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Abstract

In the present work buckling analysis of beam using Eringen nonlocal elasticity theory is being
carried out. The associated governing differential equation is solved by the modified differen-
tial quadrature method (MDQM). The present MDQM employs Chebyshev polynomial for the
determination of weighting coefficient matrices. The results obtained from present analysis
are being validated with those reported in literature. Effect of number of interpolation points
on the accuracy of the results is also investigated. It is found that seven numbers of interpola-
tions are required to achieve reasonable accurate results for various nonlocal parameter
values. It is also observed that the effect of nonlocal parameter on critical buckling load for
the higher modes is higher and more nonlinear than the lower modes. Further the effect of (i)
nonlocal parameter, (ii) Winkler elastic foundation moduli and (ii) boundary conditions on
the critical buckling loads are being investigated and discussed.

Keywords: nonlocal parameter, differential quadrature method, buckling load, Winkler foun-
dation, boundary conditions

Nomenclature

A = cross section area of beam

Aij, Bij,= first, second, third and fourth order weighting
Cij, Dij    coefficients

C = fourth-order elasticity tensor
E = Youngs modulus
H = nonlocal modulus
I = moment of inertia
K = winkler elastic modulus
L = length of beam
M = Bending moment of beam
N = critical load
N0 = matrix of Chebyshev polynomial element

Ncr = non dimensional critical load

Ncr_0, = non dimensional critical loads at μ=0 and
Ncr_05    0.05 respectively

T(x)i = ith term of Chebyshev polynomial
a = internal length
e0 = material constant
k = non-dimensional elastic modulus of Winkler

   foundation

l = external length
n = no. of interpolation points
q = transverse load
t(x) = stress function corresponding to classical

    mechanics 
w = deflection of beam
xo, xl, = x co-ordinates of n+1 interpolation points
..., xn
∈xx = strain component
κ = bending strain
μ = nonlocal parameter
σ = nonlocal stress tensor
σxx = stress component
τ = material constant

Introduction

In nonlocal elasticity theory the stress at a point is
defined as a function not only of the strain at that point
(classical local mechanics) but also a function of the strain
at all other points in the domain. The contribution of forces
between atoms and the effect of internal and external
lengths are being included in the formulation. Recently
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there has been growing interest for application of nonlocal
continuum mechanics especially in the field of fracture
mechanics, dislocation mechanics and micro/nano tech-
nologies (carbon nanotubes) etc.

Nonlocal elasticity theory holds an important area of
research for the future structural developments and design
in modern aerospace and aeronautical fields. This is due
to the fact that small-size structures such as CNT, mi-
cro/nano sensors and actuators which are being applied in
aerospace structures (CNT-reinforced composite,
MEMS/NEMS devices (smart structures)) could not be
accurately analysed by local (classical) theory. The local
classical mechanics theory is assumed to be as scale free
theory. Experiments and atomic simulation have shown
that there is a significant size effect in mechanical proper-
ties when the dimensions of these structures become small.
Applying nonlocal theory to these small structures could
lead to correct prediction of mechanical behaviors.

The nonlocal elasticity theory was first reported by
Eringen [1-2]. This theory also has wide application which
includes wave propagation in solids, dislocation mechan-
ics, surface tension in fluids etc. Some researchers have
applied this nonlocal elasticity theory and studied bend-
ing, vibration and buckling of structural members. Peddi-
eson et al.[3] applied the nonlocal elasticity theory to
formulate a nonlocal version of Euler-Bernoulli beam
theory. Based on the theory of nonlocal continuum me-
chanics, Sudak [4] carried out buckling analysis of multi
walled nanotubes. Wang et al. [5] developed nonlocal
elastic model for beam and shell and carried out buckling
analysis of carbon nanotubes. Their results show that
buckling solutions via local continuum mechanics are
overestimated and scale effect is very much required in
stability analysis of carbon nanotubes. Wang et al. [6]
presented elastic buckling analysis of micro and nano rods
based on nonlocal elastic theory. The governing equations
and the boundary conditions were derived using the prin-
ciple of virtual work. Also expressions for the critical
buckling loads are derived for axially loaded rods with
various boundary conditions. Recently, Reddy [7] derived
the nonlocal elasticity theory for bending, buckling and
vibration of one-dimensional structural members. His
work showed that the inclusion of nonlocal effect in-
creases the magnitude of deflections and decreases both
buckling loads and natural frequencies.

