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Abstract

The nonlinear formulation developed based on von Karman’s assumptions is employed to
study the large free flexural vibration characteristics of functionally graded material (FGM)
plates subjected to thermal environment. Temperature distribution is uniform over the plate
surface and varied in thickness direction only. Material properties are assumed to be
temperature dependent and graded in the thickness direction according to simple power law
distribution. The nonlinear governing equations obtained using Lagrange’s equations of
motion are solved using finite element procedure coupled with the direct iteration technique.
The variation of nonlinear frequency ratio with amplitude is highlighted considering various
parameters such as gradient index, temperature, thickness and aspect ratios, skew angle and
boundary condition. For the numerical illustrations, silicon nitride/stainless steel is consid-
ered as functionally graded material. The results obtained here reveal that the temperature
field and gradient index have significant effect on the large amplitude free flexural vibration
of the functionally graded plate. 

Keywords: functionally graded plate, large amplitude free flexural vibration, aspect ratio,
temperature, gradient index.

Introduction

Functionally graded materials (FGMs) used initially as
thermal barrier materials for aerospace structural applica-
tions and fusion reactors are now developed for the general
use as structural components in high temperature environ-
ments and being strongly considered as a potential struc-
tural material candidate for the design of high speed
aerospace vehicles. Further, these materials are inhomo-
geneous, in the sense that the material properties vary
smoothly and continuously in one or more directions, and
obtained by changing the volume fraction of the constitu-
ent materials [1-4]. For the structural integrity, FGMs are
preferred over fiber-matrix composites that may result in
debonding due to the mismatch in the mechanical proper-
ties across the interface of two discrete materials bonded
together. Typical FGMs are made from a mixture of
ceramic and metal using powder metallurgy techniques.
With the increased use of these materials for structural
components in many engineering applications, it is neces-
sary to understand the dynamic characteristics of function-
ally graded plates.

 It is seen from the literature that the amount of work
carried out on the vibration characteristics of isotropic
plates and composite laminates are exhaustive. However,
the investigations of linear dynamic behaviors of FGM
plates under thermo-mechanical environment are limited
in number and are discussed briefly here. Tanigawa et al.
[5] have examined transient thermal stress distribution of
FGM plates induced by unsteady heat conduction with
temperature dependent material properties. Reddy and
Chin [6] have dealt with many problems, including tran-
sient response of plate due to heat flux. In Ref. [7], three
dimensional analysis of transient thermal stress in func-
tionally graded plates has been carried out by adopting
Laplace transformation technique and power series
method. He et al. [8] presented finite element formulation
based on thin plate theory for the shape and vibration
control of FGM plate with integrated piezoelectric sensors
and actuators under mechanical load whereas Liew et al.
[9] have analyzed the active vibration control of plate
subjected to a thermal gradient using shear deformation
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theory. Ng et al. [10] have investigated the parametric
resonance of plates based on Hamilton’ principle and the
assumed mode technique. Yang and Shen [11] have ana-
lyzed dynamic response of thin FGM plates subjected to
impulsive loads using Galerkin procedure coupled with
modal superposition method whereas, by neglecting the
heat conduction effect, such plates and panels in thermal
environments have been examined based on shear defor-
mation with temperature dependent material properties in
Ref. [12]. Cheng and Batra [13] studied the steady state
vibration of a simply supported functionally graded po-
lygonal plate with temperature independent material prop-
erties. Sills et al. [14] have presented different modeling
aspects and also simulated the dynamic response under a
step load.

Due to the increased utilization of thin-walled struc-
tural components in the design of flight vehicle structures,
their vibration characteristics at large amplitudes in re-
sponse to the conditions they are subjected to, have at-
tracted the attention of many researchers in recent years.
The studies pertaining to isotropic and composite lami-
nates are reviewed and are well documented [15-19].
However, it is observed from the literature that such work
concerning functionally graded material structures is
scarce in the literature [20-22]. Praveen and Reddy [20]
adopting finite element procedure analyzed the nonlinear
dynamic response of functionally graded ceramic metal
plates subjected to mechanical and thermal loads whereas
Yang et al. [21] have investigated the large amplitude
effect on free vibration characteristics of thermo-electro-
mechanically stressed functionally graded plate integrated
with piezoelectric actuators employing a semi analytical
method involving one dimensional differential quadrature
and Galerkin method. These work were based on using
temperature independent material properties. Based on
perturbation technique, Huang and Shen [22] studied the
nonlinear free and forced vibrations of functionally graded
plates in thermal environments with temperature depend-
ent properties. It is further inferred that these available
work on nonlinear dynamic of FGM plates are limited to
square with amplitude-to-thickness ratio equal to 1 corre-
sponding to the lowest vibration mode. Parametric studies
including the aspect ratio, higher mode, and non-rectan-
gular plan-form are also important while developing struc-
tural strategies with functionally graded materials.

Here, an eight-noded shear flexible quadrilateral plate
element developed based on consistency approach [23,
24] is used to analyze the large amplitude free flexural
vibrations behavior of FGM plates, including skew plates,

subjected to thermo-mechanical environments. The geo-
metrical non-linearity using von Karman’s assumption is
introduced. The formulation also includes in-plane and
rotary inertia effects. The temperature field is assumed to
be constant in the plane and varied only in the thickness
direction of the plate. The material is assumed to be
temperature dependent and graded in the thickness direc-
tion according to the power-law distribution in terms of
volume fractions of the constituents. A detailed investiga-
tion has been carried out to bring out the influences of
thickness and aspect ratios and skew-angle of the plate on
the frequency ratio of functionally graded plates.

