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Abstract 

A trajectory optimal control problem is converted to a parameter optimization problem by
approximating the states and control using piecewise Chebyshev polynomials. The Chebyshev
points which control the polynomial fit is used to match the dynamics at the nodal points.
Midpoint strategy significantly reduced the number of parameters to be optimized without
having to sacrifice on accuracy. The resultant non- linear programming problem is solved
using sequential quadratic programming method. Ascent phase trajectory optimization of a
reusable launch vehicle having typical path and terminal constraints is taken as a test case.
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Introduction

The solution of optimal control problem using Euler-
Lagrange equation or co- state variables methods is cum-
bersome due to sensitivity of boundary values which
results jump in co-state variable and other associated
numerical difficulties. An alternate strategy could be to
convert the optimal control problem into a parameter
optimization problem. Collocation and differential inclu-
sion are examples of such conversion methods [Ref.1]. In
collocation method, states and control are approximated
by piecewise continuous polynomials. The differential
equations are replaced by defect constraints, which are
driven to zero. The program NPDOT [Ref.2] converts the
optimal control problem to a nonlinear programming
problem using Hermite-Simpson defect constraints. Using
Hermite interpolation, cubic polynomials are defined for
each of the states that are matched along with its deriva-
tive, as defined by the system dynamics, at the nodal
points. The values of the states at the nodes are the design
variables for the NLP problem, which force the defect (of
the interpolated derivative and differential equations) to
zero. In another technique, referred to as differential inclu-
sion [Ref.3], control variables are removed by defining a
bound on the rate of change of states. Advantages of such
a method are reduced problem size, which helps in saving
computational time. Some of the disadvantages of differ-
ential inclusion method [Ref.4] are increased difficulty in
the analytical derivation of the constraints with respect to

problem parameters, restriction of problems with linearly
varying controls and the requirement of obtaining control
time histories. In [Ref.5], pseudo spectral method is pro-
posed which gives better approximation of discretization
of the derivative of states at the nodes, thereby making it
competitive with the direct collocation methods.

In the present paper, states and control are approxi-
mated by piecewise Chebyshev polynomials. Derivative
of these polynomials are matched with the system dynam-
ics at the nodal points. The resultant parameter optimiza-
tion problem is then solved using Sequential Quadratic
Programming (SQP) approach. The idea is similar to the
method described by [Ref.6] in which differentiation and
integration are performed in closed form and the variable
thrust trajectory problem is reduced to one of the ordinary
calculus. Newton’s method is then used to solve this
parameter optimization problem. In [Ref.7] a penalty
function approach is used to satisfy the system dynamics
at nodes. As the name suggests, a penalty function penal-
izes the performance index for any constraint violation
[Ref.8]. Another approach used Chebyshev polynomials
to approximate the control and used second order method
with a penalty function to solve the parameter optimiza-
tion problem [Ref.9]. In [Ref.2] Hermite-interpolation
implicit integration scheme is used to convert optimal
control problem into a parameter optimization one. Higher
order Gauss-Lobatto methods are reported in [Ref.10].
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A trajectory optimal control problem converted to a
parameter optimization problem with Chebyshev polyno-
mials will lead to a large number of equality constraints.
In addition there will be problem dependent path con-
straints. Such a problem is computationally expensive to
solve. Initial attempt was made to reduce the problem size,
so as to improve upon the implicit integration step size,
lead to non-convergence, which meant system dynamics
not getting satisfied at nodal points. An alternate, mid
point strategy is proposed which required additional con-
straints to be satisfied at the center of the segment. Though
initially it looked that problem size is merely increased,
the additional computation improved the accuracy of poly-
nomial for a larger segment. The implicit integration step
size is enhanced and the overall size of the problem is
brought down to one-sixth of its earlier size. This method-
ology is applied to trajectory optimization problem of a
Reusable Launch Vehicle (RLV).

A typical RLV demonstrator flight profile could be
boosting the RLV to hypersonic Mach number using some
propulsion system. The RLV , after getting separated from
the booster, will perform sub-orbital flight and sub-
sequently recovered from sea using a parachute and floata-
tion systems. Ascent phase trajectory optimization of a
RLV along with the booster is taken as a test case. Typical
constraints during ascent phase will be dynamic pressure
(q) and qα (α is angle of attack and is used as control
variable). The term qα has direct bearing on the loads
coming on the vehicle. Terminal constraint is on burnout
flight path angle (γ). This parameter plays an important
role during the descent phase. A large γ at burnout implies
steeper reentry, which will violate the descent phase con-
straints such as load factor and q. Performance index for
this problem is to maximize the Mach number at the burn
out of the booster. The optimal control problem is con-
verted to a parameter optimization problem using Cheby-
shev polynomials and the proposed mid point strategy
successfully applied.

Chebyshev Polynomials

Polynomial interpolation using equally spaced data
results in accurate computation in the middle range of the
interpolation domain but the error of interpolation in-
creases towards the corners. In Chebyshev polynomials
the spacing is largest at the center of interpolation domain
and decreases towards comers. So error is more evenly
distributed throughout the domain and magnitude of error
is less than that of equally spaced parts [Ref.11 to 15].