The present paper proposes a differential quadrature
formulation for buckling analysis of beams which includes

Eringens nonlocal variables. These formulations will be
important in the application and analysis of nonlocal theo-
ries in structural studies for small-size analysis (CNT in
reinforced composites). The differential quadrature
method (DQM) is a simple and efficient technique for
solving partial differential equations as reported by Bell-
man and Casti [8] and Bellman et al. [9] .DQ researchers
have applied this method in solving various engineering
problems. These include Civan and Sliepcevich [10] , Bert
et. al. [11], Jang et. al. [12], Sherboume and Pandey [13]
and Mohammad et. al. [14]. Better convergence behaviors
are observed by DQM compared to its peer numerical
competent techniques viz. finite element method, finite
difference method, boundary element method and
meshless technique. Usually in these numerical tech-
niques accuracy improves with h, p and h-p refinements.
However, in case of the DQM a smaller number of inter-
polation points are adequate to yield reasonably accurate
results. This is because all uniform or non uniform inter-
polation points are used to represent the each-order deri-
vation of the function at each point. Thus accurate
numerical solutions are obtained by employing few inter-
polation points. The present numerical technique is suc-
cessfully applied in the analysis of beams, plates and
shells. Further, in structural analysis Chen et al. [15] and
Pradhan and Murmu [16] employed Modified Differential
Quadrature Method (MDQM). In this method the weight-
ing coefficient matrix for the first order is derived based
on Chebyshev polynomial. Wang and Bert [17] imple-
mented exactly the boundary conditions in MDQM by
employing modified weighting matrix.

Engineering structures in general are often found to be
resting on elastic foundation. These structures are modeled
as being supported on elastic foundation along their span.
For example in the analysis of runways of airports, the
structure is usually modeled as a "plate resting on elastic
foundation". Further mechanical fasteners in composite
materials are also modeled as beams on elastic foundation.
Similarly, structures (e.g. carbon nanotubes, micro/nano
beams) which require nonlocal theory for accurate predic-
tions of it behavior can also be generally found in an elastic
medium. The elastic medium can be modeled as a Winkler
type foundation. Structures on elastic foundation which
are analyzed with the local theory (classical mechanics)
are also being modeled by Winkler type foundation. In this
Winkler model[18], the elastic foundation is analyzed by
replacing elastic foundation with closely spaced virtual
springs. The elastic foundation modulus is being repre-
sented by the equivalent stiffness of the springs K.
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Studies based on local stress theory on homogenous
isotropic structures resting on elastic foundation are found
in literature. However, there is no work reported on buck-
ling analysis of beams with elastic foundation and with
nonlocal theory. Thus in the present work an attempt is
made to include nonlocal theory in the buckling analysis
of beams with Winkler foundation.

In the present work, based on Eringen [1-2] nonlocal
elasticity, Euler-Bernoulli beam model is derived. Further,
the nonlocal-type beam is considered to be supported on
an elastic foundation. The effect of elastic foundation can
be described by a Winkler-like model. The DQ formula-
tions of critical buckling load of the column are extended
to the beam resting on Winkler elastic foundation. The
associated governing differential equations based on non-
local elasticity theory for stability are derived and solved
using the modified differential quadrature method. Results
obtained by the present method are validated with those
reported in literature. Finally, the effect of (i) nonlocal
parameter, (ii) Winkler foundation elastic moduli and (iii)
boundary conditions on critical loads of beam are investi-
gated and discussed.

Formulation

Nonlocal Theory

The stress field at a point x in an elastic continuum
depends on strains at all other points of the body as
mentioned by Eringen [1] . This is in accordance with
atomic theory of lattice dynamics and experimental obser-
vations on photon dispersion. The most general form of
the constitutive equation for nonlocal elasticity involves
an integral over the whole body. Thus, the nonlocal stress
tensor σ at a point x is expressed as

σ  =  ∫  
V

 H ( | X ′ − X |, τ ) t ( X ′) dx ′ (1)

