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Abstract

This paper presents the vibration control of a highly simplified two degree of freedom model
of a helicopter. The vibration control study has been performed using both active and passive
vibration control schemes. In the case of active vibration control, the feedback mechanism
affects the stiffness of the system; whereas in passive vibration control, the absorber mass
affects the inertia of the system. The active control is achieved using a combination of piezo
stack sensor and actuator mechanism. A finite element model for the piezo stack mechanism
has been developed to obtain a relation between deformation, applied/induced potential and
externally applied mechanical load. The results of this study indicate that inclusion of sensor
and actuator units increases the natural frequency of the system due to increase in stiffness of
the system. It is observed that in the case of active vibration control, the frequency response
of acceleration of the system is highly sensitive to small variations in the magnitude of gain
around its optimum value and insensitive to changes in excitation frequency; whereas in
passive vibration control, the frequency response does not exhibit any significant change in
the characteristics with respect to the variation in the absorber mass, while it is highly sensitive
to changes in operating frequency.

Nomenclature

a1, b1, = constants

 c1, c2

a~ , b
~

= vibration absorber dimensions 
acc.ratio a1= non-dimensional acceleration of hub 

acc.ratio a2= non-dimensional acceleration of fuselage 

A = area 
c = stiffness coefficients 
C = damping coefficient 
Cref = reference damping coefficient 
D = electric displacement 
dV = elemental volume 
e = piezoelectric coupling coefficient 
E = electric field 

E
~

= Young’s modulus for metal layer 
F = force 
FS, FA = forces transmitted to hub and fuselage 
FPS,FPA = forces applied on the sensor/actuator 
G = gain 

G
__

= magnitude of gain 
K = stiffness 

KM, KP = local stiffness matrix of metal and piezo
    respectively 

LM, LP = length of metal and piezo layer respectively 
L = total length of piezo stack 
L = non-dimensional length ratio
MH, MF = mass of gear box/hub and fuselage 

    respectively 
N = Lagrangian shape function

T
__

= traction 
u = axial deflection 
utip = tip deflection 
VPA = actuation voltage 
X1, X2 = deflection of hub and fuselage respectively

Greek Symbols

ε = strain 
η = phase angle 
γ = shear strain 
µ , µ1, µ2 = mass ratios 

ω = frequency in rad/s 
ωref = reference frequency 

ϕ = angle in actuator/sensor mechanism 
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Φ = electric potential 
Φinduced = induced potential 

σ = stress 
∈ = electric permittivity 
ξ = damping ratio

Introduction

It is well known that helicopters are plagued with
vibrations. The adverse effects of the vibratory loads
increase with forward speed of the helicopter and also the
cumulative fatigue damage to the structure increases with
higher utilization of the vehicle. As a result, the vibratory
loads restrict the operation and efficiency of the vehicle.
The demand for increasing helicopter usage for passenger
transportation and the demand for high-speed maneuver-
ability helicopters for defense have underlined the need
for vibration reduction. Vibration reduction can be
achieved in a number of ways. Vibration reduction
schemes adopted in helicopters can be classified as either
passive or active control methodologies [1]. The passive
control scheme includes hub or blade-mounted pendulum
absorbers, anti resonant vibration isolation devices like
dynamic anti resonant vibration isolator (DAVI), anti
resonant isolation system (ARIS), and liquid inertia vibra-
tion eliminator (LIVE); structural modifications; and
structural optimization. Active control methodologies in-
clude higher harmonic control (HHC), individual blade
control (IBC), active flap control (AFC), and active con-
trol of structural response (ACSR). It may be noted that
while HHC, IBC, and AFC control schemes are aimed at
reducing the blade loads in the rotating frame, ACSR is
employed in the non rotating frame to nullify the effect of
vibratory hub loads on the fuselage.

