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Abstract 

A new approach based on dynamic inversion is proposed in this paper for implementing pilot
commands in an aircrafts. The command inputs from the pilot are assumed to be (i) the normal
acceleration and forward velocity commands in the longitudinal mode and (ii) roll rate, height
and forward velocity commands in the lateral mode. A major difference here is that the second
derivatives of the velocities along body y and z directions are assumed to be zero, as opposed
to the first derivatives (which is used in many published literature). The new approach leads
to a significant reduction of tuning parameters in the control design process, which is a major
advantage. Detailed derivations of the modified approach are presented with respect to the
generic aircraft dynamics model available in [16]. Extensive Six-DOF simulation studies show
that, besides the above advantage, the new approach leads to two other additional advantages;
namely reduced oscillatory response and reduced control magnitude. In a comparison study
with an existing method using the Six-DOF model for Boeing 747 (with the numerical data
available in [16]), numerical results clearly show the improved performance of this new
approach. Furthermore, in lateral mode a technique for obtaining a corresponding roll rate
command from the desired bank angle command is also implemented. Comparison results
show improved performance of the new approach with this modification as well.

Introduction

Designing a control such that the output of an associ-
ated system tracks a reference signal is one of the basic
and important goals of any controller design. A vast
amount of information can be found in the literature ad-
dressing various issues related to tracking. If the system is
linear and time invariant, relatively easier control design
procedures exist for tracking [19]. However, if the system
is nonlinear, such control design procedures are still evolv-
ing.

Lyapunov based control design techniques [9], [11]
use the Lyapunov’s stability theorem for nonlinear sys-
tems and come up with adaptive control solutions that
guarantee asymptotic stability of the error dynamics (i.e.
the error goes to zero, implying perfect tracking) or, more
often, guarantee "practical stability" (i.e. error remains
bounded in a small neighborhood about zero). In sliding
mode control [11], [17], the essential idea is to first lay out
a path for the error signal that leads to zero. Then the
control solution is found in such a way that the error
follows this path, finally approaching zero. In doing so,

however, the usual problems encountered are high magni-
tudes of control and control chattering. In Predictive con-
trol [18], the error signal is first predicted for some future
time (based on a model that may or may not be updated in
parallel). The control solution at the current time step is
then obtained from an error minimization algorithm that
minimizes a cost function, which is a weighted average of
the error signal. Use of optimal control theory is also found
in the literature for tracking applications. One such ap-
proach relies on the error dynamic formulation (with the
availability of reference values of all of the states and the
associated feed-forward control), thereby essentially re-
ducing it into a regulator problem [5]. An alternate optimal
control approach relies on the implicit and explicit model
following techniques [2], [7], [19], where the goal is
achieved by appropriate formulation of the cost function
so that the errors in the output are cancelled out.

A popular method of nonlinear control design for
tracking is the technique of dynamic inversion, which is
essentially based on the technique of feedback lineariza-
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tion [17]. In this approach, an appropriate co-ordinate
transformation is carried out to make the system look
linear so that any known linear controller design can be
used. A vast amount of literature is available for applica-
tions of dynamic inversion control [4], [10], [12]-[15].

A few studies have addressed mismatch between the
mathematical model used in the dynamic inversion design
and the actual plant. One way of addressing the problem
is to augment the dynamic inversion technique with the
H∞ robust control theory [15]. An alternative idea is to

adaptively cancel the inversion error with the help of
neural network(s), trained   [10], [12]. Many benefits of
using neural networks for control applications include its
ability to effectively control nonlinear plants adapting to
unmodeled dynamics and time-varying parameters, simul-
taneously rejecting the external noise. Interested readers
can find many control related applications of neural net-
works in [8]. With these augmenting tools, the dynamic
inversion technique is becoming more powerful and
widely popular.

