PARAMETER OPTIMIZATION WITH CHEBYSHEV POLYNOMIALSFOR
TRAJECTORY DESIGN OF A RLV

Rajesh Kumar Arora*, V. Adimurthy** and M.S. Bhat "

Abstract

A trajectory optimal control problem is converted to a parameter optimization problem by
approximating the states and control using piecewise Chebyshev polynomials. The Chebyshev
points which control the polynomial fit is used to match the dynamics at the nodal points.
Midpoint strategy significantly reduced the number of parameters to be optimized without
having to sacrifice on accuracy. The resultant non- linear programming problem is solved
using sequential quadratic programming method. Ascent phase trajectory optimization of a
reusable launch vehicle having typical path and terminal constraintsis taken as a test case.
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I ntroduction

The solution of optimal control problem using Euler-
Lagrange equation or co- state variables methods is cum-
bersome due to sensitivity of boundary values which
results jump in co-state variable and other associated
numerical difficulties. An alternate strategy could be to
convert the optimal control problem into a parameter
optimization problem. Collocation and differential inclu-
sion are examples of such conversion methods[Ref.1]. In
collocation method, states and control are approximated
by piecewise continuous polynomials. The differential
equations are replaced by defect constraints, which are
driven to zero. The program NPDOT [Ref.2] convertsthe
optimal control problem to a nonlinear programming
problem using Her mite-S mpson defect constraints. Using
Hermite interpolation, cubic polynomials are defined for
each of the gtates that are matched along with its deriva-
tive, as defined by the system dynamics, at the nodal
points. The values of the states at the nodes are the design
variables for the NLP problem, which force the defect (of
the interpolated derivative and differential equations) to
zero. In another technique, referred to asdifferential inclu-
sion [Ref.3], control variables are removed by defining a
bound on the rate of change of states. Advantages of such
amethod are reduced problem size, which helpsin saving
computational time. Some of the disadvantages of differ-
ential inclusion method [Ref.4] are increased difficulty in
the analytical derivation of the constraints with respect to

problem parameters, restriction of problemswith linearly
varying controls and the requirement of obtaining control
time histories. In [Ref.5], pseudo spectral method is pro-
posed which gives better approximation of discretization
of the derivative of states at the nodes, thereby making it
competitive with the direct collocation methods.

In the present paper, states and control are approxi-
mated by piecewise Chebyshev polynomials. Derivative
of these polynomials are matched with the system dynam-
ics at the nodal points. The resultant parameter optimiza-
tion problem is then solved using Sequential Quadratic
Programming (SQP) approach. The ideais similar to the
method described by [Ref.6] in which differentiation and
integration are performed in closed form and the variable
thrust trajectory problem isreduced to one of the ordinary
calculus. Newton's method is then used to solve this
parameter optimization problem. In [Ref.7] a penalty
function approach is used to satisfy the system dynamics
at nodes. Asthe name suggests, a penalty function penal-
izes the performance index for any constraint violation
[Ref.8]. Another approach used Chebyshev polynomials
to approximate the control and used second order method
with a penalty function to solve the parameter optimiza-
tion problem [Ref.9]. In [Ref.2] Hermite-interpolation
implicit integration scheme is used to convert optimal
control problem into aparameter optimization one. Higher
order Gauss-L obatto methods are reported in [Ref.10].
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A trgjectory optimal control problem converted to a
parameter optimization problem with Chebyshev polyno-
mials will lead to alarge number of equality constraints.
In addition there will be problem dependent path con-
straints. Such a problem is computationally expensive to
solve. Initia attempt was madeto reducethe problem size,
so as to improve upon the implicit integration step size,
lead to non-convergence, which meant system dynamics
not getting satisfied at nodal points. An adternate, mid
point strategy is proposed which required additional con-
straintsto be satisfied at the center of the segment. Though
initially it looked that problem size is merely increased,
theadditional computationimproved theaccuracy of poly-
nomial for alarger segment. The implicit integration step
size is enhanced and the overal size of the problem is
brought down to one-sixth of its earlier size. This method-
ology is applied to trgjectory optimization problem of a
Reusable Launch Vehicle (RLV).

