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Abstract

An analytical model has been developed and an approximate solution for the free vortex
swirling supersonic flow through nozzles. Earlier work by Mager, is potential flow based. In
the present model swirl number has been redefined to confine the flow properties within the
valid range. Flow properties are always determined by the total conditions (P0 and a0), nozzle
profile and swirl intensity as in the case of one-dimensional flow. Integral form of the continuity
equation has been used in order to satisfy the boundary conditions, since radial velocity
component is ignored. For free vortex case, it has been shown that there exists a minimum
radius along the length of the nozzle at which the density is zero and flow seems to be void
causing reasonable blockage to the flow at throat. In defining the non-dimensional swirl
number (β), axial velocity at each section was employed for non-dimensionalization  as
compared to Mager’s definition of using a global constant to find swirl number (α). The
variations of performance parameters of the nozzle such as co-efficient of discharge (Cd) thrust
efficiency (ηs) and impulse efficiency (ηI) and flow field parameters such as density, pressure,
velocity etc. are presented as a function of swirl numbers (α, β) and compared with the
available experimental data. The swirl numbers (α, β) are also correlated.

Nomenclature

a = velocity of sound 
f1, fs = non-dimensional functions 
k1, k2 = constants 
m
.

= mass flow rate 
m = mass flow rate (non-dimensionalised) 
n = integral index 
r, θ, z = cylindrical polar co-ordinates 
vr = velocity component (radial) 
vθ = velocity component (tangential)
vz = velocity component (axial) 
A = area 
Cd = coefficient of discharge 
I = integral function of void region 
M = Mach number of the specific (free vortex) flow 
P = pressure 
R = nozzle wall radius 
T = temperature 
Th = thrust on the exit plane 
V = velocity 
Vθ = velocity component at the nozzle wall (tangential) 
Vz = velocity component at the nozzle wall (axial)

α = swirl number 
Vθ

(Vθ)max

β = swirl number 
Vθ
Vz

λ = swirl number 
(Vθ)rυ

V
ρ = density 
γ = ratio of specific heats
Γ = circulation
φ = potential function 
ξ=r/R = non-dimensional radius 
ηs = thrust efficiency 
ηI = impulse efficiency

Subscript 

0 = stagnation condition 
ϑ = edge of void

Superscript

* = condition at the throat
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Introduction

Swirling flow in a nozzle occurs in a number of pro-
pulsion applications including the flow in turbofan and
turbojet engines, spin stabilized rockets and integral
rocket/ramjets. In certain cases the tangential velocity
component is introduced implicitly by the flow itself due
to the geometry as in turbofan and turbojets or due to spin
stabilization. But in other cases such as integral
rocket/ramjets the swirl is introduced explicitly in the
conventional axial flow for the efficient utilization of
propellant by mixing and stabilization. In general the
gases are to be expanded from designated total conditions
(P0 and a0) to the ambient conditions that prevail outside
the nozzle. While for the rocket on its mission ambient
conditions are inconsistent with the designed one and
drastic changes in ambient pressure are observed which
prevents the nozzle to expand the gases as desired. Due to
improper and unsteady expansion, variations of thrust and
impulse are reported. One of the strategies to address this
problem is control of mass flow. The control of mass flow
either by changing the total conditions or restructuring the
profile is not so easy and leads to complicated mechanism.
Hence the alternative is the mass blockage in the super-
sonic nozzle by introduction of swirl either by fixed vanes
or rotating vanes at the inlet so that reasonable assump-
tions can be made. The conservation of angular momen-
tum warrants intense swirl at the minimum area and weak
swirl at the maximum area. Its axial velocity is impaired
so that the addition of swirl can be thought as an effective
means of restricting the throat area. No major losses of
thrusts are expected as thrust occurs in the exit plane. The
explicit introduction of swirl is also considered in other
devices for different purposes as in the case of retaining
heavy uranium atom inside the chamber in nuclear rockets,
and in plasma rockets for arc stabilization and to reduce
the heat transfer problem by uniform temperature distri-
bution. Other areas in which swirl has considerable effect
are noise suppression due to the reduction in the number
of visible cells, cell structure variations and reduction of
wavelength of primary shock cells. It is clear that the main
objective of introducing the swirl in the otherwise conven-
tional axial flow is for control of mass flow rate, noise
suppression and enhancement of propellant mixing and
stabilization. The swirl introduced at the upstream will
persist to some extent throughout the flow.