The new method proposed in this paper has features
similar to an existing approach [14], where the goal is to
design a controller such that the roll rate, normal accelera-
tion and lateral acceleration commands from the pilot are
tracked. For turn co-ordination, however, the pilot actually
commands the desired roll rate and normal acceleration
whereas the lateral acceleration command is kept at zero
throughout the maneuvers. However unlike the existing
approach, in this paper there is no requirement on trans-
forming the normal and lateral acceleration commands to
the pitch and yaw rate commands in the longitudinal mode.
In the lateral mode, however, it is assumed that the pilot
gives a height command rather than a normal acceleration
command. The height command is then transformed into
a pitch rate command, which is used for control computa-
tion. In order to demonstrate the usefulness of the pro-
posed technique, it is used in a nonlinear
Six-Degree-of-Freedom (Six-DOF) model of a transport
airplane Boeing-747, for which a limited amount of data
is available in [16].  Next,  a  method  to  obtain the roll
rate command from the desired bank angle command (in
lateral mode) is also outlined. Comparative simulation
results  are  presented  with  respect  to   this   as  well,
which once again shows that the proposed new method
performs better.

Mathematical Formulation for Airplane Control

Six-Degree-of-Freedom Airplane Model

Assuming the airplane to be a rigid body, the complete
set of Six-Degree-of-Freedom (Six-DOF) equations of
motion over a flat earth in the body frame of reference [16]
are:
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In Eqs.(1)-(2), U,V,W and x
.
E, y

.
E, z

.
E are the velocity

components along the body-fixed and earth-fixed axes
respectively,  P, Q, R are the roll, pitch and yaw rates
respectively about the body-fixed axes, Φ ,Θ ,Ψare the
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Euler   angles. Note  that h
.
 = −z

.
E, where  h is the height.

FAX
 ,FAY

 ,FAZ
 are the aerodynamic components and

FTX
 ,FTY

 ,FTZ
 are the thrust components of the external

forces respectively. Similarly, LA, MA, NA are the aerody-

namic components and LT, MT, NT are the thrust compo-

nents of the external moments acting on the airplane.
IXX, IYY, IZZ, IXZ  represent the moment of inertias of the

airplane in the body frame  XYZ. m and g represent mass
and acceleration due to gravity respectively (both assumed

as constants in this paper). Note that Ψ
.
, x

.
E, y

.
E equations

do not couple with other equations due to the flat earth
assumption. The thrust components in Eq.(1a,1b) are
given by 
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where Ti is the thrust magnitude of the ith engine,

which is located at distances (xTi
, yTi

, zTi
) with respect to

the origin of the body frame. ΦTi
, ΨTi

 represent the engine

orientation angles. Assuming  Ti = … = TN = T and defin-

ing a control variable σT = T ⁄ Tmax, where Tmax is the

maximum thrust for an engine, we can rewrite Eqs.(3a,3b)
as:
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where d1, ..., d6 are appropriate constants.

The aerodynamic components are computed in the
stability frame of reference. The rotational transformation
matrix from the stability axis to the body axis is
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Along the Y direction the aerodynamic component of
the force and moment are
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In Eqs.(4-5), α = tan−1 (W ⁄ U) represents the angle of

attack,   β = sin−1 (V ⁄ VT)  (where  VT = √U2 + V2 + W2

is the airspeed)  represents  the  side-slip  angle and   q
_
 =

(1 ⁄ 2) ρVT
2 represents the dynamic pressure. δA, δE, δR are

the aileron, elevator and rudder deflections respectively.
S, c

_
, b are  the  wetted  area,  mean  aerodynamic chord

and wing span respectively.
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and Cmδ
E

, are the aerodynamic derivatives. Typically they

vary with the flight conditions and are available in a
tabular form as a function of some flight scheduling vari-
ables (typically height, dynamic pressure and Mach num-
ber etc.). In this research the values of these are taken from
[16] for low altitude (20,000 ft) cruise condition and they
are assumed to remain constant during the maneuvering
time. The engine data, however, was taken from the Boing
website. One may find more details about the meanings of
these aerodynamic derivatives in [16]. Using Eqs.(3-5),
Eqs.(1a,b) can be rewritten as
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The normal acceleration (nz) and the lateral accelera-

tion (ny) are defined as [14]
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In Eq.(9), Fz = FAz
 + FTz

, Fy = FAy
 + FTy

 are the aero-

dynamic and thrust forces acting on the airplane along the
body z and y directions respectively. With the definitions
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in Eq.(9), the system dynamics along the body z and y
directions can be written as 
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Also note that from Eq.(6a, 6b) one can write :
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Synthesis of Controller Using Dynamic Inversion

In [10], [12], [14], the objective is to design a controller

such that the roll rate P→P∗, normal acceleration

nz→ nz
∗ and lateral acceleration ny→ ny

∗ where  P∗, nz
∗, ny

∗

are the commanded values from the pilot. For turn co-or-

dination, however, the pilot actually commands P∗ and

nz
∗, whereas the lateral acceleration command ny

∗ = 0

throughout the maneuver. Note that in pure longitudinal

maneuvers P∗ = 0. 