A typical RLV demonstrator flight profile could be
boosting the RLV to hypersonic Mach number using some
propulsion system. TheRLV , after getting separated from
the booster, will perform sub-orbital flight and sub-
sequently recovered from seausing aparachute and fl oata-
tion systems. Ascent phase trajectory optimization of a
RLV aong with the booster istaken asatest case. Typical
constraints during ascent phase will be dynamic pressure
(q) and qo (o is angle of attack and is used as control
variable). The term go. has direct bearing on the loads
coming on the vehicle. Terminal constraint is on burnout
flight path angle (y). This parameter plays an important
role during the descent phase. A largey at burnout implies
steeper reentry, which will violate the descent phase con-
straints such as load factor and . Performance index for
this problem is to maximize the Mach number at the burn
out of the booster. The optima control problem is con-
verted to a parameter optimization problem using Cheby-
shev polynomials and the proposed mid point strategy
successfully applied.

Chebyshev Polynomials

Polynomial interpolation using equally spaced data
results in accurate computation in the middle range of the
interpolation domain but the error of interpolation in-
creases towards the corners. In Chebyshev polynomias
the spacing islargest at the center of interpolation domain
and decreases towards comers. So error is more evenly
distributed throughout the domain and magnitude of error
islessthan that of equally spaced parts [Ref.11 to 15].
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Starting with To(X) =1 and Tq(x) =X, Chebyshev
polynomial of any higher order in power series can be
generated by the recurrence relation

TN(X) =2X TN—l(X) - TN_2(X) (1)

In equivalent cosine function form, these polynomias
can be expressed as
T, () =cos(N cos_l(x)) -1<x<1 2)

Ty (X) havethevaueunitat x=1, and at x=-1thevalue

is +1 for even N and -1 for odd N. The K root of the
Chebyshev polynomial is given by

2k+ 1n
—cog &2 1 3
% CO{N +1 2) ®)
Chebyshev polynomials are orthogonal polynomials.

Polynomials ¢;(x) are said to be mutually orthogonal with
respect to weight function w(x) when

1
J_l WO 0, (0 009 =0 i %] @

where w(x) = (1—)(2)_ & for such polynomials. The roots
are real and distinct for orthogonal polynomials. Also as
they are linearly independent, any such polynomial is a
linear combination of the basis polynomials.

As the states and control is to be approximated by
polynomials, our aim isto find a polynomial of degree N
which fits f (X) exactly at data points x, withk=0,1,. . .,
N. Such apolynomial is given by

N
P ®=>CT (5)
r=0
where
5 N
C =N 1 zof 06 T, (%) (6)
r=

The data points x, are zeros of the Chebyshev polyno-
mia Tns1(X) and over the completerange-1<x< 1. The
aror ey (X)=f(X)— Py (X satisfies for sufficiently
smooth functions the minimax criterion
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Where & is some point in (-1, 1).

M athematical Formulation

The trajectory equation of motion is governed by first
order differential equations

x=f(x,u,t) (8)
where x is a vector of state and u is avector of control.

One method of solution could be to discretize thetime
tini equa or unequal parts, approximate the state and
control with polynomials such that dynamics is satisfied
at thenodal points (t;, tj, ). This solution method is called

as collocation.

L et the state be approximated by a cubic polynomial

2 3
X=C,+Ct+C,T +CT

0T CTHCT +CT L Te [t ] ©)

Let xq, X, X3 and x, be the states computed at the
Chebyshev points generated between (t;, ti, ). Coeffi-
cients of this polynomial are determined using equation

(6). The first derivative of equation (9) is then matched
with the dynamics at the nodes.