 Starting with T0(x) = 1 and T1(x) = x, Chebyshev

polynomial of any higher order in power series can be
generated by the recurrence relation
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In equivalent cosine function form, these polynomials
can be expressed as

T
N

(x) = cos (N cos
−1

(x))    −1 ≤ x ≤ 1 (2)

TN (x) have the value unit at x = 1, and at x = -1the value

is +1 for even N and -1 for odd N. The kth root of the
Chebyshev polynomial is given by
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Chebyshev polynomials are orthogonal polynomials.
Polynomials φi(x) are said to be mutually orthogonal with

respect to weight function w(x) when

∫
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w(x) φ

i
(x) φ

j
(x) dx = 0     , i ≠ j (4)

where w(x) = (1−x2)− 1⁄2 for such polynomials. The roots
are real and distinct for orthogonal polynomials. Also as
they are linearly independent, any such polynomial is a
linear combination of the basis polynomials.

As the states and control is to be approximated by
polynomials, our aim is to find a polynomial of degree N
which fits f (x) exactly at data points xk with k = 0,1,. . . ,
N. Such a polynomial is given by 
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C
r

= 2
N + 1 ∑

r = 0

N

f (x
k
) Tr (x

k
) (6)

The data points xk are zeros of the Chebyshev polyno-
mial TN+1(x) and over the complete range -1 ≤ x ≤ 1. The
error eN (x) = f (x) − PN (x) satisfies for sufficiently

smooth functions the minimax criterion
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max| e
N

(x) ⁄ f
N+1

(ξ) | = min. (7)

Where ξ is some point in (-1, 1).

Mathematical Formulation

The trajectory equation of motion is governed by first
order differential equations

x
. = f (x, u, t) (8)

where x is a vector of state and u is a vector of control.

One method of solution could be to discretize the time
t in i equal or unequal parts, approximate the state and
control with polynomials such that dynamics is satisfied
at the nodal points (ti, ti+1). This solution method is called

as collocation.

Let the state be approximated by a cubic polynomial
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Let x1, x2, x3 and x4 be the states computed at the

Chebyshev points generated between (ti, ti+1). Coeffi-

cients of this polynomial are determined using equation
(6). The first derivative of equation (9) is then matched
with the dynamics at the nodes.
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where xi and xi+1 are the states computed at the nodes using

equation (9). In addition states are to be matched at the
nodes along with their slopes for two successive polyno-
mials to ensure that these are continuous. Determining
x1, x2, x3 and x4,which will satisfy the equality constraint

in equations (10) and (11) will give a good approximation
of state satisfying the dynamics at (8). Addition of another
constraint equation (12) 
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improves the results significantly, as a larger step size
could be taken up during the implicit integration process.

Here tm =
(ti + ti+1)

2
  and xm is the vector of state computed

at the center of node using (9).

It is assumed that a cubic polynomial will be able to
approximate vector of states and control (Fig.1). This
requires four parameters (k = 4) to be estimated for each
state at the roots of the Chebyshev polynomial in the time
span ti to ti+1. Let there be N such polynomials, which is

required to be fitted for a given state. There will be then
(N + 1) nodes for this state. States and slopes are matched
at each of the nodes with the subsequent polynomial and
also simultaneously satisfying the dynamics. The polyno-
mial should also satisfy dynamics at the mid point. Thus
there will be 5 equality constraints to be satisfied per
polynomial per state. For the control, slope condition is
relaxed  and  only  numerical  value is matched at the
nodes. Let S be the number of differential equations to be
satisfied. Thus  number of  parameters to be determined is
(S N k) and number of equality constraints to be satisfied
is (5N-1)S. If the equality constraints can be completely
satisfied, then the piecewise polynomials will give a good
approximation of the dynamics. The path constraints,
which are problem dependent, are forced at the nodes and
Chebyshev points. The resultant parameter optimization
problem is then solved using Sequential Quadratic Pro-
gramming (SQP) method [Ref.16-19]. In SQP method,
performance index is approximated by a quadratic func-
tion and constraints are linearized.

Trajectory Optimization

The equations of motion as derived in report [Ref. 20],
for a point mass, non- rotating earth model is given by

V
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= −g sin γ + (T cos α − D)
m

γ
.
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⎜
⎝

V
r

− g
V
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 cos γ + (L+Tsinα)

mV
 cosσ

Fig. 1  Implicit integration scheme
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where V, γ, ψ, r, λ and  φ are the state variables corre-
sponding to velocity, flight path angle measured from
local horizontal, heading angle measured from true north,
radial vector, longitude and latitude respectively (Fig.2).
Angle of attack α and bank angle σ are the control vari-
ables. As only planar trajectory is considered in the present
analysis σ = 0 is assumed. Thrust, lift and drag forces are
given by T, L and D. Indian Standard Atmosphere is used
where atmospheric properties such as density, pressure
and temperature are stored as a function of altitude. Den-
sity (ρ) will be used for computation of dynamic pressure

(q = 1⁄2 ρV2),which will be required, by lift
(L = qSCNα α) and drag (D = qSCD) equations. CD is the

drag coefficient and CNa is normal force coefficient slope.
S is a reference area for which these coefficients are
derived. Pressure will be used for thrust correction and
temperature for the computation of speed of sound. Grav-

ity is computed using the expression g = g0 (
r0

r
)2  where

g0 (9.80665 m/s2) is the acceleration due to gravity at the
earth surface and r0 (6378 km) is the mean radius of earth.
Initial state vectors [V, γ, ψ, r, λ, φ ] are taken as [1 m/s,

90º, 90º, 6m, 80.2º, 13.7º]. Initial altitude of 6m corre-
sponds to center of gravity of the vehicle. Initial velocity
is not taken as zero to avoid numerical difficulties in
equations (14) and (15).

