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Abstract

Many prediction methods have been developed for the transonic flow calculations, most of
them solve the Euler equations. The solution of Euler equations is usually complex and takes
long computer time. However, in many practical applications, viz, flutter calculation faster
transonic flow calculation is preferred. One such approach is based on modified transonic
small perturbation (TSP) theory approach. Here in this paper modified TSP theory incorpo-
rating entropy and vorticity effects has been studied by comparing the results with those of
Euler equations. The paper presents the description of both the Euler solver and the TSP solver
incorporating entropy vorticity effects. The calculated results have been compared with the
available experimental results or with available Euler results from literatures. The comparison
shows good agreement with the experimental data as well as available data from open
literature. The modified TSP code provides acceptable accuracy for most transonic flow
calculations. Thus in most cases long computation involved in Euler code can be avoided.

Nomenclature

a speed of sound 
e total energy per unit volume 
Cp pressure coefficient 
F,G,H flux vectors 
H± forward and backward component of flux vector 
I identity matrix 
k reduced frequency, ωcr/2U 
M Mach number 
p pressure 
qij,qik vectors of primitive variables at the centroids

  of cell i,j and i,k 
Q conserved variables 
s flux limiter 
Sij cell area 
∆s length of cell side 

∆t time step 
u, v cartesian velocity components 
U, V conservative variables 
x, y cartesian coordinates to local normal/tangential

  coordinates 
xt, yt grid speed in the x and y directions 
∆x,∆y directed lengths of the edge in x and y directions

α,α0,α1 instantaneous angle, mean angle of attack,

  and amplitude of pitch oscillation 
Γ circulation 

γ ratio of specific heats 
ε very small number 

ρ density 
Φ flux function

Introduction

Considerable progress has been made over the past few
decades in developing methods for aeroelastic analysis in
the flutter critical transonic speed range [1-10]. Much of
this progress has been achieved by developing finite-dif-
ference computer codes for solving transonic small pertur-
bation (TSP) potential equation, although significant
efforts are currently underway at the higher equation lev-
els as well. The advantages of the TSP formulation, espe-
cially for aeroelastic applications, are the relatively low
computational cost and the simplicity involving the grid
and geometry preprocessing. However, a serious limita-
tion of the potential flow codes, in general, is the inability
to predict accurately flows with strong shock waves. For
such flows, use of the isentropic potential formulation
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typically results in shock waves that are too strong and
located too far aft in comparison with the experiment. In
fact, it is fairly well known that the potential theory
predicts non-unique steady-state solutions [2] for certain
combinations of Mach number and angle of attack. Simple
modifications to potential theory [6-10], however, have
been shown to eliminate the non-uniqueness problem and,
consequently, provide solutions that more accurately
simulate those computed using the Euler equations. These
modifications include the effects of shock-generated en-
tropy, and they require only minor changes to existing
computer codes.

Rotational effects may also become important when
strong shock waves are present in the flow. For example,
vorticity is generated by shock waves due to the variation
of entropy along the shock. Potential theory, of course,
does not account for these effects because of the irrotation-
ality assumption necessary for the existence of a velocity
potential. For such flows, the Euler equations generally are
required to model the flow accurately. However, simple
modifications to potential flow theory have been devel-
oped to model rotational effects [8-10]. These modifica-
tions involve velocity decomposition. In this model, the
velocity vector is decomposed into a potential component
and a rotational component. For most applications of
interest to the aeroelastician, the rotational effects are
significant only in the region downstream of shocks.
Therefore, the potential component can be obtained
throughout most of the flow field using an existing poten-
tial flow code. The rotational flow then can be modeled
either by adding the appropriate source term to the gov-
erning equation or by modifying the fluxes. These
changes, consequently, include the effects of the shock-
generated vorticity as well as entropy, and require rela-
tively straightforward modifications to existing potential
flow codes.

Euler solver has also been developed, to solve the
time-dependent compressible Euler equations using struc-
tured dynamic mesh for time-accurate unsteady flow ap-
plications. The driving algorithm is an upwind biased
implicit cell-centered finite volume scheme. The spatial
discretization involves naturally dissipative flux-vector
split approach of Van Leer [11] that sharply captures
shockwaves.

