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Abstract

Novel Analytic Coarse Alignment Method is presented for Strapdown Inertial Navigation
Systems (SDINS) alignment on oscillatory base. Oscillatory base alignment is conducted by
building two vectors derived from gravity and angular velocity information provided by the
strapdown INS under oscillatory motion and comparing them with similar vectors built using
the local level reference frame information. The theory and algorithms are detailed in the
paper and several simulation test results are compiled for various kinds of oscillatory
motion.The proposed algorithm could be used for sea based INS applications.

Nomenclature

Cj
 i = direction cosine matrix from frame j to frame i

Ĉj
 i = approximate direction cosine matrix from

   frame j to frame i

x = vectorial quantity ⎧⎨
⎩
x1 , x2 , x3

⎫
⎬
⎭

T

x̂ = noisy vector of x
φ , θ , ψ = Euler angles of roll, pitch and yaw/

    azimuth/heading

Superscripts

n = navigation frame/local-level frame
ni = an inertia frame co-aligned to navigation

    frame at some instant k
b = body frame hosting orthogonal triad of

    inertial sensors
bi = an inertial frame co-aligned to body frame

    at some instant k

Introduction

Today the SDINS, with or without external aids, are
employed in several marine related applications. The
alignment process is an essential precursor for the start of
navigation with any SDINS irrespective of the environ-
ment. The alignment accuracy has immense bearing on the
navigation performance eventually. Initial attitude mis-
alignment errors compound with time resulting in expo-
nential error growth in position [1]. The critical factors that
influence the accuracy of the coarse alignment procedure

are the alignment duration and the accuracy of the inertial
sensors.

This paper presents a novel method for alignment of
Strapdown Inertial Navigation Systems (SDINS) on oscil-
latory base. The method is useful for a variety of marine
SDINS applications.

Traditionally, the alignment is conducted in two parts
comprising of coarse alignment and fine alignment. The
purpose of coarse alignment is to provide as close possible
an estimate of the initial attitude for the initialization of
the fine alignment procedure. And the fine alignment
procedure [4] estimates the gyro biases and corrects the
coarse attitude towards the true value subject to the meas-
urement noise of the inertial sensors. Design of fine align-
ment scheme normally assumes the attitude misalignment
to be small, in the order of 1°. They, hence, rely heavily
on the initial coarse attitude estimate. Without such an
estimate, the fine alignment filter would fail to converge.
In other globally convergent attitude optimization
schemes [5], the coarse estimate could be used to minimize
the convergence time of the global attitude estimator.

An analytic coarse alignment scheme for the SDINS
on oscillatory base is presented with this paper. The nec-
essary background is built systematically and derivations
borrowed from previous literature are re-done for the sake
of completeness. The emphasis of this paper would be to
obtain mathematically closed forms of solution to the
oscillatory base alignment problem.
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The scheme is put to test with an high grade INS
system mounted on two-axis rate table. The statistical
results of the attitude accuracy, particularly that of the
azimuth, are presented and discussed.

Principle of Coarse Alignment

The generic requirement for self-alignment of SDINS
is to find two non-collinear vectors simultaneously in the
two frames of reference between whom the attitude trans-
formation is desired to be obtained. Two non-collinear
vectors are sought, and together with their cross product
are sufficient to achieve the desired 3-D transformation.
Normally in the case of SDINS alignment for marine
applications, one of the two frames is the body frame and
the other is the navigation or local-level frame. The ana-
lytic alignment problem becomes to build a set of three
linearly independent vectors ⎧

⎨
⎩
V1 , V2 , V3

⎫
⎬
⎭
 with

V3 = V1 × V2 upon body and navigation frames such that

the solution of the transformation matrix Cb
 n to

⎡
⎢
⎣
V1

 n , V2
 n , V3

 n⎤
⎥
⎦
  =  Cb

 n ⎡⎢
⎣
V1

 b , V2
 b , V3

 b⎤
⎥
⎦

(1)

exists. Using simple matrix algebra, the transformation
matrix Cb

 n can be directly obtained from Eqn.1 as

Cb
 n  =  ⎡⎢

⎣
V1

 n , V2
 n , V3

 n⎤
⎥
⎦
   ⎡⎢
⎣
V1

 b , V2
 b , V3

 b⎤
⎥
⎦

 −1
(2)