The concept of an ACSR scheme is based on the
principle of superposition of two independent responses
of a linear system, such that the total response is zero [2].
The rotor loads are transmitted to fuselage through a
gearbox support structure. The support structure is ideal-
ized as a spring, a damper, and a control force generator.
In the passive vibration reduction scheme adopted in
ARIS, the control force generator corresponds to a vibra-
tion absorber mass MI as shown in Fig.1 (Refs. [3]- [5]).
In Fig.1, MF and MH are the fuselage and hub masses
respectively, and F(t) represents the external excitation
load. The motion of absorber mass is a function of the
relative motion of the masses MF and MH. By suitably
tuning the absorber mass (MI), the relative hinge locations
(L1) and the overhang length (L2), the vibratory level of
fuselage mass MF can be reduced, for a specific excitation

frequency of F(t). This scheme of vibration reduction has
been successfully implemented in several operational
helicopters in the world. In the active vibration control
scheme of ACSR, the absorber mass is replaced by a
control force generator which can be an electro hydraulic
actuator or an electro mechanical actuator or a smart piezo
actuator [6]-[9]. A schematic of the ACSR scheme having
a combination of sensor and actuator pair is shown in
Fig.2. In this study on active vibration control scheme, the
sensor and the actuator are assumed to be made of piezo
stacks. In the sensor mode, the piezo stacks develop an
induced potential due to an applied external axial load
(axial deformation). Whereas in the actuation mode, the
applied external potential to the piezo stacks develops a
deformation and the required control force. The closed

Fig.1  Rotor hub/fuselage dynamical model with ARIS type
passive control

Fig.2  Rotor hub/fuselage dynamical model with ACSR type
active control
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loop (position feedback) scheme of vibration control is
depicted in Fig.3. The objectives of this study are:-

• Formulation of a finite element model of a piezo stack
actuator (or sensor) to obtain a linear relation between
axial deformation, external axial load and applied (or
induced) potential.

• Formulation of a closed loop active vibration control
scheme (ACSR type) using a piezo  sensor and actuator
pair in a two degree of freedom system representing a
highly simplified model of a helicopter.

• Analyze the frequency response behavior of the two
degrees of freedom system under active control scheme
and 

• Compare the ACSR scheme of active vibration control
with the ARIS scheme of passive vibration control. The
reason for choosing these two control schemes is that
in both cases the control force is proportional to the
relative displacement between the hub and fuselage
masses. However, in active vibration control scheme,
the control force influences the stiffness of the system
and in passive control scheme, the absorber mass influ-
ences the inertia of the system.

Modeling of Smart Piezo Stack Actuator/Sensor

The smart actuator is assumed to be a circular bar
which consists of stacks of alternate layers of metal and
piezoelectric material. The piezo stack actuator acts like a
sensor when an induced potential is generated due to
deformation caused by the external load. In the actuator
mode, an external potential is applied across the piezo
patches to develop deformation and force at the two ends
of the actuator. Fig.4(a) shows the piezo stacks in sensor
mode and Fig.4(b) shows the actuator mode. FPS denotes
the external axial force in the sensor mode and FPA indi-
cates the net force generated by the actuator due to an
applied potential. In this section a finite element formula-
tion is developed to obtain a relation between deformation,
electric potential and external load acting at the ends of the
smart actuator.

 
The general linear electro-elastic constitutive relation

between stress, strain, electric field and electric displace-
ment are given as [10].

σ
ij
 = c

ijkl
 ∈

kl
 − e

ijk
 E

k
(1)

Di = e
ijk

 ∈jk + ε
ij
 E

j
(2)

For piezoelectric materials, in the direction perpen-
dicular to the poling direction the material is transversely
isotropic. The elastic, piezoelectric and dielectric property
matrices for PZT-5H material are given as follows [11].
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Fig.4  Piezo stack sensor and actuator (a)  Piezo stack sensor
(b) Piezo stack actuator

Fig.3  Closed loop position feedback control
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The subscripts 1,2,3,4,5, and 6 refer to x, y, z, yz, xz,
and xy respectively. The direction of poling is along z
direction. The properties of the material PZT -5H are given
in Table-1.

 Figure 5 shows a piezo stack model acted upon by an
external axial load. The direction of polarization in the
piezo layer is along positive z direction which is along the
longitudinal direction of the piezo stack. The thickness of
metal and piezo layers are LM and LP respectively and the
total length of the piezo stack is L. While formulating the
finite element model for the piezo stack, several assump-
tions have been made which are given as follows:

 
• Piezoelectric material is transversely isotropic.

• The cylindrical surface of the piezo stack are stress free.
Therefore, the stress σx and σy are zero throughout the

specimen.