The purpose of this paper is to study the entropy and
the vorticity corrections to TSP equation in comparison
with Euler solver. The computed results for steady and
unsteady cases obtained by these two models have been

compared with each other, with available experimental
data and also with Euler solutions available in the litera-
ture, which assess the accuracy of the developed codes and
their applicability.

Euler Algorithm

The flow is assumed to be governed by the two-dimen-
sional unsteady Euler equations for a bounded domain
Ω with a boundary ∂Ω  that may be written in integral form
as;

∂
∂t

  ∫ 
Ω
 ∫ Qdxdy + ∫ 

∂Ω
 (Fdy − Gdx) = 0 (1)

where the vector of conserved variables Q and the
convective fluxes F and G are given by
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The contravariant velocities U and V are defined by

U = u − xt     V = u − y
t

(2)

 where xt and yt are the grid speeds in the x and y

directions, and are obtained from the grid movement algo-
rithm, respectively, and the pressure p is given by the
equation of state for a perfect gas

p = (γ − 1) e − 1⁄2 ρ(u2
 + v

2) (3)

Flux-Vector Splitting

The inviscid fluxes computed using finite volume
method, cell-centered upwind flux-vector splitting (FVS)
scheme of Van Leer [11]. In this method the flux vectors
are split into forward and backward contributions, which
are continuously differentiable even at sonic and stagna-
tion points. The scheme is derived as follows.

For each edge of a cell, the fluxes are first rotated into
a locally Cartesian coordinate system x

_
 − y

_
 with the prin-

cipal direction being perpendicular to the edge. The flux
in this direction is defined as,
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H∆s = T(F∆y − G∆x) = 
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  ∆s (4)

where T is the transformation matrix, ∆x and ∆y are the
directed lengths of the edge in the x and y coordinate

directions, respectively, and ∆s2 = ∆x2 + ∆y2. Also, u
_
,v
_
 are

the Cartesian velocity components perpendicular and par-
allel to the edge and U

__
,V
__

 are the corresponding contravari-
ant velocities.

The flux vector H is split into forward (H+) and back-
ward  (H-) vectors components.

For locally subsonic flow, at

| U
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 | < a   H = H
+
 + H

−
(5)

where
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and hmass
±  , henergy

±  taken same as Batina [12].

For locally supersonic flow | U
__

| ≥ a,

For U
__

 ≥ a   H+ = H,  H− = 0 and for

U
__

 ≤ −a   H+ = 0,  H− = H

The resulting split fluxes are finally rotated back into the
original coordinate system so that

F∆y − G∆x = T 
−1

 H
+(q−

 ) + H
−
(q

+
 ) ∆s (6)

where the notation H+(q−) and H−(q+) indicates that the

fluxes H± are evaluated by MUSCL type approach, i.e.

using upwind-biased interpolations of the primitive vari-
ables q. For a given cell (i,j) the upwind-biased interpola-
tion for q- along the edge between cells (i,j) and  (i+1,j) is
defined by

q
−
 = q

i,j
 + 

1
4
 [(1−µ) δ− + (1 + µ) δ+]i,j (7)

where

δ+ = q
i+1,j

  − q
i,j

 ,  δ− = q
i,j

  − q
i−1,j

(8)

In Equations (7) and (8), qi−1,j  qi,j and qi+1,j are the

vectors of primitive variables at the centroids of the cells
(i-1,j) (i,j) and (i+1,j) respectively. The upwind-biased
interpolation for q+along this edge is determined similarly
using the flow variables at centroids of the cells (i,j) (i+1,j)
and (i+2,j), respectively. The parameter µ in the Equation
(7) controls a family of difference schemes by appropri-
ately weighting  δ+ and δ−. In the present calculation µ=

1/3 is used which leads to a third order accurate upwind-
biased scheme. Furthermore, in calculations involving
upwind-biased schemes, oscillations in the solution near
shock waves are expected to occur. To eliminate these
oscillations flux limiting is usually required which modi-
fies the upwind-biased interpolations for q+ and q- such
that,

q
−
 = qi,j + 

s
4
  [(1 − µs) δ− + (1+ µs)δ+] i,j (9)

where s is the flux limiter [13] given by

s  =  
2δ− δ+ + ε

δ−
2
 + δ+

2
 + ε

(10)

where ε = 10−8 is used, a very small number used to avoid
division by zero.