The swirling nozzle flow is not so easy to analyze as
the Mach Number varies both radially and axially which
puts up lot of constraints to develop a simple analytical
model. Of the infinite number of swirl profiles the two

significant profiles are free vortex in which υθ is inversely

proportional to radius and υz is constant over the section

and solid body rotation or forced vortex in which both
υθ  and  υzvary radially. Combination of the two profiles

in any proportion are practically significant and those
profiles are classified as inner biased and outer biased
based on the centroid of the profile [1]. The fundamental
problem is the establishment of choking criterion. By
carrying over the concept of choking in the one-dimen-
sional case either maximization of mass or sonic velocity
criterion can be adopted. Even though the maximization
of mass does not stipulate exact condition  of choking but
provides reasonable flow properties compared to the sonic
velocity criterion. The earliest work was by Mager [2] in
1961, who presented the solution of isentropic swirling
potential flow through a C-D nozzle without radial veloc-
ity component for effective mass blockage. The com-
pressibility was missing in his work as "M" is defined as
some non-dimensional velocity [3]. A free vortex profile
without radial velocity component and specific heat ratio
(γ = 1.4) and  maximization of mass for choking criterion
was used. His principle was extended by Swithenbank and
Scotter [4] in 1964, to the case with γ = 1.25, whereas Glick
and Kilgore [5] in 1967, presented results for the mass flux
with γ in the range of 1.10 to 1.28 for the case of free vortex
flow. Similar results were obtained by Bussi [6] in 1974,
but he used a different technique based on variational
principle. His theory was substantiated by Batson [7] in
1970 experimentally. The existence of vacuum core in the
Mager’s work [2] lead to speculation that reversed flow
may occur along the axis, when a swirling flow exhausts
to a finite exit pressure and it has been demonstrated by
Donaldson et al. [8] in 1962 and So [9] in 1967 that the
condition of reversed flow will occur only under certain
conditions, when a strong vortex flow exhaust to atmos-
pheric pressure. King [10] shows that reversed flow along
the axis would not occur through the nozzle throat, when
any real distribution of circulation is used. The case of
choked forced vortex flow was attempted by Bastress [11]
in 1965 with sonic velocity criterion, Manda [12] in 1966
who uses the constant enthalpy assumption to derive the
variations of axial velocity and Carpenter and Johannesen
[1, 13] in 1975 derived the choking criterion for a general
swirling flow without making any additional assumptions
beyond those usually made for quasi-cylindrical theory.
The radial variations are presented by Lewellen et al. [14]
in 1969, in which the numerical solution of choked forced
vortex nozzle flow in the quasi-one dimensional form. The
thrust characteristics, impulse efficiency and co-efficient
of discharge for forced vortex flow are presented by
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Gostintsev [15, 16] for a particular family of velocity
profile assumed to exist at the throat known as Caldonaz-
zos flows. The case of weak swirling flows with fairly
large radii of curvature was covered by Moore [17] in 1964
and Smith [18] in 1971 who extended Halls analytical
method for non-swirling flows. Hsu. C.T., [3] in 1971,
shows that the swirling phenomena of an inviscid non-
isoenergetic, non-isentropic flow are governed by
Crocco’s theorem and also demonstrated that the results
obtained by Mager [2] for free vortex problem and the
axial Mach Number distribution over a given section
obtained by Lewellen [14] for forced vortex problem can
be reduced from his results. The numerical simulation of
swirling flow through nozzles were attempted by Armi-
tage [19] in 1967 by explicit Lax-Wendroff scheme and
Dutton [20] in 1987 with clines [21] code. The investiga-
tion of swirling viscous flow in supersonic propulsion
nozzle was presented by Chang et al. [22] in 1989. Experi-
mental studies of swirling flow in nozzles were attempted
by Binnie et al. [23] in 1957, Iserland [24] in 1958 and
with low swirl intensities by Massier [25, 26, 27] in 1965.
Parkinson [28] in 1967, presents the effect on the mass
flow of swirl through a supersonic nozzle. He made ex-
periments with air to investigate this effect and enumerate
the practical differences in the flow from the free vortex
form of the theoretical model. He shows that the discharge
is in general less than the ideal predictions.