• Shear strains γyz = γxy = γzx = 0 and shear stresses are

assumed to be zero.

• Electric field acts only in z-direction i.e. Ex = Ey = 0.
 

• The metal and piezo layers respectively are assumed to
have uniform thickness through out the stack.

• The inertia and damping effects of piezo stack are not
considered.

Finite Element Formulation

The finite element formulation is based on the appli-
cation of variational principle. The variational form of the
linear electro-elastic problem is given as [12].

∫ σij δ∈
ij
 dV

v
 − ∫ D

i
 δ E

i
 dV

v
 = ∫ T

__
 
i
 δ u

i
 dS

s

Noting that only σz and Ez exist in the piezo layer, and

there is no traction force, the variational formulation for
the piezo layer can be written as

∫ σz δ ∈
z
 dV

v
 − ∫ D

z
 δ E

z
 dV

v
 = 0 (3)

Based on the assumptions made in the formulation, the
constitutive equations can be reduced as [12] and [13],

σz = − e
∗
E

z
 + c

∗
 ∈

z
(4)

D
z
 = ε

∗
E

z
 + e

∗
 ∈

z
(5)

Where,

c
∗
 = c

33
 −  

2c
13
2

c
11

 + c
12

e
∗
 =  

2c
13

 e
31

c
11

 + c
12

  −  e
33

ε∗
 = ε

3
 +  

2e
31
2

c11 + c
12

Substituting equations (4) and (5) in equation (3)
yields

∫ (c
∗
 ∈

z
 − e

∗
 E

zv
) δ∈

z
 dV − ∫ (ε∗

 Ez − e
∗
 ∈

zv
) δ E

z
 dV = 0

(6)

Fig.5  Piezo stack model

Table-1 : Material properties for PZT-5H

GPa

c11 c12 c13 c33 c44 c66

138.33 93.16 95.06 131.26 21.05 21.05

C/m2

e31 e33 e15

-4.0329 16.5815 12.29

F/m

ε1 ε3

15293 x 10-12 15028 x 10-12
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Substituting for ∈z  =  
∂u
∂z

 and Ez = − 
∂Φ
∂z

 , equation (6)

can be written as,

∫  
0


c

∗
 
∂u
∂z

 + e
∗
 
∂Φ
∂z

  
∂ δu
∂z

 dV

     + ∫  
v

(− ε
∗
 
∂Φ
∂z

 + e
∗
 
∂u
∂z

 ) ∂ δΦ
∂z

 dV  =  0

Integrating over the cross-sectional area, one obtains

A ∫  
0

L
P 

c
∗
 
∂u
∂z

 + e
∗
 
∂Φ
∂z

  
∂ δu
∂z

 dz

     +A  ∫  
0

L
p (− ε

∗
 
∂Φ
∂z

 + e
∗
 
∂u
∂z

 ) ∂ δΦ
∂z

 dz  =  0 (7)

The finite element formulation satisfies the displace-
ment continuity at the interface between piezo and metal-
lic layers. Both axial displacement u and electric potential
Φ are assumed to be quadratic functions of z. Fig.6 shows
the nodal degrees of freedom in the metallic and the piezo
layers. The element used for modeling the piezo patch has
three nodes. Each node has two degrees of freedom. These
correspond to one extensional displacement in z-direction
and one electric potential. This results in a stiffness matrix
of the order of 6*6 for the piezo patch element. Whereas
the element for the metallic layer has three nodes, having
one degree of freedom per node. These correspond to
extensional degree of freedom in the z direction. The
stiffness matrix is of the order of 3*3 for the metallic layer
(Fig. 6).

The axial displacement and electric potential are given
in the discretized form as

u (z)  =  ∑ 
j=1

3
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j
 Nj          δ u

i
 = δ ui Ni

Φ (z)  =  ∑ 
j=1

3

 Φj Nj
          δ Φ

i
 = δ Φ

i
 N

i

where uj  and Φj are the nodal degrees of freedom and

Nj are quadratic Lagrangian shape functions, which are

given as,

N
1
  =  


1 − 

z
L

P




  

1 −2z

L
P
 


N
2
  =  



4z
L

P




  

1 − 

z
L

P





N
3
  =  


− 

z
L

P




  

1 −2z

LP
 


Substituting for u and Φ in equation (7), the virtual
work formulation can be written as

∑ 
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 ∑ 
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(8)

On substituting for u, Φ , δu , and δΦ  in equation (8),
the local stiffness matrix for the piezo layer can be ob-
tained as,
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Fig.6  Finite element model of piezo stack actuator

310 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL. 57, No.3



The nodal displacement vector is 
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The element stiffness matrix for a metallic layer can
be written as [14]
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where E
~

  is the Young’s Modulus of Elasticity.