Theoretical Development and Formulation 

A functionally graded rectangular plate (length a,
width b, and thickness h) made of a mixture of ceramics
and metals is considered with the coordinates x,y along the
in-pane directions and z along the thickness direction. The
material in top surface (z=h/2) of the plate and in bottom
surface (z = -h/2) of the plate is ceramic and metal,
respectively. The effective material properties P, such as
Young’s modulus E, and thermal expansion coefficient
α, can be written as [20]

P = P
c
V

c
+ P

m
V

m
(1)

where Pc and Pm are the material properties of the ceramic

rich top surface and metal rich bottom surface, respec-
tively. Vcand Vm are volume-fractions of ceramic and

metal respectively and are related by

V
c
+ V

m
= 1 (2)

The properties of the plate are assumed to vary through
the thickness. The property variation is assumed to be in
terms of a simple power law. The volume fraction Vc is

expressed as

V
c
(z) = ⎛

⎜
⎝
2z + h

2h
⎞
⎟
⎠

k

(3)

where k is the volume fraction exponent (k ≥ 0). The
material properties P that are temperature dependent can
be written as

P = P
0 ⎛⎝

P−1
T
−1 + 1 + P

1
T + P

2
T

2 + P
3
T

3
⎞
⎠

(4)

where P0, P−1, P1, P2 and P3 are the coefficients of tem-

perature T(K) and are unique to each constituent.
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From Eqs. (1) - (4), the modulus of elasticity E, the
coefficient of thermal expansion α, the density ρ  and the
thermal conductivity K are written as

E(z,T) = (E
c
(T) − E

m
(T)) ⎛⎜

⎝
2z + h

2h
⎞
⎟
⎠

k

+ E
m
(T)

α(z,T) = (α
c
(T) − α

m
(T)) ⎛⎜

⎝
2z + h

2h
⎞
⎟
⎠

k

+ α
m
(T)

ρ(z) = (ρ
c
− ρ

m
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⎝
2z + h

2h
⎞
⎟
⎠

k

+ ρ
m

K(z) = (K
c
− K

m
) ⎛⎜
⎝
2z + h

2h
⎞
⎟
⎠

k

+ K
m

(5)

Here the mass density ρ and thermal conductivity K
are assumed to be independent of temperature. The Pois-
son’s ratio ν is assumed to be a constant ν(z) = ν0.

The temperature variation is assumed to occur in the
thickness direction only and the temperature field is con-
sidered constant in the xy plane. In this case, the tempera-
ture through thickness is governed by the one-dimensional
Fourier equation of heat conduction:

d
dz

⎡
⎢
⎣
K(z) dT

dz
⎤
⎥
⎦
= 0,

T = T
c

atz = h ⁄ 2          T = T
m

atz = − h ⁄ 2 (6)

The solution of Eq. (6) is obtained by means of poly-
nomial series [25] and given by

T(z) = T
m
+ (T

c
− T

m
) η(z) (7)

where η(z) = 1
C
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and K
cm

= K
c
− K

m

Using Mindlin formulation, the displacements u, v, w
at a point (x, y, z) in the plate (Fig.1a) from the medium
surface are expressed as functions of mid-plane displace-
ments u0, v0 and w, and independent rotations θx and θy of

the normal in xz and yz planes, respectively, as

u(x,y,t) = u
0
(x,y,t) + zθ

x
(x,y,t)

v(x,y,t) = v
0
(x,y,t) + zθ

y
(x,y,t)

w(x,y,t) = w
0
(x,y,t) (8)

where t is the time.

von Karman’s assumptions for moderately large de-
formation allows Green’s strains to be written in terms of
mid-plane deformation of Eqn. (8) for a plate as,

⎧
⎨
⎩ε

⎫
⎬
⎭ =

⎧
⎨
⎩ε

L⎫
⎬
⎭ +

⎧
⎨
⎩ε

NL⎫
⎬
⎭ (9)

Fig. 1 (a) Configuration and coordinate system of a 
rectangular FGM plate.

(b) Coordinate system of a skew plate

52 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.58, No.1



Taking into account the effect of shear deformation,
the total linear and nonlinear strain at any point can be
expressed as

⎧
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⎨
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⎧
⎨
⎩ε
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⎧

⎨

⎩

⎪

⎪
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p
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The mid-plane strains 
⎧
⎨
⎩
εp

L⎫
⎬
⎭
, bending strains ⎧⎨

⎩
εb

⎫
⎬
⎭
, shear

strains ⎧
⎨
⎩
εs

⎫
⎬
⎭
 and the nonlinear components of in-plane

strains 
⎧
⎨
⎩
εp

NL⎫
⎬
⎭
 in Eqn. (10) are written as

⎧
⎨
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where the subscript comma denotes the partial derivative
with respect to the spatial coordinate succeeding it.

The membrane stress resultants ⎧
⎨
⎩N

⎫
⎬
⎭ and the bending

stress resultants ⎧⎨⎩M
⎫
⎬
⎭ can be related to the membrane strains

⎧
⎨
⎩
εp

⎫
⎬
⎭
(= ⎧

⎨
⎩
εp

L⎫
⎬
⎭
+ ⎧

⎨
⎩
εp

NL⎫
⎬
⎭
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⎨
⎩
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⎫
⎬
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 through the

constitutive relations by
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⎨
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⎪
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ε

p
⎫
⎬
⎭
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] ⎧
⎨
⎩
ε

b
⎫
⎬
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where the matrices [Aij] ,[Bij], and [Dij] (i, j = 1, 2, 6) are

the extensional, bending-extensional coupling and bend-
ing stiffness coefficients and are defined as 

[A
ij
, B

ij
, D

ij
] = ∫
− h ⁄ 2

h ⁄ 2

 [Q
__

ij
] (1,z,z

2)dz.