Implicit Time-step Integration

The implicit relaxation algorithm is formulated by the
first approximating the time derivative in Euler equations
by

∂Q

∂t
 = 

2 + ϕ
2

 
∆Q

∆ t
  −  

ϕ
2

 
Q

n
 − Q

n−1

∆ t
(11)
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where ∆q = Qn+1 − Qn and the parameter ϕ controls the

order of temporal accuracy. In the present calculations ϕ
is taken as 1, which gives second order accuracy in time.
The flux H must be treated at time level (n+1), which is
accomplished by linearizing as,

H
n+1

 = H
n
 + 





∂H

∂Q



Q=Q

n
   ∆Q (12)

where ∂H ⁄ ∂Q is the flux Jacobean A. This linearization,
however, reduces the temporal order of accuracy and
imposes some stability restrictions. This linearization and
relaxation errors can be minimized by, performing sub-it-

erations to drive to Qn to Qn+1. The forward and backward
fluxes are linearised for a given cell (i,j) as 

∑ T
−1

 H
+(q−

 ) + H 
−
(q

+
 )

n+1

  ∆s

     = ∑ T
−1

 H
+(q−

 ) + H 
−
(q

+
 )

n

  ∆s

     + 

∑ T 

−1
 A

+
 ∆s



 ∆Q

i,j
 + ∑ 

m=1

4

 T 
−1

 A 
−
 ∆s ∆Q

m
(13)

In this equation ∆Qm is the change in the flow variables

in the cells adjacent to cell (i,j). The exact Jacobians A+

and A- are determined by differentiation of H+ and H- by
conserved variables Q. By combining Equations (11) and
(13), the Euler equations are discretized as,
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−
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+
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n

 ∆s

(14)

where I is the identity matrix and Si,j  is the area of cell
(i,j).

If the discritized equation given above is applied to
each cell in the mesh then direct solution of the resulting
system of simultaneously equations requires the inversion
of a large matrix, even through sparse, with large band-
width and is enormously expensive. Consequently, a
Gauss-Seidel relaxation approach is used in which the
summation involving the variables in the neighboring cells

∆Qm is moved to the right hand side of the Equation (14).

The terms in this summation are then evaluated by using
the most recent values of ∆Qm. The solution procedure

then involves only the inversion of a 4 [ 4 matrix for each
cell in the mesh. Solution is obtained by sweeping twice
through the mesh. The first sweep is performed in the
direction from upstream to downstream and the second
sweep is from downstream to upstream.

Boundary Conditions

To impose the flow tangency condition along the sur-
face of airfoil, the flow variables are set within dummy
cells that are effectively inside the geometry being consid-
ered. The velocity components within the dummy cell are
determined from the values in the cell that is adjacent to
the surface by requiring the normal velocity component be
zero. Also, pressure and density within the dummy cell are
set equal to the values in the adjacent cell.

In the far-field [14], a characteristic analysis based on
Riemann invariants is used to determine the values of the
flow variables on the outer boundary of the grid. This
analysis correctly accounts for wave propagation in the far
field, which is important for rapid convergence to steady
state and serves as a "nonreflecting" boundary condition
for unsteady applications.

Computational Grid and Grid Movement Algorithm

A two-dimensional body-fitted curvilinear O-type grid
with suitable grid clustering has been generated by solving
an elliptic system of second order partial differential equa-
tions.