In the present work an approximate solution for the
free vortex (considered potential flow) through a nozzle is
presented and compared with the available experimental
results [28]. The flow field properties such as Non-dimen-
sional velocity (Mach Number of the related flow M),
pressure P, temperature t and the density ρ and the per-
formance parameters such as co-efficient of discharge,
thrust and impulse efficiency are presented as a function
of swirl number (β). The swirl number (β) is defined as
the ratio of tangential velocity at the wall (Vθ) to the axial
velocity at the wall (Vz). But alternatively Mager has
defined swirl number (α) as the ratio of tangential velocity
at the wall to the stagnation enthalpy (√⎯⎯⎯⎯⎯⎯2CpT0   a global

constant). When α* at the throat tends to one the related
mass flow tends to zero which is practically insignificant,
since the swirl is considered as a secondary effect. The
actual flow by which the swirl is imparted is not consid-
ered for discussion. An analytical model involving rede-
fined (to confine the flow properties within the valid
range) swirl numbers, use of integral form of continuity
equation to satisfy the boundary conditions and employing
axial velocity at each section for non-dimensionalization

has been successfully attempted. The influence of swirl
numbers (α,β) as the nozzle performance parameters have
been evaluated and correlated with available experimental
data.

Nozzle Profile

For this purpose a typical converging diverging (C-D)
nozzle [20] with cylindrical inlet, conical convergent and
divergent sections and circular arc transitions between
these sections are considered (Fig.1). The area contraction
ratio between the nozzle inlet and throat is A/A* = 0.668,
one used for the ramjet systems and corresponds to a Mach
Number of 2.4682 at the exit. The nozzle inlet parameters
are P0 and a0 and swirl number (α/β). Specific heat ratio
of γ = 1.4 is used for the calculations.

Analytical Model

Consider a potential function φ in the cylindrical co-
ordinate system r, θ, z with the cor responding velocity
components υr ,υθ , and υz. The potential φ which as-

sumed to be irrotational, not a function of r and the υz to

be constant over the section is defined as

φ = Γθ + ∫ vz
dz (1)

where the vortex strength at the axis Γ (circulation per unit
radians) is super imposed with axial velocity υz (Z). Let

Vθ and Vz be the tangential and the axial velocity compo-

nents at the wall respectively (Vz is constant over the
section). Then

φ = ∂
∂θ

 [RVθ] + ∫ vz
dz (2)

and the components of velocity are given by

v
r
= 0; vθ =

1
r
∂φ
∂φ

; v
z
= ∂
∂z
(RVθ) + V

z

Fig. 1  C-D NOZZLE Geometry for Ramjet with M=2.46826
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For the flow to be purely axial, it is implied from the
Equation 2 that RVθ has to equal k1. Hence the total

velocity V2 =
⎛
⎜
⎝

k1

r
⎞
⎟
⎠

2

+ Vz
2. The potential function must sat-

isfy the continuity equation subject to boundary condi-
tions. Since the radial velocity component is ignored,
integral form of the continuity equation has been em-
ployed and the mass flow rate is given by

m
.
= ∫

A
ρ Vz dA. By isentropic relation the density is de-

fined as

ρ = ρ
0

⎡

⎢

⎣

⎢

⎢
1 − γ − 1

2a0
2

⎛
⎜
⎝

⎛
⎜
⎝

k
1

r

⎞
⎟
⎠

2

+ V
z

2
⎞
⎟
⎠

⎤

⎥

⎦

⎥

⎥

1
γ − 1

(3)

Since the profile is free vortex, there exists a minimum
radius r = rυ (z) at which the density (ρ) is zero and below

which the void region exists

r
v

2 =

γ − 1
2

k
1
2

a0
2
− γ − 1

2
v

z

2
(4)

upon substitution of this limiting value the mass flow rate
is given by the constant (k2)

k
2
= 2πρ

0
v

z

⎡
⎢
⎣

⎢
⎢
1 − γ − 1

2

⎛
⎜
⎝

V
z

a
0

⎞
⎟
⎠

2
⎤
⎥
⎦

⎥
⎥

1
γ − 1

⎛

⎜

⎝

⎜

⎜∫r
v

R ⎡
⎢
⎣
1 −
⎛
⎜
⎝

r
v

r

⎞
⎟
⎠

2

⎤
⎥
⎦

1
γ − 1

rdr

⎞

⎟

⎠

⎟

⎟ (5)

Defining the non-dimensional quantities

ξ = r
R;