The terms t(x) and H ( | x′ − x |, τ) are the classical
stress at point x and the nonlocal modulus; respectively.
| x′ − x | represents the distance in Euclidean form. τ is a
material constant which depends on internal (e.g. lattice
spacing) and external characteristics lengths ( e.g. wave-
length). The constitutive relation is written similar to the
generalized Hooke’s law

t (x)  =  C (x)  :  ε (x) (2)

C is the fourth-order elasticity tensor; : denotes the
double dot product. According to Eringen [2] the integral
constitutive relation is equivalent to a differential form

⎛
⎝1 − τ2 l2 ∇ 2⎞

⎠ σ  =  t ,   τ  =  
eo a

l (3)

where ∇ is the Laplacian operator, eo is a constant for
adjusting the model in matching some reliable results by
experiments or other models. The parameter eo is esti-
mated such that the relations (3) of the model could
provide satisfied approximation of atomic dispersion
curves of plane waves with those of atomic lattice dynam-
ics. The terms a and l are the internal (lattice parameter,
granular size, or molecular diameters), and external
lengths, respectively.

For the case of one-dimensional structures such as a
beam, the Laplacian operator is reduced to one dimen-
sional form and the strains in the y and z directions are
negligible. Hence a uniaxial stress state is established in
the one dimensional nonlocal theory. Thus the nonlocal
constitutive relation for the macroscopic stress is given as
Reddy [7].

σxx  −  ⎛
⎝
eo a⎞

⎠
2  
∂

2 σxx

∂x2   =  E εxx (4)

The constitutive relation in Euler-Bernoulli beam the-
ory is expressed as

M  −  μ ∂
2 M

∂ x2   =  E I κ (5)

E and l are the Youngs modulus and moment of inertia,
respectively. And μ is the nonlocal parameter and is equal
to (eo a)2. The inclusion of the nonlocal parameter in the
above equation takes into account the effects of "scale-fac-
tor", usually smaller size. The parameter transforms the
classical local equation into a nonlocal mechanics equa-
tion. Classical continuum elasticity, which is a scale free
theory, cannot predict the size effects. The small size
analysis using local theory over predicts the results. Thus
the consideration of nonlocal parameter is necessary for
correct prediction of micro/nano structures. It should be
noted that when the nonlocal parameter μ is zero, the
equation (5) reduces to that of classical mechanics one.
For a specific material or structure, the corresponding
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nonlocal parameter can be estimated experimentally or
approximated by matching the dispersion curves of plane
waves with those of atomic lattice dynamics.

The Euler Lagrange equation without time dependent
terms is expressed as

∂
2 M

∂x2   +  q  − ∂
∂x

  ⎛⎜
⎝
N
_

  ∂w
∂x

⎞
⎟
⎠
  =  0 (6)

where N  and q are the buckling load and transverse load,
respectively. Substituting the second derivative of equa-
tion (6) into equation (5) and then substituting the expres-
sion of M into equation (6), the governing differential
equation for buckling is expressed as

∂
2

∂ x 2  
⎛
⎜
⎝

⎜
⎜
− E I  ∂

2w

∂ x2

⎞
⎟
⎠

⎟
⎟
  +  N

_

 μ   ∂
 4 w

∂ x4   −  N
_

   ∂
 2 w

∂ x2   =  0 (7)

The governing differential equation for buckling with
Winkler type foundation (on elastic medium) can be ex-
pressed as

∂
2

∂ x 2  
⎛
⎜
⎝

⎜
⎜
− E I  ∂

2w

∂ x2

⎞
⎟
⎠

⎟
⎟
  +  μ  

⎛
⎜
⎝

⎜
⎜
N
_

  ∂
 4 w

∂ x 4  + K (x) ∂
 2 w

∂ x 2

⎞
⎟
⎠

⎟
⎟

−  N
_

   ∂
 2 w

∂ x2   −  K (x) w  =  0 (8)

where K is the elastic modulus of Winkler foundation.

Modifed Differential Quadrature Method for Nonlo-
cal Theory

In the differential quadrature method (DQM) partial
derivatives (appearing in partial differential equation) of
a function with respect to a space variable at a given
interpolation point is approximated as a weighted linear
summation of function values at all chosen interpolation
points.

fx
 ′ ( xi)  =  ∑ 

j = 1

n

 Aij  .  f ( xj),        j  =  1 , 2 ... , n (9)

Thus, DQM transforms the governing differential
equation into a set of equivalent simultaneous equations.
This is done by replacing the partial derivative with
equivalent weighting coefficients. For example, the first

partial derivative is equivalent to a weighting coefficient
matrix.