2
€ +20,t +3c,t =f(x, U, t) (10)

cl+2c t . +3c t.2 f(x .U (11

2 i+l 3 b =T Uigr Gyg)

wherex; and x, ; arethestatescomputed at thenodesusing

equation (9). In addition states are to be matched at the
nodes along with their slopes for two successive polyno-
mials to ensure that these are continuous. Determining
X1, X5, X3 and x,,Which will satisfy the equality constraint
in equations (10) and (11) will give agood approximation
of state satisfying the dynamicsat (8). Addition of another
constraint equation (12)

2
c, + 202 t+ 3c3 t.= f X Uty (12

improves the results significantly, as a larger step size
could be taken up during the implicit integration process.
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Fig. 1 Implicit integration scheme

(G + 1,0
2
at the center of node using (9).

Heret, = and x,,isthevector of state computed

It is assumed that a cubic polynomia will be able to
approximate vector of states and control (Fig.1). This
requires four parameters (k = 4) to be estimated for each
state at the roots of the Chebyshev polynomial in thetime
span t; to tj, 1. Let there be N such polynomials, which is
required to be fitted for a given state. There will be then
(N + 1) nodesfor this state. States and slopes are matched
at each of the nodes with the subsequent polynomia and
also simultaneously setisfying the dynamics. The polyno-
mial should also satisfy dynamics at the mid point. Thus
there will be 5 equality constraints to be satisfied per
polynomial per state. For the control, slope condition is
relaxed and only numerica value is matched at the
nodes. Let She the number of differential equationsto be
satisfied. Thus number of parametersto bedeterminedis
(SN k) and number of equality constraints to be satisfied
is (BN-1)S. If the equality constraints can be completely
satisfied, then the piecewise polynomialswill giveagood
approximation of the dynamics. The path constraints,
which are problem dependent, are forced at the nodes and
Chebyshev points. The resultant parameter optimization
problem is then solved using Sequential Quadratic Pro-
gramming (SQP) method [Ref.16-19]. In SQP method,
performance index is approximated by a quadratic func-
tion and constraints are linearized.

Trajectory Optimization

The equations of motion asderived in report [Ref. 20],
for a point mass, non- rotating earth model is given by

(Tcosa— D)
m

. (V g) (L+Tsinoy)
v=|—-2|cosy+-——-—"coso

V=-gsiny+

r V mvV
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Fig. 2 Definition of paratmeters
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where V, v, y, r, A and ¢ are the state variables corre-
sponding to velocity, flight path angle measured from
local horizontal, heading angle measured from true north,
radial vector, longitude and latitude respectively (Fig.2).
Angle of attack o and bank angle ¢ are the control vari-
ables. Asonly planar trgjectory isconsideredin the present
analysis ¢ = 0 isassumed. Thrust, lift and drag forces are
givenby T, L and D. Indian Standard Atmosphereis used
where atmospheric properties such as density, pressure
and temperature are stored as afunction of altitude. Den-
sity (p) will be used for computation of dynamic pressure
q=% pVZ),WhiCh will  be required, by lift
(L=09SCy,, @) and drag (D = qSCpy) equations. Cp, isthe
drag coefficient and Cy, is normal force coefficient slope.
S is a reference area for which these coefficients are

derived. Pressure will be used for thrust correction and
temperature for the computation of speed of sound. Grav-

r
ity is computed using the expression g= g, (TO)2 where

gy (9.80665 m/sz) is the acceleration due to gravity at the
earth surface andr (6378 km) is the mean radius of earth.
Initid state vectors [V, v, y, 1, A, ¢ ] are taken as [1 m/s,
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Fig. 3 Thrust-time history of the Booster

90°, 90°, 6m, 80.2° 13.79. Initial atitude of 6m corre-
sponds to center of gravity of the vehicle. Initial velocity
is not taken as zero to avoid numerical difficulties in
equations (14) and (15).