M
2 =

V
z

2

(a0
2
− γ − 1

2
V

z

2
)
;   m =

k
2

ρ
0
A
∗
a

0

;   

α =
Vθ

(Vθ)max

=
k

1

Ra0
√⎯⎯⎯γ − 12

for the definition of Mach number (M), even though υθ
component was not involved its value is identical to what
would exists for no swirl case. Hence the equations (5) and
(4) can be written as functionals of (ξυ , M)

f
1
(ξv, M) = MI

⎛
⎜
⎝
1 + γ − 1

2
M

2)
γ + 1

2(γ − 1)
⎞
⎟
⎠

= A
∗

A
m (6)

f
2
(ξ

v
,M) =

ξ
v

2

1 + γ − 1
2

M
2
= α

2
(7)

where I = 2 ∫
ξv

 1 ⎡
⎢
⎣

⎢
⎢1 −
⎛
⎜
⎝

ξ
v

ξ

⎞
⎟
⎠

2
⎤
⎥
⎦

⎥
⎥

1
γ − 1

ξdξ

for γ = 1.4 i.e., γ = n+1
n−1

 where n = 6 the integral is given

by

I (ξ
v
, 1.4) = √⎯⎯⎯⎯⎯(1 − ξ

v

2) (1 + 2
3
ξ

v

2 (7 − ξ
v

2
))

     −
5ξ

v

2

2
ln
⎡
⎢
⎣

⎢
⎢

1 + √⎯⎯⎯⎯⎯(1 − ξ
v

2)

1 − √⎯⎯⎯⎯⎯(1 − ξ
v

2
)

⎤
⎥
⎦

⎥
⎥

(8)

whose plot is shown in Fig.2, as ξυ
2 → 1 ; I→ 0.

It is observed that the functions f1 and f2 representing
the mass and the swirl number should be a maximum at
the throat. At the throat, equation (6) and (7) shows that

the specific values of a* and ξυ
∗ is a function of M* only.

Hence differentiating with respect to M* and equating it
to zero to satisfy the condition for maxima,

⎛
⎜
⎝

df
1

dM

⎞
⎟
⎠

∗

=
⎛
⎜
⎝

⎜
⎜

∂f
1

∂M
+
∂f

1

∂ξ
v

∂ξ
v

∂M

⎞
⎟
⎠

⎟
⎟

∗

= 0

⎛
⎜
⎝

df
2

dM

⎞
⎟
⎠

∗

=
⎛
⎜
⎝

⎜
⎜

∂f
2

∂M
+
∂f

2

∂ξ
v

∂ξ
v

∂M

⎞
⎟
⎠

⎟
⎟

∗

= 0

by elimination of Jacobian, the condition for  maximum
mass flow rate is given by
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⎛
⎜
⎝

⎜
⎜

∂f
1

∂M

∂f
2

∂ξ
v

⎞
⎟
⎠

⎟
⎟

∗

=
⎛
⎜
⎝

⎜
⎜

∂f
1

∂ξ
v

∂f2
∂M

⎞
⎟
⎠

⎟
⎟

∗

= 0

which shows that for the fixed value of swirl a* at the

throat the minimum radius ξυ
2 is a function of non-di-

mensional velocity M* only.

By substituting the partial derivatives in equation
(7) and after some manipulations the derivative of

I(ξυ) ,α
∗ (ξυ
∗) and  M∗ (α∗, ξυ

∗) are given by

α∗ = ξv
∗ ⎛

⎜

⎝

⎜
⎜
⎜
⎜

1 − 1

3 − γ
γ − 1

+
2[1 − (ξ

v

∗
)2]

1
γ − 1

I
∗

⎞

⎟

⎠

⎟
⎟
⎟
⎟

1⁄2
(9)

∂I
∂ξ

v

+ 2
ξv

⎡
⎢
⎣
I − ⎛⎜
⎝
1 − ξ

v

2⎞
⎟
⎠

1
γ − 1 ⎤

⎥
⎦

(10)

(M
∗
)2 = 2
γ − 1

⎡

⎢

⎣

⎢

⎢

⎛
⎜
⎝

⎜
⎜

ξ
v

∗

α∗

⎞
⎟
⎠

⎟
⎟

2

− 1

⎤

⎥

⎦

⎥

⎥
(11)

Thus the equations determine the values of mini-

mum radius (ξυ
∗) and Mach Number (M*) at the throat

for different values of swirl value (α∗). Its plot for γ =
1.4 is shown in Fig.2. It is observed from the figure that

as α∗ → 1, ξυ
∗ → and M∗ → 0 and for  the no swirl case

as α∗ → 0,  M∗ → 1, it approaches the conventional
flow without swirl. Hence the non-dimensional mass
flow is given by the equation (6)

m
. = M

∗
I
∗

[1 + γ − 1
2
(M∗)2]

γ + 1
2(γ − 1) (12)

The variation of m for various values of swirl inten-
sity (α∗) at the throat is shown in Fig.2. In this way all
the necessary quantities pertinent to the determination
of the flow in the nozzle are established.