It should be noted that the W
.
and V

.
 terms in

Eqs.(10a,10b) complicates the procedure of command
transformation to body rates of rotation. In [14], nz, ny are

replaced by proportional and integral error terms in the
Command Augmentation System (an outer loop) and,

more importantly, it is assumed that W
.
 = V

.
 = 0. Eqs.(10a-

10b) are then used to solve for Q = Q∗and R = R∗, which

along with the commanded value of P = P∗serve as the

command inputs 
P

∗ Q∗ R∗

T
to the Attitude Control Logic

(an inner loop) that is used in solving for control . It is also

assumed that 
Φ

.. ∗  Θ
.. ∗  Ψ

.. ∗

T
 = 0. For completeness of this

paper, this technique is briefly outlined in the appendix.

 In order to cancel the errors caused due to the approxi-

mation that W
.
 = V

.
 = 0, an integral feedback is used. Since

it may lead to "control wind-up" , an associated wind-up
prevention logic is needed. In this paper, the need for  an
intermediate command transformation and the need to
introduce  any  integral  feedback for  the er rors in accel-
eration commands are eliminated. it is assumed that

W
..

 = V
..
 = 0, a more realistic assumption compared to as-

suming W
.
 = V

.
 = 0. Moreover, the additional assumption


Φ

.. ∗  Θ
..∗  Ψ

.. ∗

T
 = 0 is also not necessary.

First, we define new variables az, az
∗ and ay, ay

∗as

a
z
   ∆=  n

z
 + W

.
,    a

z

∗
 ∆=  n

z

∗
 + W

.
(16a)

a
y
   ∆=  n

y
 − V

.
,    a

y

∗
   ∆=  ny

∗
 − V

.
(16b)

The new method relies on the key observation that




 

nz ny

T
→ nz

∗ ny
∗


T



 <=> 




 

az ay

T
→ az

∗ ay
∗


T



 ; this

is because of the one-to-one correspondence between
them. From Eqs.(10a,10b) and (16a,10b), it can be seen
that

a
z
  =  UQ − VP + g cosΦ cosΘ (17a)

a
y
  =  UR − WP − g sinΦ cosΘ (17b)

Taking derivatives of both sides with respect to time
and using Eqs.(1c) and (6a,6b), we get
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a
.
z
  =  f

a
z

 (X) + g
a

z

 (X) U
c

(18a)

a
.
y
  =  f

a
y

 (X) + g
a

y

 (X) U
c

(18b)

where



f
a

z

   f
a

y



T
  ∆=  


A1 + B

1
 f

V
 + C1 fR


(19a)




g

a
z

T
   ga

y

T 



T

   ∆=  B
1
 g

V
 + C

1
 g

R
(19b)

A
1
   ∆=  g 





− sin Φ cos Θ
− cos Φ cos Θ

     
− cos Φ sin Θ
 sin Φ sin Θ




  




Φ
.

Θ
. 




(19c)

B
1
  ∆=  





Q
R

    
−P
0

    
0

−P




(19d)

C
1
  ∆=   





−V
−W

    
U
0

    
0
U





(19e)

Longitudinal Maneuvers

In this case the goal is XT → XT
∗, where

XT  ∆=  

P  nz  ny  U


 , XT

∗  ∆=   P
∗ = 0   nz

∗   ny
∗ = 0  U∗

 .

Defining X̂T  ∆=  XT − XT
∗
 , a controller is designed such

that the stable error dynamics has the following structure.

X̂
.

T
 + K X̂

T
 = 0 (20)

where the gain matrix K is selected to be a positive
definite matrix. A relatively easier way to select the gain
matrix K is to choose the ith diagonal element to be 1 ⁄ τi,

where τi > 0 is the desired time constant of the ith channel

of the error dynamics. In this study, the gain K is selected
as

K  =  diag (1 ⁄ τP,
 1 ⁄ τn

z

, 1 ⁄ τn
y

, 1 ⁄ τU
) (21)

With the assumption W
..