The  thermal  stress resultant 
⎧
⎨
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⎬
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⎨
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where the thermal coefficient of expansion α (z, T ) is
given by Eq. (5), and ΔT(z) = T(z) − T0 is temperature rise

from the reference temperature T0 at which there are no

thermal strains.

Similarly the transverse shear force ⎧
⎨
⎩Q

⎫
⎬
⎭ representing

the quantities ⎧⎨
⎩
Qxz , Qyz

⎫
⎬
⎭
 is related to the transverse shear

strains ⎧⎨
⎩
εs

⎫
⎬
⎭
 through the constitutive relations as

⎧
⎨
⎩Q

⎫
⎬
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⎨
⎩
ε

s
⎫
⎬
⎭

(19)

where E
ij
= ∫

−h ⁄ 2

h ⁄ 2
⎡
⎢
⎣
Q
__

ij
⎤
⎥
⎦
κ

i
κ

j
dz

Here [Eij] (i, j = 4, 5) are the transverse shear stiffness

coefficients, κi is the transverse shear coefficient for non-

uniform shear strain distribution through the plate thick-

ness. Q
__

ij are the stiffness coefficients and are defined as

Q
__

11
= Q
__

22
= E(z,T)

1 − v
2; Q

__
12

= E(z,T)

1 − v
2 ; Q

__

16
= Q
__

26
= 0;

Q
__

44
= Q
__

55
= Q
__

66
= E(z,T)

2(1 + v)
(20)
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where  the  modulus of elasticity E (z, T)  is given by
Eq.(5).

The strain energy functional U is given as

U(δ) = (1 ⁄ 2) ∫
A

⎡
⎢
⎣
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⎨
⎩
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⎨
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+ ⎧
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⎨
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+ ⎧
⎨
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where δ is the vector of the degree of freedom associated
to the displacement filed in a finite element discretisation.

Following the procedure given in Ref. [26], the poten-
tial energy functional U given in Eqn. (21) can be rewritten
as

U(δ) = ⎧
⎨
⎩δ

⎫
⎬
⎭

T
 [(1 ⁄ 2)[K] + [(1 ⁄ 6)[N

1
(δ)]

+ (1 ⁄ 12)[N
2
(δ) + (1 ⁄ 2)[N

3
]] ⎧⎨⎩δ

⎫
⎬
⎭, (22)

where [K] is the linear stiffness matrix of the laminate.
[N1] and [N2] are non-linear stiffness matrices linearly and
quadratically dependent on the field variables, respec-
tively. [N3]   is transverse shear stiffness matrix of the
plate.

The kinetic energy of the plate is given by

T(δ) = (1 ⁄ 2) ∫
A
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where p = ∫
−h ⁄ 2

h ⁄ 2
ρ (z) dz ,  I = ∫

−h ⁄ 2

h ⁄ 2
ρ (z) dz and ρ (z) is

mass density which varies through the thickness of the
plate and is given by Eq. (5).

The plate is subjected to temperature filed and this, in

turn, results in-plane stress resultants (Nxx
th , Nyy

th , Nxy
th).

Thus, the potential energy due to pre-buckling stresses
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th) developed under thermal load can be writ-

ten as

V(δ) = ∫
A

⎧

⎨

⎩

⎪

⎪
1
2

⎡
⎢
⎣
N

xx

th ⎛
⎜
⎝

∂w
∂x

⎞
⎟
⎠

2

+ N
yy

th⎛
⎜
⎝

∂w
∂y

⎞
⎟
⎠

2

+ 2N
yy

th⎛
⎜
⎝

∂w
∂x

⎞
⎟
⎠

⎛
⎜
⎝

∂w
∂y

⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥

+ h
2

24

⎡
⎢
⎣

⎢
⎢Nxx

th
⎧

⎨

⎩

⎪

⎪

⎛
⎜
⎝

∂θ
x

∂x

⎞
⎟
⎠

2

+
⎛
⎜
⎝

∂θ
y

∂x

⎞
⎟
⎠

2
⎫

⎬

⎭

⎪

⎪ + N
yy

th
⎧

⎨

⎩

⎪

⎪

⎛
⎜
⎝

∂θ
x

∂y

⎞
⎟
⎠

2

+
⎛
⎜
⎝

∂θ
y

∂y

⎞
⎟
⎠

2
⎫

⎬

⎭

⎪

⎪

⎡
⎢
⎣
2N

xy

th⎧⎨
⎩

⎛
⎜
⎝

∂θ
x

∂x

⎞
⎟
⎠
+
⎛
⎜
⎝

∂θ
x

∂y

⎞
⎟
⎠

⎫
⎬
⎭
+
⎧
⎨
⎩

⎛
⎜
⎝

∂θ
y

∂x

⎞
⎟
⎠
+
⎛
⎜
⎝

∂θ
y

∂y

⎞
⎟
⎠

⎤
⎥
⎦

⎫
⎬
⎭

dA (24)

Substituting Eqs. (22-24) in Lagrange’s equation of
motion, one obtains the governing equations as

[M]
⎧
⎨
⎩
δ
..⎫

⎬
⎭
+ ([K] + ( 1⁄ 2) [N

1
] + (1 ⁄ 3) [N

2
] + [N

3
] + [K

G
]) ⎧

⎨
⎩
δ⎫

⎬
⎭
= ⎧

⎨
⎩
0⎫

⎬
⎭

(25)

where [M] is the consistent mass matrix; [KG] is the
geometric stiffness matrix, respectively. ⎧⎨⎩δ

⎫
⎬
⎭  is the accel-

eration vector.