Alternatively, since Cb
 n is orthogonal,

(Cb
 n
)
 −1  =  (Cb

 n
)
 T (3)

and hence Cb
 n can also be written as

Cb
 n  =  

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

(V1
  n
)
 T

(V2
  n
)
 T

(V3
  n
)
 T

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

 −1

    

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

(V1
  b
)
 T

(V2
  b
)
 T

(V3
  b
)
 T

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

(4)

However, since the body frame measurements are polluted
with noise, the transformation matrix arrived from Eqn.(4)
is only approximate. The coarse DCM Ĉb

 n due to noisy
⎧
⎨
⎩
Vk =1 , 2 ,3

 b ⎫
⎬
⎭
 is given as

C
^

b
 n  =  

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

(V1
  n
)
 T

(V2
  n
)
 T

(V3
  n
)
 T

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

 −1

    

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

(V
^

1
  b
)
 T

(V
^

2
  b
)
 T

(V
^

3
  b
)
 T

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

(5)

Eqn. (5)  is  the  general  closed-form solution of the
attitude determination problem given two non-collinear
vector measurements. Eqn. (5) is also the often referred
form  in  literature  and  considered computationally supe-
rior to the form in Eqn. (2) as the inverse

⎛
⎜
⎝
⎡
⎢
⎣
V1

 nT
 , V2

 nT
 , V3

 3T⎤
⎥
⎦

 T
 ⎞⎟
⎠

 −1
can be pre-computed owing to the

prior knowledge of the navigation frame vectors. The
vectors in the b-frame ⎧⎨

⎩
Vk =1 , 2 ,3

 b ⎫
⎬
⎭
 are formed from the

measurements of the body mounted orthogonal triad of
gyros and accelerometers. The noise plaguing the body
sensor measurements can be minimized by simple averag-
ing. The duration for averaging is such minimum time
after which the first moment of the body measurements
becomes stationary, normally about 2-3mins. The other
two preconditions for satisfactory estimation of the direc-
tion cosine matrix (DCM) Ĉb

 n are as follows :

• The matrix product V1
 nT

 V2
 n should be as close to 0 as

realistically possible by a suitable choice of V1
 n and

V2
 n. The condition of V1

 nT
 V2

 n  ≡  0 gives the maximum
observability to the attitude estimation.

• The alignment is not undertaken at the poles of the
Earth as the North merges with the vertical axis of the
navigation frame and a degree of freedom is lost. The
vectors ⎧⎨

⎩
V1 , V2 , V3

⎫
⎬
⎭
 become linearly dependent. This

is similar to the gimbal lock problem in gimballed INS
systems.

Coarse Alignment on Oscillatory Base

The transformation matrix Cb
 n by definition transforms

a unique physical quantity between the b and n frames. As
discussed earlier, for the purpose of coarse alignment, the
physical quantity should also be amenable to measurement
in both the frames simultaneously. Of the two measured
quantities by the SDINS, the gravity vector g b and angular
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rate vector ω b, we note that the magnitude of gravity
vector is unaltered under oscillation. However, its direc-
tion changes such that ĝ b = Ĉn

 b g n. The gravity vector in

n frame, g n, neither alters in magnitude nor changes
direction, while the SDINS is stationed on the constant
latitude circle. The angular rate vector is not comparable
between the b and n frames, while SDINS is under oscil-
lation as the body measured inertial angular rate ω̂ ib

 b  is
substantially higher than and deviated from the Earth
angular rate, ω̂ in

 n . We now develop a novel method of
coarse alignment for the SDINS under oscillation by con-
structing suitable non-collinear vectors derived from the g
vector in the body and navigation frames. Few preliminar-
ies are revisited hereunder for the sake of completeness.

Time propagation of DCM Matrix

Let us assume that at instant k, the approximate DCM
Ĉb

 n (k) ≡ Ĉbk
 nk is known and that it indeed transforms

g n (k)  =  C
^

b
 n (k) g

^ b (k) + ξ(k) (6)

then the coarse DCM at any further instant l > k can be
obtained using the gyro output vector ωib

 b and Earth angu-

lar rate ωin
 n that indeed transforms

g n (k + l)  =  C
^

b
 n (k + l) g b (k + l) + ξ (k + l) (7)

and the time propagation of Cb
 n between instants k and k

+ l is obtained as

C
^

b
 n (k + l) = Cn

k

 n
k+l  C

^
b
 n (k)  C

^
b

k+l

 b
k (8)

with ξ (k) and ξ (k +l) being the small difference between
the transformed gravity vector and the true gravity vector
arising mainly due to the approximate Ĉb

 n at instants k and
k + l respectively.