 = V
..
 = 0, from Eq.(16a), it is

clear that 

n
.
z  n

.
y

 = 

a
.
z  a

.
y

 and from Eqs.(13-14) and

(18a,18b),















fP + g
P
 U

c

fa
z

 + ga
z

Uc

f
a

y

 + g
a

y

Uc

f
U

 + g
U

 Uc














  − X
.
T

∗
 + K  













XT +  














0
1×3

g
n

z

gn
y

0
1×3














  U
c
 − X

T

∗













 = 0

(22)

Rearranging terms and carrying out the necessary al-
gebra, an expression for the controller reduces to

U
c
 = A

U

−1
 b

U
(23)

where

A
U

 ∆=   

g

P

T
   g

a
z

T
   g

a
y

T
   gU

T

T

 + K 0
T
   g

n
z

T
   gn

y

T
   0

T

T

(24a)

b
U

 ∆=  − 

f
P
   f

a
z

   f
a

y

   f
U


T
  − K 


X

T
 − X

T

∗


  + X

.
T

∗
(24b)

It is assumed here that the matrix AU is invertible for

∀t during the application of control. Note that this assump-
tion may or may not remain valid ∀t in practical imple-
mentation, since the matrix elements keep on changing
during the flight. However, a typical way to overcome this
problem is to implement the control update only if
abs ( |AU|) > tol,  where tol is a user defined tolerance

value. Obviously this may degrade the performance of the
controller, but it will avoid the major problems in connec-
tion with the singular AU matrix. Even though such a

precaution was implemented in the numerical experiment,
AU was never found to violate this condition in the numer-

ous simulation studies.

An implementation schematic of the controller in
Eqs.(23)-(24) is given in Fig.1.

Lateral Maneuvers

During lateral maneuvers, an appropriate time-varying

nz
∗ is needed to maintain constant altitude. Consequently,

the objectives in this mode are to drive P→P∗,

ny→ ny
∗ = 0, U → U∗and height h → h∗, where h∗is the

commanded height. That is to assure that XT → XT
∗, where

XT ∆=  

P  h  ny  U


T
 and XT

∗ ∆=  P
∗  h∗  ny

∗ = 0  U∗

T
.
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Note that the appropriate nz
∗ is automatically computed in

this process. However, from Eq.(1d) we observe that the

control  Uc does not appear in the h
.
 equation. As a result,

an error expression is defined first as h^ ∆=  (h − h∗) and a

stable height-error dynamics is formulated as 

ĥ
.
 + (1 ⁄ τh

) ĥ = 0 (25)

where τh > 0 is the desired time constant. By substituting

for h
.
 from Eq.(1d), this can be expanded as

[U sinΘ − V cosΘ sinΦ − W cosΘ cosΦ]

      − h
. ∗

 + (1 ⁄ τh
) (h − h

∗
) = 0 (26)

Solve for Θ (and denote it as Θ∗) from Eq.(26) with a
nonlinear equation solver (e.g. Newton-Raphson tech-
nique [6]). 

Similarly, a stable first-order error dynamics is con-

structed for the pitch angle by defining Θ̂ = (Θ − Θ∗). 

Θ̂
.
 + (1 ⁄ τΘ) Θ̂ = 0 (27)

where τΘ > 0 is the desired time constant. Substituting

for Θ
.
 equation from Eq.(1c) and assuming Θ∗ to be

constant at each instant of time (quasi-steady assumption),

an expression for Q (and denote it as Q∗) can be obtained
as 

Q
∗
 = (1 ⁄ cosΦ) 


R sinΦ − (1 ⁄ τΘ) (Θ − Θ

∗
)


(28)

The  pitch  rate Q∗  is assumed  to  be  quasi-steady
(held   constant   at   each  instant  of  time). Since Uc

appears in the  Q
.
 equation (15), it facilitates control com-

putation as follows: First, re-define

XT ∆=  

P   Q   ny   U


T
, XT

∗ ∆=  P
∗ = 0   Q∗   ny

∗ = 0  U∗

T

Fig.1  Implementation of the new logic in longitudinal mode
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and X̂T  ∆=  