Substituting characteristics of the time function at the
point of reversal of motion [24]

⎧
⎨
⎩δ
..⎫
⎬
⎭ = − ω2 ⎧

⎨
⎩δ

⎫
⎬
⎭ (26)

Eq. (25) will lead to the following nonlinear algebraic
equation form,

([K] + (1 ⁄ 2)[N
1
] + (1 ⁄ 3)[N

2
] + [N

3
] + [K

G
]) ⎧

⎨
⎩δ

⎫
⎬
⎭

− ω
2
[M] ⎧

⎨
⎩δ

⎫
⎬
⎭ =

⎧
⎨
⎩0

⎫
⎬
⎭ (27)

where, ω is the natural frequency. The frequency-ampli-
tude relation is obtained by solving Eq. (27) through finite
element procedure in conjunction with direct iteration
technique.

Element Description

The plate element employed here is a C0 continuous
shear flexible element and needs five nodal degrees of
freedom u0 , v0 , wo , θx , θy at eight nodes in QUAD-8

element. If the interpolation functions for QUAD-8 are
used directly to interpolate the five variables u0 to θy in

deriving the shear strains and membrane strains, the ele-
ment will lock and show oscillations in the shear and
membrane stresses. Field consistency requires that the
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transverse shear strains and membrane strains must be
interpolated in a consistent manner. Thus θx and wo,y.

terms in the expressions for ⎧⎨
⎩
εs

⎫
⎬
⎭
 given by Eq. (13) have to

be consistent with field functions wo,x and wo,y . This is

achieved by using field redistributed substitute shape
functions to interpolate those specific terms, which must
be consistent, as described in Ref. [23, 24]. This element
is free from locking syndrome and has good convergence
properties.  For the sake of brevity, these are not presented
here, as they are available in the literature [23, 24]. Since
the element is based on field consistency approach, exact
integration is applied for calculating various strain energy
terms.

Skew Boundary Transformation

For skew plates supported on two adjacent edges, the
edges of the boundary elements may not be parallel to the
global axes (x , y , z ). In such a situation, it is not possible
to specify the boundary conditions in terms of the global
displacements uo , vo , wo, etc. In order to specify the

boundary conditions at skew edges, it is necessary to use

edge displacements {uo
l, vo

l, wo
l, etc. in local coordi-

nates (x l, y l, z l) as shown in Fig.1b. It is thus required to
transform the element matrices corresponding to global
axes to local edge axes with respect to which the boundary
conditions can be conveniently specified. The relation
between the global and local degrees of freedom of a node
can be obtained through the simple transformation rules
[27] and the same can be expressed as

d
i
= L

g
d

i

l
(28.a)

in which di , di
l are generalized displacement vectors in

the global and local coordinate system, respectively of
node i and they are defined as

d
i
= ⎡
⎣
u

o
     v

o
     w

o
     θ

x
     θ

y
⎤
⎦

T
(28.b)

d
i

l
= ⎡
⎢
⎣
u

o

l
   v

o

l
   w

o

l
   θ

x

l
   θ

y

l⎤
⎥
⎦

T
(28.c)

The nodal transformation matrix for a node i, on the
skew boundary is

L
R
=

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

c

− s

0

0

0

   

s

c

0

0

0

   

0

0

1

0

0

   

0

0

0

c

− s

   

0

0

0

s

c

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(29)

in which c = cos (ψ) and s = sin (ψ), where ψ is the angle
of the plate. It may be noted that for the nodes, which are
not lying on the skew edges, the node transformation
matrix has only nonzero values for the principal diagonal
elements, which are equal to 1. Thus, for the complete
element, the element transformation matrix is written as

[T]
e
= diag 〈L

g
L

g
L

g
L

g
L

g
L

g
L

g
L

g
〉 (30)

For those elements whose nodes are on the skew edges,
the element matrices are transformed to the local axes
using the element transformation matrix Te and then the
global matrices/vectors are obtained using standard as-
sembly procedures.

Solution Procedure

The vibration problem is solved using eigenvalue for-
mulation. To solve the non-linear eigenvalue problems, an
iterative procedure is used. Firstly, the eigenvector (mode
shape) is obtained from the linear vibration analysis, ne-
glecting the non-linear stiffness matrix in Eq.(27) and then
normalized. Next, the normalized vector is ampli-
fied/scaled up so that the maximum displacement is equal
to the desired amplitude, say w/h = 0.2 (w is the maximum
lateral displacement, h is the thickness of the plate). This

gives the initial vector, denoted by δ
_
. The iterative solution

procedure for the non-linear analysis starts with this initial

vector.  Based on this initial mode shape (δ
_
), the non-linear

stiffness matrix that depends on displacement (linearly
and quadratically) is formed.  Subsequently, the updated
eigenvalue and its corresponding eigenvector are ob-
tained. This eigenvector is further normalized, and scaled
up by the same amplitude (w/h), and the iterative proce-
dure adopted here continues till the frequency values and
mode shapes evaluated from the subsequent two iterations
satisfy the prescribed convergence criteria [28] as
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∑
m

N (ω
m

r
− ω

m

r − 1)

ω
m

r ≤  0.0001

∑
i

N (δ
i

r
− δ

i

r − 1)

δ
i

r ≤  0.0001, for the m
th

 mode, (31)

where, m, i, N and r  represents the mode number, degree
of freedom of the finite element model, total degree of
freedom and iteration number, respectively.