The construction of time propagation matrices Cnk

 nk+l

and Ĉbk+l
 bk  in the n and b frames respectively is given in

Appendix.

Observers in Inertial Frame

Let an hypothetical inertial frame be co-aligned with
the navigation frame n at the instant k, the start point of
alignment process. Denote the inertial frame as ni. For an
observer located in the inertial frame ni, the loci of gravity
vectors arising due to the rotation of the Earth describes a
cone and hence at no two instants the direction of gravity
is same for the inertial observer in a full day duration.

The expression for gravity vectors as seen by the
inertial observer over time is obtained by transforming the
gravity vector at instant k + l in the navigation frame n to
the inertial frame ni through the transformation

g ni (k + l)  =  Cn
k+l

 n
k   g n (k + l) (9)

Similarly, for an observer in an another hypothetical
inertial frame bi co-aligned with the SDINS body from b
at the start of alignment process, the loci of gravity vectors
is obtained from

g bi (k + l)  =  C
^

b
k+l

 b
k   g

^ b (k + l) (10)

At the start of alignment process, since it is assumed
that the inertial frames bi and ni are co-aligned with the
body frame b and navigation frame n at the instant k, the
following DCM relations are true.

C
^

bi
 ni  ≡  C

^
b
 n (k)  ≡  C

^
b

k

 n
k (11)

We now prove that irrespective of SDINS oscillation,
the profile of gravity vectors viewed by the inertial ob-
servers in the bi and ni frames is always related by the
constant DCM matrix Ĉbi

 ni.

Statement : At any instant m , m ≥ 0 ,

g ni (k + m)  =  C
^

bi
 ni g

^ bi (k + m) (12)

Proof : By definition, Cb
 n (k + m)  ≡  Cbk+m

 nk+m , relates vec-

tors in b and n frames at instant k + m as

g n (k + m)  =  C
^

b
 n (k + m) g

^ b (k + m)

Bringing the vectors g n (k+ m) and ĝ b (k+ m) to their
respective inertial frames using Eqn. (9) and Eqn. (10).
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Cn
k

 n
k+m g ni (k + m)  =  C

^
b
 n (k + m) C

^
b

k

 b
k+m g

^ bi (k + m)

g ni (k + m)  =  Cn
k+m

 n
k   C

^
b

k+m

 n
k+m  C

^
b

k

 b
k+m  g

^ bi (k + m)

g ni (k + m)  =  C
^

b
k

 n
k  g

^ bi (k + m)

Recalling from Eqn (11) that Ĉb
 n (k)  ≡  Ĉb

 ni ,  we arrive at
the equation

g ni (k + m)  =  C
^

bi
 ni g bi (k +m) (13)

and that is the desired proof.

It is understood from the preceding arguments that the
inertial observers in bi and ni frames are looking at the
same loci of gravity vectors, albeit with the different
attitude, even as the body frame is oscillating relative to
the navigation frame. We use this singular fact and pro-
pose to solve the attitude determination problem to esti-
mate the DCM Ĉbi

 ni and proceed to propagate the estimate

Ĉbi
 ni to the present using attitude propagation described in

Eqn. (8) to obtain Ĉb
 n in the present.

Novel Coarse Alignment Scheme : Mid Frame
Method

In this method, two resultant gravity vectors are con-
structed on either side of the inertial frames of reference
bi and ni. The alignment duration is between the instants
k and k + n, with the number of intervening samples n
assumed to be even for sake of clarity of expression.

Let us associate the two inertial frames bi and ni to be
co-aligned with the body and navigation frames at instant

k + n2 , ie., at the mid-point of the arc describing the loci

of gravity vectors during the alignment period, such that

there are n
2 gravity vectors on either side of the inertial

reference axes. For the observer in the ni frame, due to the
rotation of the Earth, the gravity vectors seem to be coming
from the West and going towards the East with one gravity

vector coinciding with him at the instant k + n2. Let us call

the resultant of gravity vectors coming from the West of
the inertial observer as gwest and the resultant of gravity

vectors going to the East as geast. The vectors gwest and
geast subtend an angle at the midpoint. Together with their
cross product, gwest × geast , they form a basis for the 3-D
space and hence are suitable candidates for coarse attitude
estimation.