The nodal displacement vector in this case is given as
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After imposing the displacement continuity and the
boundary conditions, the global discretized linear electro-
elastic equilibrium equation for the entire piezo stack
actuator can be written as,

[K] 

a



  =  


F



 (9)

where [K] is the global stiffness matrix, {a} is vector of
global degrees of freedom, and {F} is the global load
vector.

Piezo Stack Under Sensing Mode

Assume that the piezo stack is used as a sensing
element and is acted on by an external axial load FPS as
shown in Fig.4(a). One end of the piezo layer is grounded
and the induced potential across the piezo layer is meas-
ured at the other end of the piezo layer. Using equation (9),
the relation between the tip deflection and potential in-
duced as a function of the load FPS can be expressed as

u
tip

  =  a
1
 FPS (10)

Φ
induced

  =  b
1
 FPS (11)

where a1 and b1 are constants which are evaluated from
the finite element analysis. It may be noted that the exter-
nal mechanical load FPS is considered positive when ten-
sile and negative when it is compressive. Since both utip

and Φ are linear functions of the applied force, the con-
stants a1 and b1 are obtained by applying a unit force at
the ends of the piezo stack sensor i.e., FPS = 1N. For a
piezo stack having a diameter of 2mm, and a total length
of 101mm the values of a1 and b1 are found to be (other
relevant data are given in Tables-1 and 2)

a1 = 4.18031 ∗ 10
−7

 m ⁄ N  and  b
1
 = 7.8955 V ⁄ N.

Piezo Stack Under Actuation Mode

In actuation mode, the piezo stack is acted upon by
external axial load FPA ( FPA is taken to be positive when
tensile and negative when it is compressive) and an exter-
nal potential across the piezo layers as shown in Fig.4(b).
The tip deflection as a function of external axial load FPA
and actuation voltage VPA can be expressed as,

utip = c
1
F

PA
 + c

2
V

PA
(12)

where c1and c2 are constants evaluated from the finite
element formulation given in equation (9). The constant
c1 is obtained by applying a unit force and zero voltage
(FPA = 1N and VPA = 0V) and the constant c2 is obtained
using FPA = 0N and VPA = 1V. For the data given in
Tables-1 and 2, the values of c1 and c2 are found to be

c1 = 5.65686 ∗ 10
−7

 m ⁄ N and c
2
 = − 1.87 ∗ 10

−8
 m ⁄ V

Table-2 : Data for modeling the piezo stack
sensor/actuator

Diameter of the piezo stack = 2 mm

Total length of the piezo stack = 101 mm

Number of layers = 101 (alternate
MPM..M)

Thickness of the metal layer = 0.5 mm

Thickness of the piezo layer = 1.5 mm

Young’s modulus for metal

(Aluminium) E
~

= 70 GPa

Geometric data for mechanism :

a~ = 58.74 mm

b
~ = 101 mm
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Note that the value of the constant c2 is negative
indicating that for a positive voltage the piezo stack actua-
tor will undergo a compression. The reason for this behav-
ior is due to the assumption that the polarization vector in
the piezo layer is along the positive z direction and the
electric field is along the negative z direction. Equation
(12) can be used to calculate the block force required to
have zero tip deflection under the action of any external
actuation voltage.