For unsteady calculations, gird movement algorithm
have been implemented in which, the grid is moved to
conform to the instantaneous position of the body by
modeling each edge of each cell by a spring. The spring
stiffness (k) of an edge is taken as the reciprocal of the
length of the edge concerned. The instantaneous location
of the points of the body, the inner boundary is obtained
by the prescribed unsteady motion of the body surface and
the points on the outer boundary are held fixed. At each
time step the displacements of the interior grid points are
then solved iteratively using the static equilibrium equa-
tions at each node, resulting in a smooth movement of the
mesh as the body moves or deforms. From the displace-
ments so found, the new location of the nodes and other
grid parameters are obtained readily.
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Modified Transonic Small Perturbation
Algorithm

The flow is assumed to be governed by the general-fre-
quency TSP potential equation, which maybe written in
conservation law form as

∂f
0

∂t
 + 

∂f
1

∂x
 + 

∂f
2

∂z
 = 0 (15)

where

f
0
 = − Aφ

t
 − Bφ

x
(16a)

f
1
 = Eφ

x
 + Fφ

x

2
(16b)

f
2
 = φ

z
(16c)

The coefficient A, B, E and F are defined as given in
reference [4].

The lifting surfaces are modeled by imposing the fol-
lowing conditions:

Flow tangency:

φ
z

±
  =  f

x

±
  +  f

t
(17a)

Trailing wake :

Γ
t
 + Γ

x
 = 0     and     ∆φ

z
 = 0 (17b)

where ∆( ) represents the jump in ( ) across the wake. The
flow-tangency condition is imposed along the mean plane
of the respective lifting surface. In Equation (17a), the plus
and minus superscripts indicate the upper and lower sides
of the chord line, respectively. The wake is assumed to be
a planar extension from the trailing edge to the down-
stream boundary of the finite-difference grid.

Entropy Model

Shock-generated entropy is modeled by implementing
modifications to TSP theory [6,7]. These modifications
include; an alternative stream wise flux, an entropy cor-
rection in the pressure formula and a modified wake
boundary condition for convection of entropy.

The entropy model is formulated by first replacing the
stream-wise flux f1 in the TSP equation by an alternative

flux given by

f
1
 = (γ + 1) M2

 R(V V
__

 − 1 ⁄ 2V
2) (18)

The first term of this new flux was derived [6] by an
asymptotic expansion of the Euler equations including the
effects of shock-generated entropy.The pressure formula
is modified to include entropy effects according to, 

C
p
 = C

pi
 + Cps (19)

where Cpi is the isentropic pressure coefficient, and Cps is

the pressure coefficient due to change of entropy and is
given by

C
ps

 = 
−2.S

γ(γ − 1) M
2
Cv

(20)

Equation (20) obviously requires the determination of
entropy along the surface of the airfoil. This first requires
the determination of the shock location and then the cal-
culation of the entropy jump across the shock. The shock
location is determined easily since most TSP algorithms
use type-dependent differencing to capture shocks and to
treat regions of subsonic and supersonic flow properly.
The entropy jump is computed using the Rankine-Hugo-
niot shock jump relation as,

S
C

v
  =  1n 

(γ + 1) u
1
2
 − (γ − 1) R

2

(γ + 1) R2
 − (γ − 1) u

1
2  −  γ 1n 

u
1
2

R
2 (21)

where

u
1
 = 1 + φ

x
 − us (22)

In Equation (22), u1 is the flow speed upstream of the

shock and us is the shock speed, which is computed at time

lever (n+1) to maintain time accuracy. In reference [6,7]
the entropy was assumed to be constant between the shock
and the trailing edge even for unsteady applications. In the
present formulation, the entropy is convected downstream
from the shock according to,

∂s

∂t
  +  

∂s

∂x
  =  0 (23)
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The wake boundary condition requires that the pres-
sure be continuous across the wake. Since the pressure
formula Equation (19), includes a term due to entropy, the
isentropic wake boundary condition must be modified as

Γ
t
  +  Γ

x
  =  1 ⁄2 ∆C

ps
(24)

where ∆ represents the jump across the wake. In Equation
(24), ∆Cps is determined by first convecting the entropy

along the wake and then computing Cps using Equation

(20). The nonzero right-hand side of Equation (24) modi-
fies the circulation distribution Γ. Consequently, the cir-
culation due to entropy opposes the circulation associated
with lift and thus decreases the total circulation. This is the
feedback mechanism that stabilizes the shock location and
eliminates the non-uniqueness problem [7].