Results and Discussion

The study, here, has been focused on the large ampli-
tude free flexural vibration behavior of functionally
graded plates. Fig.2 shows the variation of the volume
fractions of ceramic and metal respectively, in the thick-
ness direction z for the FGM plate. The top surface is
ceramic rich and the bottom surface is metal rich. The
FGM plate considered here consists of Silicon nitride
(Si3N4) and stainless steel (SUS304). The temperature
coefficients corresponding to Si3N4 / SUS304 are listed in

Table-1 [6]. The mass density and thermal conductivity

are:  ρc = 2370kg ⁄ m3, Kc = 9.19 W ⁄ mK   for   Si3N4; and

ρm = 8166 kg ⁄ m3, Km = 12.04 W ⁄ mKfor SUS304. Pois-

son’s ratio v is assumed to be a constant and equals to 0.28.
Transverse shear coefficient is taken as 0.91. The plate is
of uniform thickness and boundary conditions considered
here are:

simply supported :

u
o
= w

o
= θ

y
= 0 on x = 0, a and v = w = θ

x
= 0 on y = 0, b

clamped support :

u = v = w = θ
x
= θ

y
= 0   on x = 0, a   and   y = 0, b

Based on the progressive mesh refinement, an 8x8
mesh is found to be adequate to model the full plate for
the present analysis [29]. Before proceeding for the de-
tailed study for the large amplitude free flexural vibrations
behavior of functionally graded plates, the formulation
developed herein is validated against the available results

Table-1 : Temperature dependent coefficients for material Si3N4/SUS304, Ref.[6]

Materials Properties P0 P-1 P1 P2 P3 P (T=300K)

Si3N4 E (Pa) 348.43e+9 0.0 -3.070e-4 2.160e-7 -8.946e-11 322.2715e+9

α (1/K) 5.8723e-6 0.0 9.095e-4 0.0 0.0 7.4746e-6

SUS304 E (Pa) 201.04e+9 0.0 3.079e-4 -6.534e-7 0.0 207.7877e+9

α (1/K) 12.330e-6 0.0 8.086e-4 0.0 0.0 15.321e-6

Table-2a : Comparison of non-dimensional linear frequencies of simply-supported FGM plate (a/b = 1, a/h = 8)

Temperature k

Mode

(1, 1) (1, 2) (2, 2)

Ref. [22] Present Ref. [22] Present Ref. [22] Present

Tc = 400
Tm = 300

0.0 12.397 12.311 29.083 29.016 43.835 44.094

0.5 8.615 8.483 20.215 19.979 30.530 30.391

1.0 7.474 7.444 17.607 17.511 26.590 26.648

2.0 6.693 6.679 15.762 15.706 23.786 23.894

10.0 --- 5.742 --- 13.560 --- 20.609

Tc = 600
Tm = 300

0.0 11.984 11.888 28.504 28.421 43.107 43.343

0.5 8.269 8.150 19.784 19.534 29.998 29.836

1.0 7.171 7.131 17.213 17.101 26.109 26.139

2.0 6.398 6.376 15.384 15.314 23.327 23.410

10.0 --- 5.423 --- 13.146 --- 20.100
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[22,30] pertaining to the linear case of FGM plates and
nonlinear vibrations of isotropic plates in Tables-2a and
2b, respectively. Here, the calculated non-dimensional
linear frequency is defined

as:ω = ωL
⎛
⎜
⎝
a2

h
⎞
⎟
⎠

⎛
⎜
⎝

ρm(1 − v2)
Em

⎞
⎟
⎠

1⁄2

 , where ρm and Em are the

mass density and Young’s modulus of metal, respectively.
The results are found to be in good agreement with the
existing solutions. It is observed from Table-2a that, with
the increase in power law index k up to certain value, the
rate of decrease in the frequency value is high, and further
increase in k leads to less reduction in the frequency. For

the low values of k, the stiffness degradation occurs due
to the increase in the metallic volumetric fraction.

Next, the nonlinear flexural vibration behavior of
FGM is numerically studied with and without thermal
environment. For the uniform temperature case, the mate-
rial properties are evaluated at T = 300K. The variation of
nonlinear to linear frequency ratio (ωNL ⁄ ωL,where sub-