The constraint trajectory optimization problem during
the thrusting ascent phase can be stated as

Maximize

Mtf (19
subject to

q<50 (kPa) (20)
[go| €250 (Parad)

Vo= (deg) (21)
with bounds

-2<0<2 (deg) (22

where My; is the Mach number at burnout of the booster

(at t = t). The dynamic pressure constraint ensures that
power requirements by the booster fin actuatorsarewithin
limits. Similarly go. constraint limitsthe structural load on
the vehicle. Nominal trgjectory is defined with no winds.
With winds go will be much higher. The burnout condi-
tion of flight path angle ensuresthat reentry constraintsare
within limits. Again, the control variable bounds are for
no wind conditions.

Results

Thethrust-time curve of the booster, which isnormal-
ized to its peak thrust, is shown in Fig.3. Normal force
coefficient and drag as a function of Mach number is
shown in Fig.4. Thisisfor areference area of 6. These
are inputs to the propulsion and aerodynamic model.
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Table-1: Resultswith Different Number of Polynomials Approximating the State
N Number of Number of Equality | Path Constraints + | Performance Index licll2
Parameters Constraints Terminal
Congtraints
8 224 200 8l - >>1
9 252 225 91 6.446 29x107
10 280 250 101 6.482 1.1x 10"
11 308 275 111 6.483 1.0x 10”7

o 2 4

Mach numbar

Fig. 4 Aerodynamic parameters during Ascent Flight

In order to reduce the number of equality constraints,
which are formulation dependent, initial attempts were
madeto solvethe parameter optimization problem without
satisfying equation (12). Theimplicit integration step size
achieved was of the order of 2s. For the trajectory optimi-
zation problem of 90s duration, as in the present case, the
required N that will completely satisfy the dynamicsis45.
Thus for S=7 (six state equations as in 13-18 and one
control equation), N=45 and k=4, the optimization prob-
lem has to determine 1260 parameters and satisfy 836
((35-2) N) equality constraints. In addition there will be
path constraints. Such a problem is computationally ex-
pensive to solve. Any scheme, which drastically reduces
N without having to sacrifice on accuracy, will be a
pragmatic way to solve such problems. The mid point
strategy, in which additional constraints areto be satisfied
a thecenter, significantly reduced thevalueof Nto 9. This
implies that implicit integration step size is enhanced to
10s (}9_'\?91 The overal size of the parameter optimization
is brought down to 252 parameters and 225 ((4S - 3) N)
equality constraints. Thisis roughly one-sixth the size of

theearlier problem and therefore much easier to solve. The
physics of mid point approach is that with additional
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Fig. 5 Important state variables

computation one can now enlarge the segment length of
the approximating polynomial for the same accuracy.
Though initidly it looked that problem size is getting
increased, the additional computation improved the accu-
racy of polynomid for alarger segment length. The im-
plicit integration step size is enhanced and the overal size
of the problem is brought down. Below N =9, the L, norm
of equdity constraint vector had a large value thereby
indicating that dynamicsis not satisfied by the piecewise
polynomials. The L, norm of avector isdefined astheroot
sum square of its components. Above N = 9, performance
index and L, norm of equality constraint vector (|ic||,) did
improve with increasing N. The improvement is however
marginal asgivenin Table-1.

The history of three important state parameters viz.
dtitude, velocity and flight path angle are shown in Fig.5.
Terminal constraint on v is satisfied. Fig.6 shows the
constraintsqand qo.. Both theconstraintsare activeduring
certain phase of time. As the slope matching condition is
relaxed for the control, sharp comers are observed at the
nodal pointsin the control history (Fig.7).
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Fig. 7 Control history

Conclusions

A tragjectory optima control problem is converted to a
parameter optimization problem by approximating the
states and control using piecewise Chebyshev polyno-
mials. The case study is on the ascent phase trgectory
optimization of a RLV flight, which has typical path
constraints such as dynamic pressure and qo.. The con-
straints are satisfied by the optimization strategy. The
performance index improved with more number of poly-
nomials at the cost of increasing computational time. The
Chebyshev pointswhich control the polynomial fitisused
to match the dynamics at nodes. Midpoint strategy signifi-
cantly reduced the number of parameters to be optimized
without having to sacrifice accuracy.
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