∂
∂ x

  ≡  [ A ]x (10)

Similarly, second, third, and fourth order partial de-
rivative are expressed as

∂
 2

∂ x 2  ≡  [ B ] x  =  [ A ]x  [ A ]x

∂
 3

∂ x 3  ≡  [ C ] x  =  [ A ]x  [ A ]x  [ A ]x

∂
 4

∂ x 4  ≡  [ D ] x  =  [ A ]x  [ A ]x  [ A ]x  [ A ]x (11)

In this manner, the original governing differential
equation is transformed into a set of distinct simultaneous
algebraic equations. In the present analyses modified dif-
ferential quadrature method is employed. The implemen-
tation of this MDQM technique depends on how
accurately the weighting coefficient matrix is computed
and the interpolation points (grid points) are distributed in
the domain. The weighting coefficients matrix for the
MDQM is determined as follows. The function at any
point within the computational domain is expressed as

f (xi) = co To (xi) + c1 T1 (xi) + c2 T2 (xi) + .... + cn Tn (xi)

(12)

Here To , T1 , T2 .... Tn are the Chebyshev polynomials
terms of first kind. They are defined as

T1 (xi)  =  1 ,   T2 (xi)  =  xi ,   T2 (xi)  =  − 1 + 2 xi
 2 ,

T3 (xi)  =  − 3xi + 4 xi
 3 .... (13)

In matrix form, equation (12) is written as

⎧
⎨
⎩w

⎫
⎬
⎭  =  ⎡

⎣
No⎤⎦

 ⎧⎨⎩c
⎫
⎬
⎭ (14)

For any point into the computational domain, the equation
(14) can be written as

⎧
⎨
⎩w
__

 ⎫⎬⎭  =  [N ] ⎧⎨⎩c
⎫
⎬
⎭ (15)

Differentiating equation (15) and using equation (14),
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d
dx ⎧⎨⎩w

__
⎫
⎬
⎭ = ⎛⎜

⎝

d
dx [N]⎞⎟

⎠
  [No]−1  ⎧⎨⎩w

⎫
⎬
⎭ + 

[N] d
dx ( [No]−1 ⎧⎨⎩w ⎫⎬⎭ )

( = 0)

=  ⎛⎜
⎝

d
dx [N]⎞⎟

⎠
  [No]−1  ⎧⎨⎩w

⎫
⎬
⎭ (16)

From equation (16) we obtain,

d
d x  ⎧⎨⎩w

⎫
⎬
⎭  ≡  [A]  ⎧⎨⎩w

⎫
⎬
⎭ (17)

where

⎡
⎢
⎣
A⎤⎥
⎦
  ≡  ⎡⎢

⎣
No
′ ⎤
⎥
⎦
  ⎡⎢
⎣
No
⎤
⎥
⎦

 −1
(18)

[No] is a matrix developed from Chebyshev polynomials
of first kind and is defined as

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢
⎢
⎢
⎢

To(xo)

To(x1)

To(x2)

   ⋅

   ⋅

To(xn−1)

To(xn)

  

T1(xo)

T1(x1)

T1(x2)

   ⋅

   ⋅

T1(xn−1)

T1(xn)

  

T2(xo)

T2(x1)

T2(x2)

   ⋅

   ⋅

T2(xn−1)

T2(xn)

  

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

  

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

⋅ ⋅

  

Tn−1(xo)

Tn−1(x1)

Tn−1(x2)

    ⋅

    ⋅

Tn−1(xn−1)

Tn−1(xn)

  

Tn(xo)

Tn(x1)

Tn(x2)

   ⋅

   ⋅

Tn(xn−1)

Tn(xn)

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥

(19)