The constraint trajectory optimization problem during
the thrusting ascent phase can be stated as

Maximize
M

tf
(19)

subject to

q ≤ 50   (kPa) (20)

|qα| ≤ 250     (Pa rad)
γ

tf
=      (deg) (21)

with bounds

− 2 ≤ α ≤ 2     (deg) (22)

where Mtf is the Mach number at burnout of the booster

(at t = tf). The dynamic pressure constraint ensures that
power requirements by the booster fin actuators are within
limits. Similarly qα constraint limits the structural load on
the vehicle. Nominal trajectory is defined with no winds.
With winds qα will be much higher. The burnout condi-
tion of flight path angle ensures that reentry constraints are
within limits. Again, the control variable bounds are for
no wind conditions.

Results

The thrust-time curve of the booster, which is normal-
ized to its peak thrust, is shown in Fig.3. Normal force
coefficient and drag as a function of Mach number is
shown in Fig.4. This is for a reference area of 6m2. These
are inputs to the propulsion and aerodynamic model.

Fig. 2  Definition of paratmeters

Fig. 3  Thrust-time history of the Booster
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In order to reduce the number of equality constraints,
which are formulation dependent, initial attempts were
made to solve the parameter optimization problem without
satisfying equation (12). The implicit integration step size
achieved was of the order of 2s. For the trajectory optimi-
zation problem of 90s duration, as in the present case, the
required N that will completely satisfy the dynamics is 45.
Thus for S=7 (six state equations as in 13-18 and one
control equation), N=45 and k=4, the optimization prob-
lem has to determine 1260 parameters and satisfy 836
((3S-2) N) equality constraints. In addition there will be
path constraints. Such a problem is computationally ex-
pensive to solve. Any scheme, which drastically reduces
N without having to sacrifice on accuracy, will be a
pragmatic way to solve such problems. The mid point
strategy, in which additional constraints are to be satisfied
at the center, significantly reduced the value of N to 9. This
implies that implicit integration step size is enhanced to

10s ⎛
⎜
⎝

90
N

⎞
⎟
⎠
. The overall size of the parameter optimization

is brought down to 252 parameters and 225 ((4S - 3) N)
equality constraints. This is roughly one-sixth the size of
the earlier problem and therefore much easier to solve. The
physics of mid point approach is that with additional

computation one can now enlarge the segment length of
the approximating polynomial for the same accuracy.
Though initially it looked that problem size is getting
increased, the additional computation improved the accu-
racy of polynomial for a larger segment length. The im-
plicit integration step size is enhanced and the overall size
of the problem is brought down. Below N = 9, the L2 norm
of equality constraint vector had a large value thereby
indicating that dynamics is not satisfied by the piecewise
polynomials. The L2 norm of a vector is defined as the root
sum square of its components. Above N = 9, performance
index and L2 norm of equality constraint vector (||c||2) did
improve with increasing N. The improvement is however
marginal as given in Table-1.

The history of three important state parameters viz.
altitude, velocity and flight path angle are shown in Fig.5.

Terminal constraint on γ is satisfied. Fig.6 shows the

constraints q and qα. Both the constraints are active during
certain phase of time. As the slope matching condition is
relaxed for the control, sharp comers are observed at the
nodal points in the control history (Fig.7).

Table-1 : Results with Different Number of Polynomials Approximating the State

N Number of
Parameters

Number of Equality
Constraints 

Path Constraints +
Terminal

Constraints

Performance  Index ||c||2

8 224 200 81 - >>1

9 252 225 91 6.446 2.9 x 10-7

10 280 250 101 6.482 1.1 x 10-7

11 308 275 111 6.483 1.0 x 10-7

Fig. 4  Aerodynamic parameters during Ascent Flight Fig. 5  Important state variables
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Conclusions

A trajectory optimal control problem is converted to a

parameter optimization problem by approximating the

states and control using piecewise Chebyshev polyno-
mials. The case study is on the ascent phase trajectory

optimization of a RLV flight, which has typical path

constraints such as dynamic pressure and qα. The con-

straints are satisfied by the optimization strategy. The

performance index improved with more number of poly-

nomials at the cost of increasing computational time. The
Chebyshev points which control the polynomial fit is used

to match the dynamics at nodes. Midpoint strategy signifi-

cantly reduced the number of parameters to be optimized

without having to sacrifice accuracy.
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