in which the configuration data parameters are speci-

fied.

ASIML-1553 Extensions

Like most other XML schemas, the ASIML-1553

schema is also extensible; the designers can extend it for

a particular implementation. For example, a designer us-

ing a UTMC 1553B device can select ‘ping pong’ enable

or disable for individual subaddresses. All the device-spe-

cific details can appear in the extensions to ASIML-1553.

ASIML-1553 Benefits

Using ASIML-1553 for interface specifications allows

I/O modules to be completely decoupled from the changes

in application software. Given that most aircraft pro-

grammes follow rigid norms for lifecycle process, changes

results in a lot of documentation, testing and V and V

efforts. Most importantly, by reducing requirement for

source code changes, one is almost always talking high

quality and by reducing source code changes, one is almost

always talking high reliability.

Everything comes at a price. Generality always comes

at the cost of execution speed. However, two aspects speak

in favor of ASIML-1553. First, most of the configuration

settings are processed during the initialization phase and

hence do not affect the real-time performance. Second, the

effect during real-time operations is a small price to be

paid given todays processing speeds and capabilities, con-

sidering the enormous saving in efforts and confidence in

reliability.

Effectiveness Analysis

Changes to the bus interface are very common in

developmental aircraft programmes as well as avionics

upgrades. The frequency and volume of changes may get

reduced as the programme matures, but it is at this stage

that even small changes can prove costly and hence the

weighted impact of changes can be arguably the same.

We take as case study a developmental programme

with which the author was associated. Cockpit displays are

the front-end and the only source of information for the

pilot. In a glass-cockpit system typical of modern aircraft

where displays are managed through software, changes to

any avionics system invariably call for changes in display

software requirements. In a span of 5 years, six changes

were made to the ICD. Table-4 provides some details of

these changes.

Table-5 provides an estimated number of lines of code

to be modified, added or deleted because of the changes

listed in Table-4.

The effort estimation includes changes to relevant

documents, source code, unit testing, integration testing,

verification and validation and QA activities. By using

ASIML-1553 for configuration and using the parsed tree

appropriately, the effort can be reduced to about 10% of

the original, which will essentially involve modification

Table-4 : ICD Changes

Sr. No. Addition Modification Deletion

1 46 65 73

2 4 - -

3 - 15 -

4 - 17 -

5 30 13 12

6 8 10 -

Table-5 : Effort Due to ICD Changes

Sr.

No.

No. of changes to

device-independent

I/O (blocks of source

code, average 5 lines

per block)

Estimated Effort for

DO-178B Level B

Process (including

documentation,

testing, V & V, QA)

1A 16 4 man - months

1M 10 2 man - months

1D 30 5 man - months

2A 4 1 man - month

3M 0 0

4M 0 0

5A 10 3 man - months

5M 5 1 man - month

5D 10 3 man - months

6A 10 4 man - months

A : Addition; D : Deletion; M : Modification;

Sr.No. from Table-4

322 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

to the configuration file, verification of the file, configu-

ration control, and integration testing.

The saving in efforts is also due to the fact that the

traditional programs are in a computer language, mostly

C/C++, which require certain skill level to handle. For the

XML, editors are available e.g. [9] that allow easy entry

of data with no special skills involved. The XML editors

also perform syntax checks thereby ensuring data integ-

rity. The same holds good of verification; verification of

software design and code requires special skillset whereas

data files can be verified by less skilled personnel.

Note that the efforts outlined here only mention about

those for the device-independent I/O modules (which the

ASIML is trying to replace) and not the overall changes to

the application software. The efforts involved at applica-

tion layer stay the same as earlier.

Responsibilities

This section describes an example how the ASIML-

1553-Schema can be developed and used for defining the

RT interface configuration files. There are three major

steps involved in defining and using the schema.

• The avionics systems group defines the ASIML-1553-

Schema.

• The avionics system group will also create and validate

the ASIML-1553 instance file for the various remote

terminals. The instance is based on the ASIML-1553-

Schema. A validation tool may be used to verify that

the instance file is well formed and valid against the

ASIML-1553-Schema.

• The RT software implementer may develop a parser or

use one of the standard parsers. The parser will use the

ASIML-1553-Schema as the reference for converting

an instance file into a format used by the application

implementation.

Adapting to Alternate Interfaces

Usage of ARINC or Ethernet for defining the BCX and

ICD will call for changes more in the BCX. The controls

used by control words may have different syntax. For

example, the header used for a packet on Ethernet may

write the source and destination addresses in a different

format at a different location in the header. The schema

does not change substantially in this case; the attributes of

the variables probably will. The parser also remains the

same. The program that reads the parsed data to generate

data for internal use needs to be written accordingly.

Conclusions

An XML-based method of defining the device-inde-

pendent I/O part of avionics software is described. The

schema is extensible; device-dependent configuration de-

tails can be added as extension to the schema. The schema

can be easily adapted to other interfacing standards such

as ARINC or Ethernet. Based on the author’s experience

in a developmental aircraft programme, a comparison of

effort levels with and without the XML-based approach is

drawn. The new approach does not only reduce effort

levels but also provides higher level of confidence in the

process, since most part of the software is not altered

manually.

Acknowledgement

The author has worked on MIL-STD-153B at the

Cockpit Display Group of ADE, and she wishes to thank

the members of the group for their cooperation during the

work. The valuable suggestions on this paper from Mr.

Suresh Kumar, Ex-Project Director at ADE are hereby

duly acknowledged. The author is also thankful to Direc-

tor, ADE for his permission to publish the paper.

References

1. Christine Anderson and Merlin Dorfman (Editors).,

"Aerospace Software Engineering, Progress in As-

tronautics and Aeronautics", (Editor-in-chief A

Richard Seebass), Vol.136, 1991, Publisher Ameri-

can Institute of Aeronautics and Astraonautics, ISBN

1-56347-005-5, 629.7:681.31.06.

2. Neeta Trivedi and Suresh Kumar., "Development of

Large Real-time Avionics Software: Our Experi-

ences", Proceedings of 3
rd

 APCATS, China.

3. MIL-STD-1553B (Notice 2): "Digital Time Division

Command/ Response Multiplex Data Bus", 08 Sep-

tember 1986.

4. http://www.w3.org/XML/, last accessed 19 June

2011.

5. http://www.lynuxworks.com/solutions/milaero/ari

nc-653.php, last accessed 19 June 2011.

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 323

6. http://www.sitaltech.com/1553_test.asp, last ac-

cessed 19 June 2011.

7. http://www.altadt.com, last accessed 19 June 2011.

8. http://www.do178site.com/, last accessed 19 June

2011.

9. http://www.altova.com/xml-editor/, last accessed 19

June 2011.

324 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 325

326 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 327

328 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 329

330 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 331

332 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.63, No.4

Fig.1 Layers of Avionics Software

Fig.2 Interaction Between I/O and Appl Layers

NOVEMBER 2011 A MARKUP LANGUAGE FOR MIL-STD-1553B 333