Vorticity Model

 The vorticity model modification [8] includes:  a
modified velocity vector that in turn modifies the TSP
equation, a pressure formula correction for vorticity ef-
fects, and the resulting wake boundary condition.

The vorticity model is formulated by first writing the
velocity vector as the sum of potential and rotational
components according to

V  =  ∇Φ  − 
1

γ − 1
  

s
C

v
 ∇ψ (25)

In Equation (25), the first term on the right-hand side
is the gradient of a scalar potential Φ, and the second term
involves the product of the entropy s and the gradient of a
Clebsch variable ψ. The function ψ is the measure of the
stretching and rotating of vortex filaments associated with
entropy variation [8]. For the applications of interest in the
present work, the rotational part of the velocity vector is
assumed to occur only in the region downstream of the
shock waves, as shown in Fig.A.

Further assuming that the entropy convects with the
free stream speed Equation (23) and that the shock curva-
ture is negligible [8] implies that

∂ψ
∂x

  =  
1

γM
2 ,   and   

∂ψ
∂z

  =  0 (26)

These assumptions eliminate the variable ψ from the
formulation, leaving only the entropy s to be determined
throughout the flow field. In a steady flow, entropy is
constant along streamlines and changes only through
shock waves. The entropy jump is computed along shocks
using the Rankine-Hugoniot relation Equation (21). The
modified velocity vector in turn modifies the TSP equation
because the stream-wise distribution speed u = φx is now

given by

u = φ
x
  − 

1

γ(γ − 1) M
2  

s
c
v

(27)

The pressure formula must also be modified when
vorticity effects are included in the model. In general form,
the pressure coefficient may be computed using

C
p
  =  C

pi
  +  C

ps
  +  C

pv
(28)

where Cpv is the pressure coefficient correction due to

vorticity. As discussed by Hafez and Lovell [9], the cor-
rection due to vorticity approximately cancels the correc-
tion due to entropy and, thus, Cp is given by the isentropic

formula in terms of the irrotational disturbance speed φx.

As the pressure is now given by isentropic formula, the
wake boundary condition is identical to the original con-
dition given by Equation (17b). The feedback mechanism
that eliminates the non-uniqueness problem is the rota-
tional velocity field inherent in the vorticity model. This
is in contrast to the mechanism of the entropy model,
which is explicitly imposed through the wake boundary
condition Equation (24).

Fig. A  Rotational and irrotational flow regions
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Approximate Factorization Algorithm

The approximate factorization (AF) algorithm [4] has
been modified to solve the TSP equation including entropy
and vorticity effects. It consists of a Newton linearization
procedure coupled with an internal iteration technique.

 
For unsteady flow calculations, the solution procedure

involves two steps. First, a time linearization step is per-
formed to determine an estimate of the potential field.
Second, internal iterations are performed to minimize
linearization and factorization errors. Specifically, the
TSP equation is written in general form as

R(φ
n+1

)  = 0 (29)

where φn+1 represents the unknown potential field at time
level (n+1). The solution to Equation (29) is then given by

the Newton linearization of Equation (29) about φ∗

R (φ
∗
)  +  





∂R

∂φ


φ = φ

∗
  ∆φ  = 0 (30)

In Equation (30), φ∗ is the currently available value of

φn+1 and ∆φ = φn+1 − φ∗. During convergence of the itera-
tion procedure,  ∆φ will approach zero so that the solution

will be given by φn+1 = φ∗. In general, only one or two
iterations are required to achieve acceptable convergence.