Piezo Stack Mechanism for Sensor/Actuator

In order to amplify the deformation of the piezo stack,
a simple mechanism as shown in Fig.7 is used. The mem-
bers AB, AD, CB, and CD are assumed to be rigid axial
members. All the joints are assumed to be frictionless
hinges. The piezo stack actuator is connected between the
nodes B and D. In both sensing and actuation modes, this
mechanism is incorporated in the vibration control prob-
lem as shown in Fig.2. The point A is attached to the mass
MH and point C is attached to mass MF. From the un-de-
formed and the deformed configurations of the piezo stack
mechanism, the relation between the axial deformation of
the piezo stack (utip) and the relative displacement be-
tween hub and fuselage (X1 - X2), can be written as,

utip = − 
√4a~

2
 − b~

2

b~
 (X

1
 − X

2
) (13)

The relation between the force FS (transmitted to the
hub and fuselage by the sensor mechanism) and the exter-
nal axial load on the sensor FPS is given as

F = F
PS

 tan Ψ (14)

where tan Ψ = 
√4a~2 − b~2

b~

Similar ly the relation between the force FA (transmit-
ted to the hub and fuselage by the actuator mechanism)
and the external axial load on the actuator FPA   is given
as

F
A
 = FPA tan Ψ (15)

In deriving these relations, it is assumed that the sensor
and actuator mechanisms undergo small deformation.

Sensor Mechanism

Substituting equations (13) and (14) in equations (10)
and (11), the relations between sensor force FS, induced
potential Φinduced  and the relative displacement (X1 - X2)

can be respectively written as

FS = − 
√4a~

2
 − b~

2

a
1
b~

 tan Ψ (X
1
 − X

2
) = − F∗ (X

1
 − X

2
) (16)

Φ
induced

 = 
b

1
 F

S

tan Ψ
 = − −

√4a~
2
 − b~

2

a1b
~  b

1
 (X

1
 − X

2
) (17)

Fig.7  Piezo stack mechanism before and after deformation
(a) Deformation configuration, (b) Force balance
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Substituting the geometric data of the mechanism
given in Table-2, the value of F* is found to be F* = 8.44
x 105 N/m.
 

Actuator Mechanism

Substituting equations (13) and (15) in equation (12),
the relations between actuator force FA, actuation potential
VPA and the relative displacement (X1 - X2) can be written
as

− 
√4a~

2
 − b~

2

b~
 (X

1
 − X2) = c

1
 

F
A

tan Ψ
 + c

2
 V

PA
(18)

For closed loop vibration control, the actuation poten-
tial is related to the induced potential in the sensor through
gain which is given as VPA = G Φinduced . Rearranging the

terms in equation (18), the actuator force can be expressed
as

F
A
 = − 

√4a~
2
 − b~

2

b~c
1

 tan Ψ (X
1
 − X

2
) − 

c
2

c
1
 tan Ψ G Φ

induced

(19)

Substituting equation (17) in equation (19) it can be
seen that,

F
A
 = − F

__
 (X

1
 − X

2
) (20)

For the data given in Table-2, the value of F is found
to be F = 6.238 x 105+2.2 x 105G. It may be noted that the
closed loop feedback gain can be given as

G = G
__

e
iη

(21)

where G is magnitude and η is the phase.

Analysis of Vibration Control Problem

A simplified two degrees of freedom model shown in
Fig.2 is analyzed for vibration control problems. The
external excitation force acting on the mass MH is assumed

to be of the form F(t) = F0e
iωt, where ω is the excitation

frequency. The vibration analysis has been carried out for
two cases; namely (i) in addition to spring and damper,
only a sensor is provided between hub and fuselage, and
(ii) in addition to spring and damper, both sensor and
actuator are incorporated between hub and fuselage.

 

Vibration Analysis with Sensor Only

The equation of motion of the system, when only
sensor is attached between the hub and fuselage, can be
written as

M
H

X
..

1
 + C (X

.
1
 − X

.
2
) + K (X

1
 − X

2
) = FS + F

0
e
iωt

M
F
X
..

2
 + C (X

.
2
 − X

.
1
) + K (X

2
 − X

1
) = − F

S
 

Substituting for FS, from equation (16), one obtains

M
H

X
..

1
 + C (X

.
1
 − X

.
2
) + K (X

1
 − X

2
) + F∗ (X1 − X

2
) = F

0
e
iωt

M
F
X
..