scripts NL and L corresponds to the non-linear and linear
respectively) with respect to non-dimensional amplitude
(w/h; w is the flexural amplitude of the plate) evaluated
for simply supported plate is shown in Table- 3. It is seen
from Table-3 that the frequency ratios decreases with the
increase in the gradient index k up to certain value, i. e.
k=2, and then the frequency ratio increases with further
increase in k. This observation is true, irrespective of thick
or thin, and square or rectangular case considered in the
present study. For the higher values of k, it is revealed from
the detailed analysis that, although the linear as well as
nonlinear frequency values decrease, the reduction in lin-
ear frequency is more compared to that of the nonlinear
case and, for the sake of brevity, it is not shown here. Due
to greater reduction in linear frequency values at higher k,
the overall trend in nonlinear frequency ratio thus in-
creases. It can be further viewed that the frequency ratio
increases with the increase in amplitude, as expected.
However, it is noticed that there is a sudden drop in the
increasing frequency trend at certain higher amplitude and
then gradually increases with further increase in amplitude
exhibiting hardening behavior. This is possibly attributed
to the change in stiffness values, and thus leading to the
redistribution of mode shapes associated with certain level
of amplitudes of vibration, as highlighted in Fig.3 loosing
symmetry and shifting the maximum displacement to-
wards one side of the plate. It may be opined from Table-3
that, in general, this trend of dropping in frequency occurs
around w/h = 1.2 or higher for the square plate whereas it
corresponds to around w/h = 0.8 or less for rectangular
plate considered here. The abrupt drop in the frequency
ratio with respect to gradient index and amplitude ratio is
highlighted in the Table. Also it can be concluded that, for
thin case, the reduction in the frequency ratio value occurs
at fairly high amplitude compared to thick case. Further-
more, it may be inferred that the frequency ratio decreases
with the increase in the thickness ratio (a/h), and there is
qualitatively no change in the variation of frequency,
irrespective of thickness parameter.

The influence of thermal gradient on the nonlinear
vibrations characteristics of FGMs is examined in Tables-
4 and 5 with different surface temperatures. The tempera-

Table-2b : Comparison of nonlinear frequency 
ratios of isotropic simply supported square 

plate (a/h = 1000)

w/h Ref. [30]
Analytical

Present % difference

0.2 1.02599 1.02563 -0.04%

0.4 1.10027 1.09918 -0.10%

0.6 1.21402 1.21258 -0.12%

0.8 1.35735 1.35659 -0.06%

1.0 1.52192 1.52339 0.10%

Fig. 2  Variation of volume fraction through the thickness:
(a) Ceramic; (b) Metal
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Table-3 : Effect of aspect and thickness ratios on the nonlinear frequency ratio (ωNL/ωNL) of simply supported
FGM plates in ambient temperature (Tc = 300K, Tm=300K)

a/b a/h k
w/h

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1 10

0 1.0271 1.1047 1.2240 1.3749 1.5490 1.7397* 1.6206 1.6656

0.5 1.0120 1.0774 1.1882 1.3344 1.5062 1.6965 1.5746 1.6143

1 1.0066 1.0664 1.1724 1.3144 1.4830 1.6703 1.5582 1.6057

2 1.0048 1.0617 1.1638 1.3017 1.4661 1.6496 1.5458 1.5871

5 1.0095 1.0691 1.1721 1.3090 1.4714 1.6520 1.5588 1.5998

10 1.0151 1.0798 1.1868 1.3269 1.4913 1.6731 1.5820 1.6262

1 20

0 1.0261 1.1009 1.2161 1.3622 1.5311 1.7165 1.9119 1.6966

0.5 1.0110 1.0736 1.1803 1.3216 1.4883 1.6732 1.6042 1.6509

1 1.0056 1.0626 1.1644 1.3016 1.4650 1.6472 1.5833 1.6246

2 1.0039 1.0579 1.1558 1.2888 1.4480 1.6265 1.8154 1.6141

5 1.0085 1.0653 1.1641 1.2961 1.4531 1.6282 1.8151 1.6319

10 1.0141 1.0760 1.1788 1.3139 1.4731 1.6496 1.8391 1.6767

1 100

0 1.0258 1.0996 1.2136 1.3582 1.5256 1.7091 1.9056 1.7045

0.5 1.0107 1.0723 1.1778 1.3175 1.4827 1.6658 1.8619 1.6584

1 1.0053 1.0614 1.1619 1.2973 1.4593 1.6403 1.8342 1.6356

2 1.0036 1.0566 1.1533 1.2844 1.4422 1.6189 1.8066 1.6278

5 1.0082 1.0641 1.1615 1.2918 1.4470 1.6206 1.8075 1.6393

10 1.0138 1.0747 1.1763 1.3096 1.4673 1.6420 1.8300 1.6593

2 10

0 1.0363 1.1398 1.2993 1.4998 1.3159 1.3482 1.3794 1.4060

0.5 1.0176 1.1063 1.2553 1.4508 1.2850 1.3173 1.3476 1.3735

1 1.0109 1.0928 1.2359 1.4260 1.2721 1.3038 1.3325 1.3588

2 1.0087 1.0870 1.2254 1.4115 1.2688 1.2972 1.3271 1.3521

5 1.0146 1.0962 1.2355 1.4203 1.2774 1.3063 1.3362 1.3613

10 1.0214 1.1092 1.2535 1.4415 1.2885 1.3198 1.3499 ---

2 20

0 1.0331 1.1279 1.2739 1.4596 1.3312 1.3632 1.3971

0.5 1.0145 1.0944 1.2305 1.4107 1.2997 1.3324 1.3668 1.3992

1 1.0079 1.0810 1.2111 1.3864 1.2866 1.3191 1.3534 1.3862

2 1.0057 1.0751 1.2004 1.3705 1.2812 1.3130 1.3467 1.3796

5 1.0114 1.0842 1.2103 1.3791 1.2912 1.3222 1.3549 1.3882

10 1.0183 1.0972 1.2285 1.4008 1.5953 1.8778 1.3681 1.7600

* Denotes change in trend
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ture field is assumed to vary only in the thickness direction
and determined by the expression given in Eq. (7). The
temperature for the ceramic surface is varied (Tc = 400K,
600K) while keeping the constant value for metallic sur-
face (Tm = 300K). To evaluate the non-dimensional fre-

quency given in Eq.(25), ρm and Em are taken at T0 = 300K.