XT − XT

∗

. The objective now is to synthesize

a controller such that Eq.(20) is satisfied. In this case, the
gain matrix is selected to be of the form

K = diag (1 ⁄ τP
, 1 ⁄ τQ

, 1 ⁄τ
n

y

, 1 ⁄ τU
) (29)

Following the steps outlined before and carrying out
the necessary algebra, an expression for control can be
written in the following form

U
c
 = A

U

−1
 b

U
(30)

 where

A
U

  ∆=  

g

P

T
   g

Q

T
   


g

a
y

T
 + (1 ⁄ τn

y

)  g
n

y

T 


   g

U

T

T

(31a)

b
U

  ∆=  − 

f
P
   f

Q
   f

a
y

   f
U


T
  − K 


X

T
 − X

T

∗



(31b)

Note that the command transformation from h∗ to Q∗

can be considered as an outer-loop, whereas the sub-
sequent control computation can be interpreted as an in-
ner-loop. However, due to the quasi-steady assumptions,
one should guarantee τh > τΘ > τQ, so that the inner-loop

dynamics is faster than the outer-loop dynamics. Imple-
mentation of this idea is presented in a flow chart in Fig.2.

Numerical Experiments

Selection of Numerical Values

All numerical data used (in SI units) are for a Boeing-
747 transport airplane at a low-cruise altitude (20,000 ft =
6.096 km) [16]. Note that only a limited amount of vehicle
and aerodynamic data is available in [16] and that is what
has been used in the simulation studies. Moreover, since
the engine data is not available in [16], maximum values
for engine thrusts and values for engine orientations were
obtained from the Boeing website and an appropriate
value of the actual thrust was adjusted from a trim routine
(see below). A fourth-order Runge-Kutta technique [6]
with fixed step size (0.05 Sec) was used for numerical
integration.

Fig.2  Implementation of the new logic in lateral mode
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Trim Condition

In order to obtain a trim condition, it was assumed that
the airplane was initially flying at a straight level flight at
the known cruise altitude (h = 20,000 ft = 6096 m). That
is P = Q = R = 0 and Φ = 0. The engines are assumed to
operate at a known percentage of their maximum value.
Then, by using Eq.(1a,1b,1d), the variables



U  V  W  Θ  δA  δE  δR


T
were solved for from the


U

.
  V

.
  W

.
  P

.
  Q

.
  R

.
  h

.


T
 = 0 equation, with a Newton-Raph-

son nonlinear equation solver [6]. The trim condition
values, when all of the four engines operate at 23.5% of
their maximum value (which is  43,000 lb = 1.935 x 105

N), are U = 205.6538 m/sec, V = 0 m/sec, W = 9.563 m/sec,
P = Q = R = 0 deg/sec, Φ = 0 deg, Θ = 2.6623 deg. The
domain for our initial conditions for this study were de-
fined to be close to the trim values (since exact trim
conditions are practically unrealistic). Note that once the
atmospheric pressure and density variations with height is

known, [U  V  W  h]
T
and [α  β  q

_
  h]

T
can be inter-

changed. Furthermore, knowing h and M, q can be com-
puted. The trim conditions for α, β, h and M are given by
2.6624 deg, 0 deg, 6096 m and 0.6615 respectively. Next,
since the exact trim condition may not be realized in
practice, the domain for initial condition is chosen as

P ∈ [-0.1, 0.1] deg/sec, Q ∈ [-0.1, 0.1] deg/sec,
R ∈ [-0.1, 0.1] deg/sec α ∈ [+2.5, 2.8] deg,
β ∈ [-0.1, 0.1] deg, M ∈ [0.64   0.66], 
h ∈ [-19,500   20,500] ft = [5943.6   6248.4]m
Φ ∈ [-0.1, 0.1] deg, Θ∈ [2.5, 2.8] deg.

Random values were chosen from the above domains
to obtain initial conditions for simulation purpose.

Selection of Control Design Parameters

After some trial and error the following values were
selected for the time constants: τP = 1, τnz

 = 1, τny
 = 1, and

τU = 50 in the longitudinal case and

τP = 1, τh = 50, τΘ = 10, τQ = 1, τny
 = 1and τU = 50 in the

lateral case. The choice of these values was mainly guided
by the compromise between the speed of response and the
associated control histories.