2
 + C (X

.
2
 − X

.
1
) + K (X

2
 − X

1
) + F∗ (X2 − X

1
) = 0

Assuming a solution of the form X1 = X
__

1eiωt and

X2 = X
__

2eiωt, the frequency response of non dimensional

displacement can be written as,

X
__

1

F
0
 ⁄ K

 = 

1 + 
F∗
K

 − ( ω
ω

ref

)
2
 + i 

2ξω
ω

ref

µ( ω
ω

ref

)
4
− (1 + 

F∗
K

) (1 + µ) ( ω
ω

ref

)
2
− i2ξ ( ω

ω
ref

)
3
(1 + µ)

(22)

and

X
__

2

F
0
 ⁄ K

 = 

1 + 
F∗
K

 + i 
2ξω
ω

ref

µ( ω
ω

ref

)
4
− (1 + 

F∗
K

) (1 + µ) ( ω
ω

ref

)
2
− i2ξ ( ω

ω
ref

)
3
(1 + µ)

(23)
where,

µ = 
M

H

M
F

 = Mass ratio

ω
ref

2
 = 

K
M

f
 = Reference frequency

C = Damping coefficient

C
ref

 = 2MF ω
ref

 = Reference damping coefficient

ξ = 
C

C
ref

 = Damping ratio

AUGUST 2005 PIEZO STACK ACTUATORS IN ACTIVE VIBRATION CONTROL 313



The frequency response of non dimensional accelera-
tion of the masses MH and MF can be respectively written
as,

acc. ratio a
1

= 

1 + 
F∗
K

 − ( ω
ω

ref

)2 + i 
2ξω
ω

ref

µ( ω
ω

ref

)
2
 − (1 + 

F∗
K

) (1 + µ) − i2ξ ( ω
ωref

) (1 + µ)

acc. ratio a
2

= 

1 + 
F∗
K

 + i 
2ξω
ωref

µ ( ω
ω

ref

)2 − (1 + 
F∗
K

) (1 + µ) − i2ξ ( ω
ω

ref

) (1 + µ)

Vibration Analysis with Sensor and Actuator

The equations of motion of the system having both a
sensor and actuator, as shown in Fig.2 can be written as,
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Substituting for FS and FA from equations (16) and
(20), one obtains
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response of non dimensional displacement can be written
as,

X
__

1

F
0
 ⁄ K

 = 

1 + 
F
~

K
 − ( ω

ω
ref

)
2
 + i 

2ξω
ω

ref

µ( ω
ω

ref

)
4
− (1 + 

F
~

K
) (1 + µ) ( ω

ω
ref

)
2
− i2ξ ( ω

ω
ref

)
3
(1 + µ)

(24)

X
__

2

F
0
 ⁄ K

 = 

1 + 
F
~

K
 + i 

2ξω
ω

ref

µ( ω
ω

ref

)
4
− (1 + 

F
~

K
) (1 + µ) ( ω

ω
ref

)
2
− i2ξ ( ω

ω
ref

)
3
(1 + µ)

(25)

The magnitudes of system response can be obtained
for various values of gain G  and phase η.

 
The frequency response of non dimensional accelera-

tion of the masses MH and MF can be respectively written
as,
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Frequency Response of Passive Vibration Control
System with ARIS (Fig.1)

For the sake of comparison, the frequency response of
a passive vibration control system shown in Fig.1 is also
analyzed. The equations of motion of the system (taken
from Ref. [5]) can be written as,
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Results and Discussion

Using the frequency response functions derived for
various cases, several parametric studies have been per-
formed to evaluate the influence of piezo actuator/sensor
on the dynamic characteristics of the system. A compara-
tive study is also made to bring out the essential difference
between active control (incorporating ACSR scheme) and
a passive control system (having ARIS scheme). Since this
study is performed to understand the influence of piezo

sensor/actuator on active vibration control scheme, no
restriction has been imposed on induced and applied po-
tential across the piezo layer. The data used for the dy-
namic analysis are given in Table-3. The reference
frequency ωref for non dimensionalization is taken as

6.78Hz (42.61rad/s). The baseline system is taken as the
system without any vibration control mechanism, which
is excited by a force having a non-dimensional frequency
3.17.