Here, xo , x1 , x2 , ... xn are the interpolation points. For
choosing interpolation points one simple way are to divide
the computational domain into equal spaces. However,
Chen et. al. [15] observed that uniform spacing among the
interpolation points did not result in accurate results. In-
stead, Pradhan and Murmu [16] reported that accurate and
stable results are being obtained by employing Cheby-
shev-Gauss-Lobatto interpolation points. Thus, in the pre-
sent study these interpolation points are being considered.
Locations of these interpolations are determined by

xi  =  12  ⎡⎢
⎣
1 − cos ⎛⎜

⎝

π i
n
⎞
⎟
⎠

⎤
⎥
⎦
 ,     i = 0 , ... ,n (20)

where n+1 is the number of interpolation points. The
functional values wi at the specific interpolation points xi
are computed as

wi  =  w (xi − 1) ,     i = 1 , 2 , ... , n + 1 (21)

Using the above differential quadrature approach, the
derivatives in the governing differential equation for buck-
ling analysis of beam with nonlocal parameter and without
Winkler foundation (equation (7)) are replaced by corre-
sponding matrices of weighting coefficients. Thus equa-
tion (7) is derived as

−  E I ∑ 
j = 1

n + 1

 Dij wj + μ N
_

  ∑ 
j = 1

n + 1

 Dij wj − N
_

  ∑ 
j = 1

n + 1

 Bij wj = 0

i = 1 , 2 , ... , n + 1 (22)

Thus equation (22) is a simple set of equivalent simul-
taneous equations. By this approach any complex differ-
ential equation with nonlocal elasticity theory can be
transformed into similar differential quadrature dis-
cretised form.  Similarly, differential quadrature discreti-
sation equation for buckling analysis of beam with
nonlocal parameter and Winkler foundation is written as

−  E I ∑ 
j = 1

n + 1

 Dij wj + μ N
_

  ∑ 
j = 1

n + 1

 Dij wj + μ (K)i ∑ 
j = 1

n + 1

 Bij wj

−  N
_

  ∑ 
j = 1

n + 1

 Bij wj − Ki wi = 0     i = 1 , 2 , ... , n + 1 (23)

It should be noted that when the value of μ = 0 , the
equation is reduced into classical Euler theory. While
imposing various boundary conditions the modified
weighting coefficient matrix (MWCM) approach is con-
sidered. One may refer to Ref. [17] for details. For the
column buckling analysis MWCM approach imparted
more accurate results as compared to other DQM methods
for same number of interpolation points. In MWCM ap-
proach the boundary conditions are being imposed during
the computation of weighting coefficient matrix for inner
interpolation points. For simply supported simply sup-
ported case w = 0 at x = 0  and x = L.This leads to elements
of first and last columns being replaced by zeros. Thus,
Aij is updated as A

_
ij where i, j = 1, 2, ... , n+1. The second

order weighting coefficients is thus written as
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B
_

ij  =  Aik  A
_

kj (24)

During the formulation of third order derivative coef-
ficient matrix for simply supported - simply supported
case, the boundary conditions,w′′ = 0 at x = 0 and x = L are
implemented. Similarly, third and fourth order weighting
coefficients are computed as

C
_

ij  =  A
_

ik  B
_

kj

D
_

ij  =  Aik  C
_

 kj (25)

The other types of boundary conditions are also imple-
mented in the similar way. Thus, the differential quadra-
ture analogous of equations (15) and (16) with appropriate
boundary condition are expressed as

−  E I ∑ 
j = 1

n + 1

 D
_

ij wj + μ N
_

  ∑ 
j = 1

n + 1

 D
_

ij wj − N
_

  ∑ 
j = 1

n + 1

 B
_

ij wj = 0 (26)

−  E I ∑ 
j = 1

n + 1

 D
_

ij wj + μ N
_

    ∑ 
j = 1

n + 1

 D
_

ij wj + μ (K)i   ∑ 
j = 1

n + 1

 B
_

ij wj

−  N
_

    ∑ 
j = 1

n + 1

 B
_

ij wj − Ki wi = 0 (27)

It should be noted that the above equations are solved
for interior points.

Results and Discussions

Validations

Modified Differential Quadrature Method

Computer code based on modified differential quadra-
ture method (MDQM) is developed to predict the critical
buckling loads of one dimensional structural member. In
this method the boundary conditions are implemented
using the modified weighting coefficient matrix
(MWCM). Non dimensional critical buckling load is de-
fined as

Ncr  =  N
_

 × (L2 ⁄ E I ) (28)

where N is the critical buckling load. L, E and I represent
beam length, Youngs modulus and moment of inertia,
respectively. A simply supported - simply supported beam

is being considered and non dimensional critical loads as
mentioned in equation (28) for first four modes are being
computed and results are listed in Table-1. These results
are restricted to local theory. From this table one could
note that the computed critical loads are in good agreement
with those computed employing distributed transfer func-
tion method (DTFM) of Yang[19] .