In order to compare the performance of the modified
formulation with the existing version [14] (see appendix

for a summary of it), gain values of
k1 = k3 =1,  k2 = k4 = 2 were selected for the command

augmentation system. Similarly in the attitude orientation

system, parameter values of kvi
 = 2 ζi ωni

, kPi
 = ωni

2, with

ζi = 0.5, ωni
 = 2 rad/sec (i = 1,2,3) were selected for each

of the attitude angle error dynamic channels and the time
constants τU = 50 for this case as well.

It is important to point out that the existing technique
need eleven design parameters in longitudinal case and
twelve in the lateral case. In the new approach presented
in this study only four are needed for the longitudinal
mode and only six are needed for the lateral case. This
significantly less number of design parameters without
compromising in performance is clearly a potential advan-
tage of the new approach.

Analysis of Results

In our numerical studies, the goal was to track the
reference commands for 60 Sec. At 20 Sec. interval, the
command was altered to reflect possible real life scenarios.
In all plots, the solid lines represent the results from the
new approach presented in this paper, where as the dashed
lines represent the results from the existing approach [14].

Longitudinal Maneuver

In Figs.3-8, simulation results for a lateral maneuver
are presented. The initial conditions are picked arbitrarily
from the domain considered. The commanded values of
the normal accelerations are typically small for transport

airplanes. The maximum value of nz
∗ for such airplanes

Fig.3 Roll rate, Normal acceleration and 
Lateral acceleration in longitudinal maneuver
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recommended [10] is 1.12g. The following sequence of

command signals is input: 
P

∗  nz
∗
   = [0   1.12g] for t ∈

[0, 20] Sec, P
∗  nz

∗
 = [0  0.88g] for t ∈ [20, 40] Sec and


P

∗  nz
∗
 = [0  1.0g] for t ∈ [40, 60] Sec. Throughout the

maneuver, it is assumed that U∗ = U0 (the initial condition

value) and ny
∗ = 0.

In Fig.3, observe that the roll rate goes to zero quickly
and lateral acceleration remains very close to zero
throughout the maneuver. It is clear that the goal of normal
acceleration tracking is met for both approaches. How-
ever, the new approach offers several improvements. First,
the transient oscillations have much smaller overshoot and
the frequency of oscillation is less (which is also evident
from the pitch rate history in Fig.5). This leads to better
handling quality of the airplane. From Fig.1, it can also be
observed that even though the normal acceleration is even-
tually tracked in the existing approach successfully, in-
itially it shows a non-minimum phase behavior (i.e. the
initial response is in the opposite direction with respect to
the command).

From Fig. 4 it is evident that the control surface deflec-
tions are not high in both the approaches. However, the
initial elevator deflection requirement is of much smaller
magnitude in the new approach. Moreover, the existing
approach exhibits some high-frequency oscillations in the
elevator and thrust controls whereas with the new ap-
proach these control trajectories are comparatively much

smoother. The sharp changes in the control plots can be
attributed to absence of actuator dynamics in the model.

 For completion, trajectories of roll, pitch and yaw rates
are presented in Fig.5, aerodynamic variables are pre-
sented in Fig.6, velocity components and height histories
are presented in Fig.7 and Euler angles are presented in
Fig.8. From these figures it is clear that all the non-tracked
state variables remain within reasonable values through-
out the maneuver. Simulation studies for a large number
of cases did not show instability in any of the cases.

Lateral Maneuver

Simulation results for a lateral maneuver from an
arbitrary  initial  condition  are  presented in Figs. 9-15.
The sequence of command signals applied consisted of

Fig.6  Aerodynamic variables in longitudinal maneuver

Fig.5  Roll, Pitch and Yaw rates in longitudinal maneuver

Fig.4  Aileron, Elevator and Rudder deflections and
Thrust in longitudinal maneuver
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P∗ = 2.8 deg/sec t ∈ [0, 20] sec, P∗ = -2.8 deg/sec t ∈ (20,

40) sec and P∗ = 0 deg/sec for t ∈ [40, 60] sec. Throughout

the maneuver it was assumed that U∗ = U0,  h
∗ = h0 (the

initial condition values) and ny
∗ = 0. However, the pilot can

essentially select any other reasonable values.