Based on these equations, the frequency response of non-dimensional displacement can be written as, 
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   -  Hub, fuselage and isolator mass respectively
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The frequency response of non dimensional acceleration of the masses MH and MF can be respectively written as,
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Figure 8  shows  the frequency response of the dis-
placement and acceleration of the system given in Fig.2.
The frequency response is provided for three different
cases: (a) baseline system without sensor and actuator, (b)
system with sensor only, and (c) system with both sensor
and actuator with gain G = 0. The frequency response
curves show that the natural frequency of the system for
case (a) is 2.89 (19.58 Hz). Inclusion of sensor shifts the
natural frequency to 3.17 (21.55 Hz). Addition of sensor
and actuator further shifts the natural frequency to 3.24
(22.89 Hz). The reason for the shift in natural frequency
is due to increase in stiffness by the addition of piezo
sensor and actuator units. The results indicate that the
response of the masses at resonance frequency for all the
cases are almost the same.

 
Keeping the non-dimensional excitation frequency of

the forcing function F(t) as 3.17, the displacement and
acceleration response of closed loop vibration control of
the system are evaluated for various values of gain G and
the results are shown in Fig.9. The results have been
generated for several magnitudes and phase angles of gain
G. For the sake of conciseness, only those results pertain-
ing to phase angle η = 0, 90, 180, 270, 360 deg. are
presented. The pairs of figures under the cases (a), (b) and
(c) show the variation of non-dimensional displacement
and acceleration as a function of the magnitude of gain for

fixed phase angle. The results show that for the phase
angle η = 0 (or 360 deg.) and η = 90 deg. (or 270deg.), the
displacement and acceleration response of the masses MH
and MF decrease monotonically with increase in gain and
reach a constant value asymptotically. Whereas, for the
phase angle η = 180deg., the frequency response shows a
minimum for the response of the fuselage mass MF at a
value of gain G = 24.8. A resonant peak is also observed
for a gain of 2.8. From Fig.8a, it can be noted that the
baseline acceleration response for masses MH (acc. ratio
a1) and MF (acc. ratio a2) are 1.5784 and 0.62 respectively.
It is interesting to note from Fig.9 that the magnitude of
acceleration response of both the masses is well below the
baseline response for all values of gains and phase angles
(except near gain G = 2.8 for case η = 180deg.). This result
clearly shows that the closed loop control system has
sufficient gain and phase margins for vibration reduction
of the system.

The frequency response of the closed loop vibration
control system for three different gain values are shown in
Fig.10. The phase angle of gain η is fixed at η = 180deg.
The magnitude of the gain values are taken as G = 23, 24.8,
and 25. The response curves show that as the gain is
increased from 23 to 25, the natural frequency of the
system shifts to a lower value. There is no resonant peak
for the case when G = 25. Fig.10 also indicates that the
nature of the closed loop system is observed to be highly
sensitive to small variations in the magnitude of gain
around the optimum value G = 24.8. It is observed that the
natural frequency shifts drastically with a small variation
in the magnitude of the gain. Combining the results shown
in Fig.8c and Fig.10, it can be noted that the non-dimen-
sional natural frequency shifts from 3.24 (for a system
with both sensor and actuator (G = 0), Fig.8c) to 0.92 (for
the same system with a gain value of G = 23, Fig.10a) and
then to 0.11 (for a gain of G = 24.8, Fig.10b); and no
resonant peak is observed for a gain of G = 25 and beyond.
The asymptotic variation of the acceleration response for
the three cases are shown in Fig.11. The asymptotic values
of the acceleration response of masses MH and MF,for gain
values of G = 23, 24.8, and 25 are 0.87, -1.68; 0.86, -3.02;
and 0.86, -2.67 respectively. It is observed that the asymp-
totic value of the acceleration response of the mass MF is
a minimum (~ -3) for a gain G = 24.8, and there is no
significant variation in the acceleration response of MH. It
can be seen that, around the non-dimensional excitation
frequency of 3.17, the variation in acceleration response
of the system is negligible with respect to the frequency.

Table-3 : Data for vibration control

Reference quantities :

Mb = 65 kg

R = 6 m

Ω = 32 rad/s

Data :

MF = 2200 kg

MH = 300 kg

K = 60.01 x Mb x Ω2 = 4 x 106 N/m

ωref  =  √K
MF   =  42.61  rad⁄s

Cref = 2 x MF x ωref = 1.87 x 105 Ns/m

C = 0.033 x Mb x Ω = 68.64 Ns/m

L  =  
L2
L1

 = 12.5

Magnitude of gain G = 0 - 60

Phase η = 0 -360 deg in steps of 90 deg
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The results corresponding to passive vibration control
scheme, shown in Fig.1, are presented in Figs.12 and 13.
The data used for this study are given in Table-3. Even in
this case, the non-dimensional excitation frequency of the
forcing function is fixed at 3.17. The influence of absorber
mass on the system response is shown in Fig.12. The

fuselage vibratory response is found to be a minimum
when the absorber mass MI = 1.3kg.