Formulae for constructing the vectors gwest and geast
in both navigation and body frames are as given below :

Navigation frame vectors :

V1
 n  =  gwest

 ni   =  ∑ 
l = 0

n
2

 Cn
k+l

 n
( k + n2)  g n (k + l) (14)

V2
 n  =  geast

 ni   =  ∑ 

l = n2

n

 Cn
k+l

 n
( k + n2)  g n (k + l) (15)

Body frame vectors :

V1
 b  =  gwest

 bi   =  ∑ 
l = 0

n
2

 Cb
k+l

 b
( k + n2)  g b (k + l) (16)

V2
 b  =  geast

 bi   =  ∑ 

l = n2

n

 Cb
k+l

 b
( k + n2)  g b (k + l) (17)

With the tedious part of forming the vectors
⎧
⎨
⎩
V1 , V2 , V3

⎫
⎬
⎭
 complete, it only remains to substitute them

in Eqn. (5) to obtain the DCM relating the inertial frames
Ĉbi

 ni. The Ĉbi
 ni is then propagated using Eqn. (8) to get the

DCM Ĉb
 n relating the body frame with navigation frame

at the latest instant. Following observations are made on
the proposed method.

• For an alignment duration of t secs., the vector dot
product of geast and gwest is geast •

gwest  =  sin 2 (L) + cos 2 (L) cos ( || ωie || 
t
2 ) between

them. ωie is the Earth rate vector and L the latitude. This
formula could indeed be used to estimate the latitude
itself, at an unknown location given the sensor inputs.

The method is entirely recursive with minimal data
storage requirements. The resultant vectors in navigation
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frame ⎧⎨
⎩
geast

 n  , gwest
 n ⎫

⎬
⎭
 can be pre-computed with the prior

knowledge of g n and ωie
 n.

The Fig. 1 pictorially depicts the scheme for the special
case of SDINS located on the equator. The equitorial case
is chosen to render the diagram simple and easy to under-
stand.

Results

Several simulation studies were conducted to test the
performance of the proposed algorithm. The results are
presented hereunder along with the true values (Table-1).
The test bed comprised of simulated three-axis angular
motion with no noise or bias to the gyro output.

The method is also implemented and tested on several
different INS platforms with encouraging results. The
chosen SDINS for the purpose of present analysis consists
of 0.01 - 0.05°/hr triad of gyros and 100 - 150 μg class of
accelerometers mounted in orthogonal configuration. The
SDINS is mounted on a two-axis rate table with induced
coning motion of  2 sin (2π 0.25 t)  on the roll and pitch
axes of the INS. The results of error in Euler angles are
produced in Table-2 for analysis purposes.

Discussion on the results

By the nature of the method, the sensor noises and
numerical errors accumulate over time degrading the
alignment accuracy. This would tempt to lead the designer
to allow relatively little time for alignment. However, too

short time for alignment would bring the two vectors
uncomfortably close to each other resulting in almost
singularity. Hence, a suitable trade off between alignment
time vis-a-vis sensor noise levels have to be made for
improving the accuracy of alignment specific for the ap-
plication. This decision is mostly empirical and in the
choice of the designer.

Conclusion

A novel coarse alignment method is presented for the
strapdown inertial navigation system on oscillatory base.
Accuracy results for the Euler angles for SDINS under
oscillation are presented. The achieved accuracy in all
three Euler angles ψ , φ and θ are found to be within
acceptable levels for the initiation of fine alignment pro-
cedure.
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Appendix

Time Propagation of Attitude Transformation
Matrix

Algorithms for attitude propagation for strapdown in-
ertial navigation systems are treated at length in the paper
by Savage [6]. The relevant final results and algorithms
are taken from the mentioned reference for the construc-
tion of Cnk

 nk + l and Ĉbk + l
 bk  required for propagating the DCM

Ĉb
 n (k).

Body Frame Rotation

The Ĉbk + l
 bk  can be expressed in terms of a rotation vector

ρm defining the frame bk + l attitude relative to frame bk ,
given by

C
^

b
k + l

 b
k

 = I + 
sin (ρm)

ρm
 (ρm × ) + 

1 − cos (ρm)

ρm
 2  (ρm × ) (ρm × )

(18)

The ρ is calculated as the integral from instant k to instant
k + l of the general ρ equation

ρ
.
 = ωib

 b + 12 ρ × ωib
 b + 1

ρ
2 ⎛⎜
⎝
1 − ρ sin ρ

2 (1 − cosρ)
⎞
⎟
⎠
 ρ × (ρ × ωib

 b )

(19)

Eqn.19 is well known in literature as the Bortz equation.
Inertial angular rate ωib

 b , is direct measurement from the
strapdown angular rate sensors.