Note that the lateral accelerations in both approaches
remain close to zero (which is also evident in small side-
slip angle in Fig.13), which was a requirement for the
maneuvers. However, in the new approach both lateral
acceleration and side-slip angles remain more close to
zero. In other words, it leads to better turn-coordination.
For clarity, the aileron and rudder control plots of Fig.10
in Fig.11 are zoomed in a region. Observe that in the

existing approach at 20 sec, the aileron deflection is quite
high. Furthermore, a low thrust of about 10% of the
maximum value might also be of some concern from
safety considerations (as the engine may possibly shut
down). Besides, in the existing approach the elevator and
rudder deflection histories show high frequency transient
oscillations; this should preferably be avoided. These
trends are absent in the performance of the modified
approach. The control surface histories are relatively
smaller and smoother. Moreover, the thrust control value
remains above 20% of the maximum value throughout the
maneuver, which is an additional advantage. We have
plotted all other state and aerodynamic variables in
Figs.12-15. Once again it is clear that all of these variables
remain within reasonable limits for the duration of the
maneuvers.

Fig.7  Velocity components and height in longitudinal
maneuver

Fig.8  Euler angles in longitudinal maneuver

Fig.9  Roll rate, Normal acceleration and 
Lateral acceleration in lateral maneuver

Fig.10  Aileron, Elevator and Rudder deflections and
Thrust level in lateral maneuver
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Implementation of Bank Angle Command

Even though P∗can be assumed as a constant [12], [14],
a constant roll-rate command cannot be applied for a long
duration of time, which is especially true for transport
aircrafts as the aircraft is not supposed to roll continuously.
an alternative idea of generating the roll rate command

P∗from a bank-angle command Φ∗ is described in this

section. First define the error Φ^  ∆=  Φ − Φ∗
 and let the

desired error dynamics be

Θ̂
.
 + (1 ⁄ τΦ) Φ̂ = 0,    τΦ > 0 (32)

By substituting for Φ
.
 from Eq.(1c) and assuming Φ∗

to be constant, the roll rate P can be found and used as the

roll-rate command P∗ as given by the following expression

P
∗
  =  − (Q sinΦ + R cosΦ) tanΘ − (1 ⁄ τΦ)  (Φ − Φ

∗)
(33)

Eq.(A13) can be used to generate P∗ both in longitu-
dinal and lateral modes. It can be applied both to the new
approach as well as the existing approach [14]. Note that
this can be interpreted as a part of the outer loop. For
comparison studies incorporating this idea, the time con-
stant τΦ = 3 was set both for the longitudinal as well as for

Fig.11  Aileron and Rudder deflections in lateral
manuever : zoomed about t=20 sec

Fig.12  Roll, Pitch and yaw rates in lateral manuever

Fig.13  Aerodynamic variables in lateral maneuver

Fig.14  Velocity components and height in lateral maneuver
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the lateral case. Trajectories of the tracked states and
associated controls for a representative longitudinal ma-
neuver are presented in Figs.16 and 17 respectively and
those for a representative lateral maneuver are presented
in Figs.18 and 19 respectively. The solid lines correspond
to the new approach whereas the dotted lines correspond
to the existing approach. In Fig.16 it is clear that the
existing approach shows high oscillations in nz initially

which might be too much uncomfortable for the passen-
gers. On the other hand in the new approach the response
is smooth and benign (i.e. much less oscillatory). Fig.17
shows that the initial magnitude of the elevator control
(main controller in longitudinal maneuvers) in the existing
approach is also much higher (double) as compared to the

new approach. Besides, the new approach leads to a much
smoother elevator control history.

In the lateral case, the response plots for the tracked
variables (Fig.18) do not show much of difference. How-
ever, in Fig.19 it is evident that the magnitudes of the
aileron  and  rudder  controllers (main controllers for lat-
eral case) are much higher initially whenever the bank
angle command is changed. To illustrate this clearly, the
aileron and rudder control histories of Fig.19 are zoomed
about t = 60 Sec in Fig.20. Note that a high aileron value
of 40 deg may not be achievable in practice. From a large
number of simulation studies it was found that the un-
tracked states remain within reasonable limits.