The frequency-drops are also highlighted in these Tables.

The variation of linear and nonlinear frequencies is quali-
tatively similar to those of non-thermal case.  However,
the nonlinear frequency ratios are higher here compared
to the non-thermal case given in Table-3, irrespective of
thickness and aspect ratios of the FGM plates. Further
more, it is observed from Tables-4 and 5 that the increase
in temperature gradient results in relatively higher non-
linear frequency ratios.

Table-3 (Contd...)

a/b a/h k
w/h

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

2 100

0 1.0321 1.1242 1.2658 1.4468 1.3382 1.3701 1.4041 1.4383

0.5 1.0135 1.0908 1.2226 1.3978 1.3064 1.3391 1.3741 1.4092

1 1.0069 1.0773 1.2033 1.3730 1.2931 1.3258 1.3607 1.3961

2 1.0047 1.0714 1.1926 1.3571 1.2878 1.3197 1.3548 1.3886

5 1.0099 1.0805 1.2024 1.3656 1.2981 1.3291 1.3621 1.3967

10 1.0173 1.0936 1.2204 1.3872 1.3113 1.3423 1.3789 1.4094

Fig. 3  The redistribution of normalized nonlinear mode shape contours of simply supported FGM plate (a/b=1, a/h=10, k=2):
(a) w/h=1.0; (b) w/h=1.4; (c) mode shapes along y = b/2; (d) mode shapes along x=a/2
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Similar  study  is  carried  out  for   clamped  FGM
plates subjected to the thermal gradient (Tc = 600K  and
Tm = 300K) and the nonlinear frequency ratios obtained
for square and rectangular cases are tabulated in Table-6.
It is evident from this Table that, in comparison to simply
supported case, the nonlinear frequency ratios are, in
general, less. It is further viewed that the lowest frequency
value occurs corresponding to higher gradient index of
k=5, irrespective of aspect ratio, unlike k=2 for simply
supported condition.

Lastly, the effect of simply supported skewed FGM
plates is investigated and the results are shown in Table-7
for various amplitude and gradient index. The general
nonlinear behavior is qualitatively same as that of square
plate. However, it is observed that the nonlinear frequency
ratios are, in general, higher compared to the rectangular
case. It is also revealed that with the increase in the skew
angle, the drop in frequency ratio occurs at relatively low
amplitude that is associated with mode redistribution.

Table-4 : Effect of aspect and thickness ratios on the nonlinear frequency ratio (ωNL/ωL) of simply supported
FGM plates  temperature gradient  (Tc = 400K, Tm=300K)

a/b a/h k
w/h

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1 10

0 1.0290 1.1099 1.2333 1.3887 1.5673 1.7623 1.6412 1.6870

0.5 1.0135 1.0864 1.1980 1.3494 1.5268 1.7223 1.5938 1.6394

1 1.0079 1.0713 1.1823 1.3301 1.5046 1.6986 1.5785 1.6185

2 1.0062 1.0666 1.1741 1.3182 1.4890 1.6794 1.5222 1.6088

5 1.0110 1.0748 1.1836 1.3274 1.4969 1.6852 1.5853 1.6322

10 1.0169 1.0862 1.1997 1.3471 1.5194 1.7098 1.6021 1.6465

1 20

0 1.0308 1.1164 1.2463 1.4091 1.5955 1.7992 1.9698 **

0.5 1.0141 1.0880 1.2118 1.3732 1.5613 1.7688 1.6742 1.7282

1 1.0079 1.0765 1.1965 1.3554 1.5422 1.7489 1.6569 1.7090

2 1.0059 1.0721 1.1896 1.3461 1.5307 1.7348 1.6550 1.7052

5 1.0118 1.0830 1.2041 1.3629 1.5486 1.7539 1.6806 1.8899

10 1.0190 1.0979 1.2261 1.3910 1.5820 1.7911 2.0096 1.7653

2 10

0 1.0380 1.1439 1.3057 1.2902 1.3203 1.3534 1.3848 1.4118

0.5 1.0192 1.1105 1.2625 1.4619 1.2903 1.3230 1.3536 1.3799

1 1.0124 1.0970 1.2434 1.4380 1.2776 1.3099 1.3404 1.3656

2 1.0101 1.0912 1.2332 1.4319 1.2721 1.3040 1.3343 1.3592

5 1.0161 1.1007 1.2438 1.4329 1.2822 1.3136 1.3434 1.3695

10 1.0230 1.1140 1.2624 1.4662 1.2950 1.3265 1.3575 1.3836

2 20

0 1.0361 1.1366 1.2900 1.4841 1.3441 1.3777 1.4129 1.4454

0.5 1.0168 1.1027 1.2478 1.4374 1.3484 1.3484 1.3843 1.4176

1 1.0098 1.0891 1.2282 1.4141 1.3358 1.3358 1.3718 1.4056

2 1.0075 1.0833 1.2182 1.3996 1.3304 1.3304 1.3663 1.4003

5 1.0137 1.0937 1.2306 1.4120 1.3420 1.3420 1.3771 1.4118

10 1.0213 1.1085 1.2515 1.4377 1.3573 1.3573 1.3926 1.4269
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Table-5 : Effect of aspect and thickness ratios on the nonlinear frequency ratio (ωNL/ωL) of simply supported
FGM plates with temperature gradient (Tc = 600K, Tm=300K)