Defining the Swirl Number

A number  of possibilities of non-dimensionalization
and its correlation with nozzle performance parameters
such as co-efficient of discharge, impulse efficiency were
presented by Dutton [20]. The swirl number α is defined
as the ratio of tangential component of velocity at the wall
to its maximum value as if the entire energy is converted
to tangential velocity component approaching the limit of
zero flow conditions (M∗ → 0). So when α at the throat
goes to 1, virtually  there  will not be any flow and the
entire throat is blocked. It does not have any significance
as the swirl is considered to be a secondary effect. Hence
an attempt has been made to redefine the swirl number.
One such is defining it as the ratio of tangential velocity
component at the minimum radius  (υθ)τυ    to  the total

velocity.

λ =
r
v
(υθ)r

v

[R√⎯⎯⎯⎯⎯⎯⎯⎯⎯(υθ)r
v

2
+ (υ

z
)
2
]

(13)

Fig. 2  (a) Variation of I Vs. Min. area (b) Variation of α∗ Vs.

M∗, m and ξv
2 at the throat
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defining it in terms of non-dimensional numbers

λ2 =
ξ

v

2

⎡
⎢
⎣
2 + γ − 1

2
(M∗)

2⎤
⎥
⎦

(14)

Based on the principle of maximization  of the mass
flow, the relationship between M* and ξυ is given by

(M
∗
)
2
− 1

(γ − 1) (M∗)2
=

⎡
⎢
⎣

⎢
⎢1 −

(1 − ξ
v
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γ − 1

I

⎤
⎥
⎦

⎥
⎥
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∗
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2

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

(15)

with the Mach Number

(M
∗
)
2
= 2
γ − 1

⎡

⎢

⎣

⎢

⎢

⎛
⎜
⎝

⎜
⎜

ξv
∗

λ∗

⎞
⎟
⎠

⎟
⎟

2

− 2

⎤

⎥

⎦

⎥

⎥ (16)

which shows that as λ → 1, ξυ → 1 for which the value of

(M*)2 is negative and invalid that restricts the upper limit

of λ∗. Similarly for the lower limit as λ → 0 it makes
indeterminate form and hence the flow will exists only for

a shorter range of values for λ∗.

Another form of non-dimensionalization is presented
as the ratio of tangential velocity component Vθ and axial

velocity component Vz at the wall.

β =
Vθ(z)

V
z
(z)

 where V
z
(z) =

a
0

M

√⎯⎯⎯⎯⎯⎯⎯⎯1 + γ − 1
2
(M
∗
)
2

     and

a
0
= √⎯⎯⎯⎯⎯γ RT

0

To proceed with the computation to any other section
other than throat, the conservation of angular momentum
αR = α∗ R∗ and by equation (7),

⎛
⎜
⎝

⎜
⎜

ξv

α
∗

⎞
⎟
⎠

⎟
⎟

2

1 + γ − 1
2

M
2
= A
∗

A
(17)

Hence the β after some manipulation is given by

β = α
M
√⎯⎯⎯2γ − 1      

ξ
v

α
∗

R

R
∗

(18)

and at the throat the equation reduces to

β∗ = (ξ
v

∗
⁄M
∗) √⎯⎯⎯2γ − 1     (19)

By restricting the magnitude of non-dimensionaliza-

tion it is possible to achieve reasonable flow with β∗
ranging from 0 to 1 at the throat. In order to correlate the
new swirl number (β) with (α), a least square parabolic fit
has been made,

α∗ = −1.69323734 × 10
-4

 + 0.41829462β∗ −
           0.595541(β

∗)2 (20)

Fig. 3  Variation of M Vs. A ⁄ A∗ for different values of 
alpha and beta
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which almost behaves linearly in the lower range as shown
in Fig.5(a). The (β) at any other section is related to the
(β*) at the throat by

β = β
∗ ⎛
⎜
⎝

α

α
∗
⎞
⎟
⎠

⎛
⎜
⎝

⎜
⎜

x
v

x
v

∗

⎞
⎟
⎠

⎟
⎟

⎛
⎜
⎝
M
∗

M

⎞
⎟
⎠
⎛
⎜
⎝

R

R
∗
⎞
⎟
⎠

(21)

The effect of swirl on the mass flow rate, the Mach

Number (M*) and on the minimum radius (ξυ
2) are shown

in Fig.2(b).