The AF algorithm is formulated by first approximating
the time derivative terms (φtt and φxt) by second-order

accurate finite-difference formulas. The TSP equation is

rewritten by substituting φ = φ∗ + ∆φ and neglecting
squares of derivatives of ∆φ, which is equivalent to apply-
ing Equation (30) term by term. The resulting equation is
then rearranged, and the left-hand side is approximately
factored into a triple product of operators, yielding

L
x
 L

z
 ∆φ  =  − σR φ

∗
 , φ

n
 , φ

n−1
, φ

n−2
, (31)

where Lx, Lz and residue R same as [4], σ is a relaxation

parameter. Equation (31) is solved using two sweeps
through the grid by sequentially applying the operators
Lx and Lz as,

x sweep : L
x
 ∆φ

__
  =  − σR

z sweep : L
z
 ∆φ  =  ∆φ

__

Results and Discussions

To assess the entropy and vorticity modifications to
TSP formulation in comparison with the Euler solutions,
results are presented for the NACA 0012 airfoil and RAE
2822 transonic airfoil. The accuracy of these results is
determined through detailed comparisons with available
experimental data. Euler calculations were performed on
an O-type structured dynamic grid with 128 [ 30 grid
points and modified TSP calculations were performed on
a grid that had 105 and 45 points in the stream-wise and
vertical directions, respectively. For one particular case
the Euler results were also obtained by finer grids of size
128 [ 50 and 200 [ 50 to study the grid consistency as
shown in Fig.1. It shows that except for a small difference
in the shock strength as obtained by 200 [ 50 grid, the three
results are identical. Because of considerable time saving
128 [ 30 grid is used for all other calculations presented
in this paper.

 
For the NACA 0012 airfoil, four cases of increasing

difficulty were selected to assess the accuracy of the
modified TSP code in comparison with the Euler solutions
systematically. The first two cases involve steady flow for
non-lifting (M = 0.85, α0 = 0°)  and lifting (M = 0.8, α0 =
1.25°) conditions. The third case is for the airfoil pitching
harmonically about the quarter-chord with an amplitude
of  α1 = 2.51° and reduced frequency of k = 0.0814 at M
= 0.755 and  α0 = 0.016°. The calculations are compared
with the experimental data [13]. This case is a challenging
one for the modified TSP code since the oscillating airfoil
produces relatively large shock motions and the upper and
lower surface shocks periodically appear and disappear

Fig.1  Grid consistency check
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during the cycle. The fourth case is for the airfoil pitching
harmonically about the quarter-chord with an amplitude
of  α1 = 2.44° and reduced frequency of k = 0.081 at M =
0.599 and  α0 = 4.86°. This case is also a very challenging
one since the maximum angle of attack during a cycle of
motion is 7.3°. This relatively large instantaneous angle of
attack is normally considered to be outside the range of
validity of TSP theory. Also result for steady case is
presented for RAE 2822 transonic airfoil and comparison
were made with experimental data [16].

Steady Flow : Results are first presented for the NACA
0012 airfoil non-lifting flow at M = 0.85 and α0 = 0°. At
this Mach number and angle of attack, irrotational isen-
tropic methods, either TSP or full potential, predict non-
unique solutions. These non-unique or multiple solutions
are characterized by stable asymmetric flows with either
large positive or negative lift. The correct solution, of
course, is a symmetric flow with zero lift. When shock-
generated entropy effects are included in the calculation
as a modification to the stream-wise flux, the non-unique-
ness problem is eliminated, and the expected symmetric
solution is obtained, as show in Fig 2(a). For nonzero
lifting case results obtained for M = 0.8, α0 = 1.25° is
presented in Fig 2(b). It is a well studied case in AGARD
test cases for assessment of invisicid-flow methods. Ob-
tained  results  are in good agreement with the experimen-
tal data. However, TSP results are unable to capture the
weak shock on the lower surface of airfoil whereas Euler
solver is capable of capturing it quite accurately. Also, to
assess the applicability of the developed algorithms, cal-
culation was performed on RAE 2822 airfoil for M = 0.729
and α0 = 2.31° and comparison made with experimental

data. As shown in Fig 3, an Euler solver result matches
well with the experimental data whereas there are small
discrepancies in the modified TSP results in terms of shock
location and strength.