Fig.16  Roll rate, Normal acceleration, Lateral acceleration
and forward velocity in longitudinal maneuver

Fig.17  Aileron, Elevator and Rudder deflections and
Thrust level in longitudinal maneuver

Fig.18  Roll rate, Normal acceleration, Lateral acceleration
and forward velocity in lateral maneuver

Fig.15  Euler angles in lateral maneuver
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Conclusions

A new approach based on dynamic inversion tech-
nique is presented in this paper for implementation of pilot
commands in aircrafts. An important advantage of this
approach over an existing approach is that a fewer number
of design parameters are needed. The comparison studies
support the view that the new approach has a better tran-
sient response and demands lower magnitudes of control.
These are again desirable features in a controller. Next, an
alternative way of computing the roll rate command from
the desired bank angle command was also presented. The
new approach has a better transient response and demands
lower magnitudes of control in this case as well. Note that
the Six-DOF simulation studies have been carried out

using the limited data available in [16] with respect to
Boeing 747 aircraft. This was done mainly because of the
difficulty in obtaining a realistic complete envelope of
unclassified data for a modern aircraft.

The next logical step would be to test the proposed new
method with respect to a fairly complete envelope of data
for a modern aircraft (especially for a fighter aircraft as
they are inherently unstable). The author intuitively feels
that the significant advantages presented in this paper will
be preserved in that case as well. However, the research
work for such an aircraft is under progress. Promising
results for this research, if obtained, will be reported in a
separate paper.
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Appendix

Review of an Existing Method

In this appendix, an existing dynamic inversion ap-
proach is described [14]. For convenience we define

XR  ∆=

P  Q  R


T
, XA   ∆=


Φ  Θ  Ψ


T
, XR
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
P

∗  Q∗  R∗

T
.

With the availability of reference normal and lateral accel-

erations nz
∗, ny

∗ and current state values X, a Command

Augmentation System (an outer loop) is first designed. In

this step, nz
∗, ny

∗  are transformed into equivalent Q∗, R∗as:

Q
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where constants k1, k2, k3, k4 ∈ R+are design parame-

ters (which are supposed to be tuned by the control de-

signer). The values P∗, Q∗, R∗ now serve as the
commanded reference signals for the Attitude Orientation
System (an inner loop). It should be noted that an assump-

tion V
.
 = W

.
 = 0 is made at this point. XR

∗ is then transformed

into the rates of the attitude angles as:

X
.
A

∗
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(A2)

where
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 Using the same kinematics,

X
.

A = T X
R

(A4)

Differentiating Eq.(A4) with respect to time t and
using Eq.(6b), one gets

X
..

A
 = A

X
 + B

X
 U

c
(A5)

where

A
X
 ∆=  T

.
 X

R
 + T fR (X),   B

X
  ∆=  T gR (X) (A6)
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Fig.21  Implementation of the existing technique in longitudinal mode

Fig.22 Implementation of the existing technique in lateral mode
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Defining the error terms X^A  ∆=  XA − XA
∗
 and

X̂
.

A  ∆=  X
.

A − X
.
A
∗
 the control is designed such that:
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 +K

V
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.

A
 + K

P
 X̂

A
 = 0 (A7)

where, KV, KP are positive definite matrices. One way to

choose KV, KP is to choose them diagonal with positive

entries; i.e. KV = diag (kv
i
), kv

i
 = 2ζi ωn

i
 and KP= diag

(kP
i
), kP

i
 = ωn

i

2 , where ζi > 0, ωi > 0 are the desired damp-

ing ratio and natural frequency of the error dynamics of
the ith channel respectively. It should be noted that this
choice reduces Eq.(A7) to a system of independent scalar

equations. Assuming  X
..

A
∗ = 0


i.e.  X̂
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T = X
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A

 and using

Eq.(A5-A7) one gets
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Since the forward velocity is a tracked variable in this
paper, it should be mentioned that the forward velocity
tracking is added in the comparison study, which was kept
same in this approach as well as in the proposed new
approach. After adding the forward velocity related terms,
the control expression becomes
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 Implementation of this logic is shown in Figs.21 and
Fig.22 for longitudinal and lateral maneuvers respectively.
Note that as compared to Figs.1 and 2, these figures are
more complicated. Besides we also need to sense the
heading angle Ψ of the airplane.
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