Estimation of Flow Properties at Other Sections

As one would expect for the given stagnation condi-
tions and the swirl intensity, once the mass flow rate is
established, the flow properties at any other section can be
given by the equations (6) and (7) with conservation of
angular momentum

A
∗

A
= 1

m
⎡
⎢
⎣

⎢
⎢

MI

1 + γ − 1
2

M
2
⎤
⎥
⎦

⎥
⎥

γ + 1
2 (γ − 1) =

⎛
⎜
⎝

⎜
⎜

ξ
v

α
∗

⎞
⎟
⎠

⎟
⎟

2

1 + γ − 1
2

M
2

(22)

The computed variations of 
A

A∗
(M) for various values

of α and β are shown in Fig.3. β shows a valid range of
the flow, even though it is a process of scaling down of α.
Once the mass flow rate  is estimated, the non-dimensional

velocity at the throat M* and minimum radius (ξυ
2) as a

function of area ratio from the equation (22) is evaluated
as follows. The two simultaneous algebraic equations with
two unknowns (ξυ) and (M) at any arbitrary section have

been evaluated by the gradient method. Let
f1 (ξυ, M) = 0 and f2 (ξυ, M) = 0 be the two simultaneous

equations. By expanding it over the Taylor’s series with
two independent variables (ξυ, M) and ignoring the higher

order terms, and that the assumed values are close to the
root, the system of equations are given by

∂f
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v
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2

∂M
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Now the problem is the evaluation of the step size h
and k. By Cramer’s rule it is given by

h = 1
J

⎪
⎪
⎪

⎪
⎪

− f
1
(ξ

v
, M)   ∂f

1
⁄ ∂M

− f
2
(ξ

v
, M)   ∂f

2
⁄ ∂M

⎪
⎪
⎪

⎪
⎪

(23)

k = 1
J

⎪
⎪
⎪

⎪
⎪

− f
1
(ξ

v
, M)   ∂f

1
⁄ ∂ξ

v

− f
2
(ξ

v
, M)   ∂f

2
⁄ ∂ξ

v

⎪
⎪
⎪

⎪
⎪

(24)

where the Jacobian J is given by

J =
∂ (f

1
, f

2
)

∂ (ξ
v
, M)

Estimation of Performance Parameters

The performance parameters such as coefficient of
discharge (Cd) thrust efficiency (ηs) and impulse effi-

ciency (ηI) are defined as follows to estimate the variations

in the efficiency of the nozzle due to the introduction of
swirl. The coefficient of discharge is defined as the ratio
of mass flow rate with swirl to the ideal conditions.

C
d
= m

.

m(β=0)
. =
⎛
⎜
⎝
γ + 1

2
⎞
⎟
⎠

γ + 1
2(γ − 1) M

∗
I
∗

⎡
⎢
⎣
1 + γ − 1

2
(M
∗
)
2⎤
⎥
⎦

γ + 1
2(γ − 1)

The thrust (T) in its non-dimensionalised form is de-

fined as T = thrust
P0A

= 1
P0

A ∫A (P + ρ V
z

2)  ; η
S
 (at the exit plane) = 

Thβ
∗

Thβ=0

=

⎛

⎜

⎝

⎜
⎜
⎜
⎜

1 + γ − 1
2

M(β=0)
2

1 + γ − 1
2

M
2

⎞

⎟

⎠

⎟
⎟
⎟
⎟

⎛

⎜

⎝

⎜

⎜

γ (1 +M
2) I − (γ − 1) (1 − ξ

v
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γ
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⎠
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2

⎞

⎟

⎠

⎟

⎟
(26)
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Fig. 4  Variations of Minimum Area (ξv
2) Vs. Mach Number (M∗) at the throat with constant area contours for α∗ and β∗

Fig. 5  (a) Varitaion of α∗ Vs. β∗ (b) Radial Variation of Density at the throat (c) Performance Parameters
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The variation of these parameters with published ex-
perimental data [28] for different swirl intensities (β) is
shown in Fig.5.