a/b a/h k
w/h

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1 10

0 1.0332 1.1218 1.2550 1.4212 1.6109 1.8176 1.6777 1.7246

0.5 1.0169 1.0941 1.2212 1.3856 1.5765 1.7860 1.6374 1.6855

1 1.0110 1.0830 1.2062 1.3680 1.5573 1.7661 1.6211 1.6706

2 1.0092 1.0789 1.1996 1.3588 1.5456 1.7522 1.6215 1.6710

5 1.0153 1.0899 1.2139 1.3750 1.5627 1.7693 1.6415 1.6888

10 1.0226 1.1047 1.2354 1.4023 1.5947 1.8055 1.6750 1.7194

2 20

0 1.0434 1.1586 1.3311 1.5462 1.3775 1.4146 1.4532 1.4788

0.5 1.0224 1.1243 1.2914 1.5072 1.3511 1.3767 1.4299 1.4666

1 1.0145 1.1104 1.2737 1.4876 1.3408 1.3595 1.4208 1.4576

2 1.0122 1.1058 1.2675 1.4792 1.3401 1.3520 1.4198 1.4583

5 1.0208 1.1224 1.2901 1.5070 1.3616 1.4011 1.4422 1.4801

10 1.0312 1.1444 1.3230 1.5495 1.3859 1.4264 1.4680 1.5063

Table-6 : Influence of aspect ratio on the nonlinear frequency ratio (ωNL/ωL) of clamped 
FGM plates (a/h = 20)  with temperature gradient (Tc = 600K, Tm =300K)

a/b k
w/h

0.2 0.4 0.6 0.8 1.0

1

0 1.0102 1.0403 1.0884 1.1521 1.2291

0.5 1.0106 1.0417 1.0915 1.1572 1.2366

1 1.0106 1.0417 1.0913 1.1570 1.2362

2 1.0103 1.0408 1.0895 1.1540 1.2318

5 1.0101 1.0398 1.0874 1.1505 1.2264

10 1.0102 1.0401 1.0880 1.1513 1.2277

2

0 1.0109 1.0432 1.0954 1.1654 1.2509

0.5 1.0112 1.0443 1.0978 1.1696 1.2570

1 1.0111 1.0441 1.0973 1.1687 1.2557

2 1.0109 1.0430 1.0950 1.1649 1.2501

5 1.0106 1.0418 1.0924 1.1604 1.2435

10 1.0106 1.0419 1.0926 1.1607 1.2439
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Conclusions

The large free flexural vibration behavior of FGM
plates under thermal environment has been studied. The
formulation is based on first-order shear deformation the-
ory and includes geometric nonlinearity using von Kar-
man’s assumptions. The material properties are assumed
to be varied through the thickness direction based on
power law distribution and the temperature varies only in
the thickness direction. The numerical experiments have
been conducted to bring out the effectiveness of gradient
index, aspect and thickness ratios, boundary conditions
and thermal environment on the nonlinear flexural vibra-
tions FGM plates. From the detailed parametric study, the
following observations can be made:

1. With the increase in gradient index, k, the fundamen-
tal frequency decreases due to degradation of stiff-
ness by the metallic inclusion.

2. With the increase in gradient index k value, the
nonlinear frequency ratio decreases initially and then
increases.

3. The increase in the nonlinear frequency ratio drops
at certain amplitude (w/h) due to mode redistribution
and then increases with further increase in amplitude.

4. The sudden drop in frequency occurs at low ampli-
tude with the increase in the aspect ratio whereas it
happens at fairly high amplitude for thin plate case.

5. Although the thermal environment reduces the natu-
ral frequency value as expected, the nonlinear fre-
quency ratio is high compared to non-thermal case.
Also higher temperature gradient yields, in general,
higher nonlinear frequency ratios.

6. Skew effect, in general, enhances the nonlinear fre-
quency ratios compared to rectangular case.

7. With the increase in the skew angle, the drop in
frequency ratio occurs at relatively low amplitude. 

Table-7 : Influence of skew angle of simply supported FGM plate (a/h = 10, a/b = 1) with temperature gradient 
(Tc = 400K, Tm=300K) on the nonlinear frequency ratio (ωNL/ωL)

Skew angle
w/h

k 0.2 0.6 1 1.2 1.6

15º

0 1.0291 1.2342 1.5694 1.7661 1.6506

0.5 1.0136 1.1989 1.5293 1.7258 1.6076

1 1.0080 1.1831 1.5065 1.7012 1.5880

2 1.0062 1.1751 1.4909 1.6821 1.5790

5 1.0112 1.1846 1.4987 1.6879 1.5932

10 1.0170 1.2004 1.5210 1.7123 1.6143

30º

0 1.0293 1.2788 1.5727 1.7709 1.5929

0.5 1.0139 1.2003 1.5322 1.7292 1.5524

1 1.0084 1.1846 1.5099 1.7958 1.5340

2 1.0066 1.1765 1.4945 1.6863 1.5253

5 1.0114 1.1857 1.5018 1.6914 1.5314

10 1.0172 1.2012 1.5231 1.7144 1.5573

45º

0 1.0291 1.2354 1.5743 1.7676 1.4928

0.5 1.0145 1.2017 1.5366 1.3869 2.1117

1 1.0092 1.1868 1.5143 1.3731 1.4405

2 1.0075 1.1787 1.4993 1.3659 1.4330

5 1.0120 1.1871 1.5043 1.3771 1.4440

10 1.0175 1.2017 1.5243 1.3927 1.4606
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