Unsteady Flow : To assess the modified theory for un-
steady flow applications, results obtained for the NACA
0012 airfoil pitching harmonically about quarter chord at
M= 0.755 and α0 = 0.016°. The amplitude of the motion
selected as α1 = 2.51° and the reduced frequency k =
0.0814 for comparison with the experimental data. The
oscillatory motion is defined by α = α0 + α1 Sin(ωt). The

results obtained using 360 steps per cycle of motion. Three
cycles of motion were computed to obtain a periodic
solution. Instantaneous pressure distributions at eight

Fig.2  Comparison of steady pressure distributions for  NACA 0012 airfoil

Fig.3  Comparison of steady pressure distributions for
RAE 2822 airfoil at M = 0.729 and α0 = 2.31°
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Fig.4  Comparisons of unsteady instantaneous pressure distributions for the NACA 0012 airfoil
at M = 0.755, α0 = 0.016°, α1 = 2.51° and k = 0.0814
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points in time during the third cycle of motion are pre-
sented in Fig 4. During the first part of the cycle, there is
shock wave on the upper surface of the airfoil and the flow
about the lower surface is predominantly sub-critical.
During the latter part of the cycle, the flow about the upper
surface is sub-critical, and a shock forms along the lower
surface. The calculated pressure distributions from the
modified TSP code indicate that the shocks oscillate over
approximately 25% the chord at different points in time,
in general compare well with the experimental data and
the comparison is similar to Euler calculation. The modi-
fied TSP code captures the shocks sharply and has no
difficulty in treating these large shock motions. Compari-
son of calculated and experimental unsteady lift coeffi-

cient verses the instantaneous incidence is shown in Fig 5.
Similar observations are noticed in comparing the moment
hysteresis curves.

 
To assess further, the modified TSP code for unsteady

applications, pressures calculated for the NACA 0012
airfoil pitching harmonically about the quarter-chord at
M= 0.599 and α0 = 4.68°. The amplitude of the motion
was selected as  α1 = 2.44° and the reduced frequency as
k = 0.081 for comparison with the experimental data [13].
The results obtained using 360 steps per cycle of motion,
and three cycles for a periodic solution are presented in
Fig 6. Results are in good agreement with the experimental
data.

Conclusions

Two algorithms developed for unsteady calculations
are : Euler code based on finite volume method, cell-cen-
tered upwind flux-vector splitting scheme that is naturally
dissipative and capture shock wave sharply, using struc-
tured computational dynamic mesh, and took special care
of time accuracy by applying the implicit version of Euler
code. Also modified algorithm for the transonic flow has
been developed where, modifications to unsteady tran-
sonic small-disturbance theory to include entropy and
vorticity effects are presented. The modifications have
been implemented in the TSP code, using Approximate
Factorization algorithm consisting of Newton lineariza-
tion technique, which was developed by Singh and Saha
[5] Entropy and vorticity effects have been incorporated
within the solution procedure to treat cases with strong

Fig.5  Comparisons of coefficient of lifts vs  instantaneous
angle of attack for NACA 0012 airfoil pitching at

M = 0.755, α0 = 0.016°, α1 = 2.51° and k = 0.0814

Fig.6  Comparison of  instantaneous pressure distributions for the NACA 0012 airfoil
at M = 0.599, α0 = 4.86°, α1 = 2.44° and k = 0.081
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shock waves more accurately. The modified TSP code
includes these effects while retaining the relative simplic-
ity and cost efficient of the TSP formulation. For Example,
the entropy and vorticity correction do not require any
user-selected parameter values, and the increase in CPU
time is only approximately 25%.

Steady and unsteady results are presented for the
NACA 0012 and the RAE 2822 transonic airfoil to dem-
onstrate applicability of the developed algorithms. Com-
parisons are made with present Euler solver and with
experimental data to assess the accuracy of the code. For
the NACA 0012 airfoil, steady pressure computed using
the modified theory is in good agreement with the Euler
calculations. For cases involving strong shock waves,
entropy and vorticity corrections results give good agree-
ment with the Euler solution and with experimental data.
Therefore, the present method provides the aeroelastician
with an affordable capability to analyze relatively difficult
transonic flows without having to solve the computation-
ally more expensive Euler equations.
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