The frequency response of the passive vibration con-
trol system for three different values of absorber mass is
shown in Fig.13. The values of the absorber mass are taken
as MI = 1.0 kg, 1.3 kg, and 1.5kg. The response curves

Fig.8  Frequency response of non dimensional displacement and acceleration with piezo stack sensor and actuator mechanism
(a) Baseline system without sensor and actuator, (b) System with sensor only, (c) System with both sensor and  actuator
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show that as the mass is increased from 1.0 kg to 1.5kg,
there is no significant shift in natural frequency of the
system. From Fig.8a it can be noted that the non-dimen-
sional natural frequency of the baseline system is 2.89.
The non-dimensional natural frequency decreases to a
value of 2.28 for an addition of absorber mass MI = 1.0kg

(Fig.13a); to 2.16 for absorber mass MI = 1.3kg (Fig.13b);
and to 2.09 for absorber mass MI = 1.5kg (Fig.13c) respec-
tively. The frequency response curves do not exhibit sig-
nificant change in the characteristics, as is observed in the
active control case (Fig.10). But, near the excitation fre-
quency of 3.17, the acceleration response shows drastic

Fig.9  Influence of gain on the response of the closed loop vibration control system (excitation frequency of the system = 3.17
(21.5466 Hz)) (a) Phase = 0°,360°, (b) Phase = 90°, 270° and (c) Phase = 180°
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change with respect to small variations in frequency
(Fig.13). The asymptotic values of acceleration response
of masses MH and MF, for absorber mass of MI = 1.0 kg,
1.3 kg, and 1.5kg are 0.75, -0.58; 0.71, -0.49; and 0.68,
-0.42 (Fig.13) respectively, which do not show significant
variation contrary to what is observed in Fig.11.

Conclusions

This study presents the vibration control of a highly
simplified two degree of freedom model of a helicopter.
The vibration control study has been performed using the
concept of ACSR for active vibration control and ARIS
for passive vibration control. The reason for choosing

Fig.10  Frequency response of closed loop system for different gain values
(a) G = 23 and η = 180°, (b) G = 24.8 and η = 180° and (c) G = 25 and η = 180°
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these two schemes is that in both cases, the control force
is proportional to the relative displacement between the
hub and fuselage masses. In the case of active vibration
control, the feedback mechanism affects the stiffness of
the system; whereas in passive vibration control system,
the absorber mass affects the inertia of the system. In the
present study, the active control is achieved using piezo
stack sensor and actuator mechanism. A finite element

model for the piezo stack mechanism has been developed
to obtain a relation between deformation, applied/induced
potential and externally applied mechanical load. The
important observations of vibration control study are as
follows.

 
• In the case of active vibration control, inclusion of

sensor and actuator units increases the natural fre-
quency of the system due to increase in stiffness of the
system. The results show that the there is sufficient gain
and phase margin: available for closed loop vibration
reduction. The minimum value of fuselage vibratory
levels is obtained for a phase of 180deg.. Even though
vibration reduction can be achieved for a wide range of
values in gain and phase angles in the closed loop
feedback system, the frequency response of the accel-
eration of the masses is observed to be highly sensitive
to small variations in the magnitude of gain around the
optimum value of gain. However, the effect of the

Fig.11  Frequency response of closed loop system for different
gain values (extended range)

Fig.12  Influence of absorber mass on response of
passive system (excitation frequency of the

system = 3.17 (21.5466 Hz))
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variation in frequency around the excitation frequency
is found to be negligible on the response of the system.

• For the case of passive vibration control, the frequency
response curves do not exhibit significant change in the
characteristics with respect to variations in the absorber
mass. However, the response is observed to be highly
sensitive to small variation in the frequency around the
excitation frequency.

• The results of present study indicate that closed loop
feedback system for vibration reduction is better than
the passive control system.
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