Including Moduli of Winkler Elastic Foundation

Further, non dimensional critical loads mentioned in
equation (28) are determined for a simply supported -
simply supported beam resting on Winkler elastic founda-
tion. Non-dimensional Winkler modulus is defined as
k = K L4 ⁄ E I. Five values of non-dimensional Winkler
elastic moduli are considered viz. 1, 5, 10, 50 and 100. The
non dimensional critical loads for first four modes and
various Winkler elastic moduli are listed in Table-2. For
the same parameters results are also obtained employing
distributed transfer function method [DTFM] of Yang
[19] and compared with the results obtained by present
MDQM analysis. The comparative study is listed in Ta-
ble-2. From this comparison it is observed that present
MDQM results do agree with the DTFM results. Thus the
developed code based on MDQM is said to yield accurate
results with nine interpolation points. Further, employing
the developed code buckling analysis of beams with non-
local theory and various boundary conditions are carried
out and discussed.

Including Nonlocal Theory

Developed computer code is extended to include effect
of nonlocal parameter μ. Employing the developed code
critical buckling loads is computed for a simply supported
- simply supported isotropic beam. Non dimensional criti-
cal buckling load mentioned in equation (22) are obtained
for the first four modes of buckling. The values of nonlocal
parameter μ are considered to be 0.0 to 0.05 and the
computed critical loads are plotted in Fig.1. From this
figure it is observed that present results are in good agree-
ment with those reported by Reddy [7]. Further, it is found
that reasonably accurate results are being obtained by

Table-1 : Comparison of nondimensional critical
loads

Buckling
Mode

1st 2nd 3rd 4th

Yang [19] 9.8696 39.4784 88.8260 157.9102
Present

Analysis
9.8696 39.4784 88.8264 157.9140
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employing only seven interpolation points in the analysis.
The critical load decreases with increase in value of non-
local parameter μ. Similar trend with nonlocal parameter
is also observed by Reddy[7].

Convergence Study with Number of Interpolation
Points

Critical buckling loads for a simply supported-simply

supported isotropic beam with various nonlocal parameter

μ are being computed. Critical loads are obtained employ-
ing various numbers of interpolation points. Relative dif-
ference percent between the Reddys result and present
analysis result is defined as 100 x (present result - result
of Reddy [7])/result of Reddy [7] . Results are depicted in
Fig.2. From this figure it is interesting to note that with
seven interpolation points reasonably converged results
are obtained for all nonlocal parameter μ values consid-
ered. Thus in the rest of the nonlocal analysis nine inter-

Table-2 : Non-dimensional critical buckling loads of simply supported beams on Winkler Foundation
k 1 5 10 50 100

1st Mode
Yang [19] 9.9709 10.3762 10.8828 14.9357 20.0017

Present Analysis 9.9709 10.3762 10.8828 14.9357 20.0017
2nd Mode

Yang [19] 39.5037 39.6051 39.7317 40.7449 42.0114
Present Analysis 39.5037 39.6050 39.7317 40.7449 42.0114

3rd Mode
Yang [19] 88.8377 88.8827 88.9392 89.3893 89.9522

Present Analysis 88.8353 88.8803 88.9367 89.3870 89.49925
4th Mode

Yang [19] 157.9200 157.9450 157.977 158.2301 158.5471
Present Analysis 158.0931 158.1184 158.1500 158.4030 158.7193

Fig.1 Critical loads with various nonlocal parameter values Fig.2 Convergence study with various nonlocal parameter
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polation points are being employed. It is also observed that
the relative difference percent is less for larger values of
nonlocal parameter μ as compared to smaller values of
nonlocal parameter μ.