The  attitude  rotation  vector is then obtained ρm is
then obtained as the integral of Eqn. 19 from time k  to
time k + l

ρ (t)  =  ∫  
t
k

t
 ρ
.
 (τ) dt     ρm = ρ (tk + l) (20)

Table-2 : Several runs of mid-frame method with
2.5 mins alignment time

(under pure coning motion of 2 sin (2 π 0.25 t) in roll
and pitch axes)

δ ψ  o δ φ o δ θ o

0.11 -0.004 0.026
0.209 -0.004 0.027
-0.15 -0.004 0.028
-0.06 -0.005 0.024
0.04 -0.004 0.025
0.05 -0.004 0.025

-0.001 -0.002 0.027
-0.012 -0.006 0.023

0.16 -0.005 0.025
0.23 -0.005 0.024

-0.06 -0.004 0.022
0.36 -0.004 0.022
0.36 -0.005 0.023
0.08 -0.006 0.023
0.25 -0.006 0.024
0.19 -0.006 0.024
0.13 -0.005 0.022
0.07 -0.005 0.024
0.03 -0.006 0.024
0.1 -0.005 0.023

Accuracy bounds 0.36 -0.006 0.028
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A recursive algorithm for the computation of ρm is
obtained after suitable approximations to the generic inte-
gral equation of ρ

.
 that includes non-cummutative part of

the Bortz Equation. Given an SDINS gyros readout
θi = ∫  ωib

 b dt  of body incremental angles at any instant

k ≤ i < l , the overall digital algorithm is as follows :

α  = 0 ; β  = 0 ;
i  =  k ;

Looping while

(i < k + l)

δβ  =  12 (α + 16 θi − 1) × θi ;

β  =  β 2 + δ β ;
α = α + θi ;

i  =  i + 1 ;

continue

ρm  =  α + β ;

The ρm through the above recursive procedure is sub-
stituted in Rodrigues formula given in Eqn. (18) to obtain

transformation due to body roation C
^

bk + l

 bk
.

Navigation Frame Rotation

The Cnk

nk + l
 is the transformation matrix arising due to

navigation frame rotation with respect to the inertial frame
described by the angular rate vector ωin

n  the ωin
n  is com-

posed of angular rate of Earth fixed frame relative to
inertial frame ωie

n  and angular rate of navigation frame

with respect to Earth fixed frame ωen
n . For the case of

SDINS on oscillatory base, the latitude and longitude does
not change, hence the angular rate of navigation frame
relative to Earth fixed frame ωen

n  = 0.

Following similar argument as for the body frame
rotation, the transformation in the navigation frame arising
due to Earth rotation could be expressed as

Cn
k

 n
k + l

 = I + 
sin (ζn)

ζ n
 (ζn × ) + 

1 − cos (ζn)

ζ n
 2  (ζn × ) (ζn × )

(21)

where ζn is the rotation vector defining the frame nk + l
attitude relative to frame nk..

As the number of sample between instant k and instant
k + l is kept small, typically four, the magnitude of ζ n  is

very small. And because ωie
 n is slowly changing over a

typical update cycle, the non-commutative parts of the
Bortz Equation can be neglected without loss of accuracy.
The simplified form for evaluation of ζ n is given by

ζ (t)  ≈  ∫  
t
k

 t
 ωie

 n dt     ζn = ζ (tk + l) (22)

And since || ζ n || is small, the higher powers in the taylor

series expansion of the terms 
sin (ζn)

ζ n
 and 

1 − cos (ζn)

ζ n
 2  in

the Eqn. (21) can be done away with leaving the fractions
sin (ζn)

ζ n
 ≈ 1 and 

1 − cos (ζn)

ζ n
 2  ≈ 12. The simplified expres-

sion for Cnk

nk + l accurate to the second order of ζ n is obtained

as

Cn
k

n
k + l

  =  I − (ζn × ) + 12 (ζ n × ) (ζn × ) (23)

Fig.1 Pictorial summary of coarse alignment scheme for
oscillatory base
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