Results and Discussion

The computed variations of the constant I as a function

of minimum radius (ξυ
2) is shown in Fig.2(a) and 

A∗
A
(M)

for various values of (α∗ ⁄ β∗) are shown in Fig.3. It has

been shown that as ξυ
2→ 0, I→ 1 and ξυ

2 → 1, I→ 0

logarithmically.

As seen from the figure, all the curves are quite similar
in shape and differ from the no swirl case by shifting
towards lower Mach Number at the throat. For the maxi-
mum value of α∗(0.75), the Mach Number at the throat is
0.6. But for same value of swirl with β it has been scaled
down by achieving a Mach Number (0.8) which seems to
be quite reasonable. By increasing the value of α∗ to 1, the
Mach Number approaches the limit.

 lim

ξ
v

2
→ 1

M
∗ =√⎯⎯⎯⎯⎯⎯5

7
(1 − (ξ

v

∗
)2 .

But for the case of β∗= 1 at the throat the Mach Number
for choked conditions are 0.75. Convenient summary of
present results is presented in Fig.4 which shows the
variations of minimum radius as a function of Mach

Number for various values of swirl intensity α∗ ⁄ β∗ with
constant area lines. It is apparent that when located far
downstream of the throat (neat exit) the Mach Number of
the related flow tends to be more than that of the one-di-
mensional flow at same A*/A. Also it is clear that the

minimum radius ξυ
2 became a maximum slightly down

stream of the throat. Hence it shows that the swirl tends to
have its greatest blockage near the throat. Further it has

been shown by Mager [2] that maximum values of ξυ
2 do

not necessarily imply the maximum values of ξυ
2.

The variations of pressure, density and temperature
along the length of the nozzle for various values of swirl
intensity are plotted in Figs. 6, 7, 8, 9, 10 and 11. The
pressure variations shown that the expansion is not uni-
form for all values of swirl, so that it matches with the
exhaust conditions. Hence the pressure ratio (P0/Pe) is not
constant for different values of swirl and over expanded

to match the exhaust conditions. As the swirl intensity
increase it is not possible for the gases to expand as desired
and loss of throat and efficiency is expected. The radial
variations of density at the throat is shown in Fig.5(b). It
is quite reasonable at this juncture to remember that the
real flow near the axis of rotation is dominated by viscous
effects and hence the potential flow solutions invalid.
Because of this viscous dominance the tangential velocity
component will have a distribution of forced vortex.
Hence it is expected that the density will not go to zero
monotonically near the axis and this region will not be
completely void of the flow. Due to sharp changes in υθ
this region is easily identified and can be considered as
core. There is a considerable variation of Cd with the swirl
and in general it is always less than the ideal conditions.

Fig. 6  Pressure (alpha)

Fig. 7  Desity (alpha)
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Conclusion

An analytical model has been developed to analyze the
free vortex swirling supersonic flow through nozzle. It is
observed through the analysis that there exists a minimum

radius ξυ
2 which is a function of the swirl number (α ⁄ β)

where the density approaches the limit of zero and flow

seems to be void. The existence of ξυ
2 is due to the

assumption that the inlet profile is free vortex. Different
types of non-dimensionalization have been defined for

swirl number oand one such swirl number (β) is defined.

The drawback in swirl number α is that M* tends to zero

and α* tends to 1. The proposed swirl number β(0, 1)

conveniently defines the swirl in entire range of 0 to 1 (as

β tends to 1, M tends to 0.8), making the values compara-
ble with experimental findings. The variation of mass flow
as a function of swirl intensity shows a similar expression
as that of Quasi-Cylindrical theory and for the no swirl
case it approaches the conventional flow. It is concluded
from the radial variations of density that the real flow near
the axis is dominated by viscosity and there exists a forced
vortex flow, hence the potential theory is invalid in the
void region. The co-efficient of discharge, thrust co-effi-
cient, and impulse function have been defined and plotted.
The area average values of the flow field properties such
as density, temperature and pressure are also plotted.

Fig. 8  Temperature (alpha) Fig. 10  Desity (beta)

Fig. 9  Pressure (beta) Fig. 11  Temperature (beta)
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