Effect of Nonlocal Parameter and Higher Modes

Non dimensional critical buckling loads for first four
modes of a simply supported-simply supported beam with
nonlocal theory are determined. The variation of non
dimensional critical loads for the first, second, third and
fourth modes with various nonlocal parameter μ values are
plotted in Fig. 3. From this figure one could observe that
the influence of nonlocal parameter on non dimensional

critical load for the higher mode is larger and more non-
linear as compared to the lower modes. Further, the non-
dimensional critical load for the fourth mode drops rapidly
for nonlocal parameter μ varying from 0.0 to 0.01. This
drop is gradual for nonlocal parameter μ varying from 0.01
to 0.05. From Fig. 3 one could infer that effect of nonlocal
parameter on the critical load is larger for the fourth mode
as compared to first, second and third modes. Further it is
observed that for the first mode there is insignificant
change of critical load with increase in nonlocal parameter
μ from 0.0 to 0.05.

Effect of Nonlocal Parameter and Elastic Modulus of
Winkler Foundation

Non dimensional critical buckling loads for a simply
supported-simply supported beam with nonlocal theory
and various Winkler elastic moduli are determined. The
variation of non dimensional critical loads for non dimen-
sional elastic moduli of 1, 2, 5, 10, 50 and 100 and various
nonlocal parameter μ are plotted in Fig. 4. From this figure
one could observe that non dimensional critical loads are
decreasing with increasing value of nonlocal parameter μ.
This trend is same or all the Winker elastic moduli consid-
ered.  Further, percent change of non dimensional critical
buckling load is defined as

100 × ⎡
⎣
(Ncr _ 0) − (Ncr _ 05)⎤

⎦
 ⁄ Ncr _ 05 (29)

where Ncr_0 and Ncr_05 are non dimensional critical loads
at nonlocal parameter μ = 0  and 0.05, respectively. This
percentage change in critical load for various moduli of
Winkler foundation is plotted in Fig. 5. From this figure

Fig.3 Effect of nonlocal parameter and higher modes
on critical buckling load

Fig.4 Effect of nonlocal  parameter and elastic modulus of
Winkler foundation on critical buckling load

Fig.5 Percent change of critical load with  various Winkler
elastic modulii
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one could observe that the percentage change of critical
load is larger for low modulus of Winkler foundation and
smaller for high modulus of Winkler foundation. This
percentage change of critical load is 48 percent for the case
of no Winkler foundation  (k=0). Further this percentage
change of critical load is around 19 percent for the case of
non dimensional Winkler foundation modulus of 100.
Thus it is concluded that change of critical load decreases
exponentially with increase in magnitude of Winkler elas-
tic moduli.

Effect of Nonlocal Parameter and Boundary Condi-
tions

Effect of nonlocal parameter on non dimensional criti-
cal buckling loads for three different boundary conditions
are investigated and results are shown in Fig.6. These
boundary conditions are (i) simply supported - simply
supported (SS), (ii) Clamped - simply supported (CS) and
(iii) clamped - free (CF). From Fig. 6 it is noted that effect
of nonlocal parameter on CS boundary condition is larger
as compared to SS boundary condition. Similarly, it is also
observed that effect of nonlocal parameter on SS boundary
condition is larger as compared to CF boundary condition.
Further it is note that that effect of nonlocal parameter for
CF boundary condition is insignificant and could be ig-
nored.

Conclusions

Computer code based on modified differential quadra-
ture method (MDQM) is developed for the buckling analy-
sis of one dimensional member. Developed code includes
nonlocal theory, modulus of Winkler elastic foundation
and three boundary conditions. Non dimensional critical
buckling loads for a simply supported  simply supported
beam (i) with elastic foundation (ii) without elastic foun-
dation and (iii) with nonlocal theory are being computed.
These results are found to be in good agreement with the
corresponding results found in the literature. It is observed
that with seven interpolation points reasonably converged
results are obtained for various nonlocal parameter μ
values, Winkler foundation moduli and boundary condi-
tions.

Further, it is found that the influence of nonlocal
parameter on non dimensional critical buckling load for
the higher mode is larger and more nonlinear as compared
to the lower modes. It is also observe that non dimensional
critical loads decrease with increase of nonlocal parameter
μ. From the present investigation it is concluded that
change of critical load decreases exponentially with in-
crease in magnitude of Winkler elastic foundation moduli.
Furthermore, it is found that effect of nonlocal parameter
on clamped - simply supported (CS), simply supported -
simply supported (SS) and clamped - free (CF) are in
decreasing order. It is also noted that effect of nonlocal
parameter on clamped - free boundary condition is not
significant.
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