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Abstract

Tracking of multiple targets using interactive multiple model and data association filter has
been developed on PC MA TLAB. The performance of the algorithm is evaluated in terms of
estimated and measured tracks in presence of clutter, mode probability, standard deviation,
root mean square position error and with varieties of simulated scenarios. Sensitivity of the
algorithm to the choice of tracking models and process noise covariance values has been
studied. This algorithm has also been evaluated for multi sensor multi target scenario using
fusion technique. It was observed that interactive multiple model probabilistic data association
filter gives a realistic confidence in the estimates during maneuvers and lower RSSPE during
the non-maneuvering phase of the targets. 

Introduction

Target tracking comprises of estimation of the current
state of a target based on uncertain measurements selected
according to a certain rule as sharing a common origin and
calculation of the accuracy and credibility associated with
the state estimate. The problem is complex even for single
target tracking because of target model and measurement
uncertainties. The complexity of the tracking problem
increases further when multiple targets are to be tracked
from measurements of multiple sensors [1,2]. 

Target tracking using sensor measurements in clutter
is of interest in military applications such as radar and
sonar systems, indigenous missile testing, tracking differ-
ent hostile missiles, aircraft and helicopters. It has also
found use in nonmilitary applications such as robotics, air
traffic control and surveillance. In practice, scenarios for
target tracking could include maneuvering targets, cross-
ing targets and splitting targets. Various algorithms are
applied to achieve target tracking in these scenarios and
the selection of the algorithms is highly application de-
pendent. In general, kinematic quantities like position,
velocity and acceleration are of interest in target tracking.
The target track is updated by correlating measurements
with the existing tracks or initiating new tracks by using
measurements coming from different sensors. Data asso-
ciation is the step to associate the measurements to the
targets with certainty when several targets are in the same
neighborhood. In practice, measurements arriving from

the sensors may not be true due to clutter, false alarms, and
interference from other targets, limited resolution capabil-
ity (spatial coverage limitation of the sensor) and several
targets in neighborhood.

The commonly used algorithms for multi sensor multi
target (MSMT) tracking in clutter are nearest neighbor-
hood Kalman filter (NNKF), Probabilistic data association
filter (PDAF), interactive multiple model PDAF
(IMMPDAF) and multiple hypothesis tracking (MHT). In
this paper, the performance of IMMPDAF for estimation
of multiple maneuvering target trajectories in clutter is
investigated. Simulated data of two maneuvering targets
in clutter tracked by single sensor are used for the evalu-
ation. Sensitivity of the IMMPDAF to the choice of the
tracking models and process noise covariance values is
evaluated. Results are presented in terms of root sum
squares position error (RSSPE), standard deviations of the
estimates and maneuvering mode probabilities. Results of
using the IMMPDAF algorithm for tracking and fusion of
simulated data of four targets whose positions are meas-
ured by two sensors located at different spatial positions
are also presented in the paper. 

Gating

Gating is a technique for eliminating unlikely obser-
vation-to-track pairings. Gates (mostly rectangular, circu-
lar or ellipsoidal in shape) are defined for one or more
existing tracks and if an observation satisfies the gates, it
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becomes a candidate for association with that track
(Fig.1). The region enclosed by the gate is called the
validation region. Any of the following situations may be
encountered during gating - 

• More than one observation may satisfy the gate of a
single track

• The observation may satisfy the gates of more than one
existing tracks

• The observation might not ultimately be used to update
an existing track even if it falls within the validation
region. Thus it may be used to initiate a new track.

• The observation might not fall within the validation
region of any of the existing tracks. In such a case, it is
used to initiate a new tentative track.

If z(k) is the measurement at scan k given by 

z(k) = Hx(k) +v(k) (1)

and y = H x̂(k | k−1) is the predicted value with
x̂(k | k−1) representing the predicted value of the state at
scan (k-1), then the residual vector (or innovation) is given
by

v(k) = z(k) - y(k) (2)

The residual covariance matrix S is given by 

S = HPH
T

 + R (3)

where R is the measurement noise covariance matrix.
Assuming the measurement vector of dimension M, a
distance d2 representing the norm of the residual vector is
defined as follows

d
2
 = v

T
S

-1
v (4)

A correlation between the observation and track is
allowed if the distance d2 is less than a certain gate
threshold, i.e.,

d
2
 = v

T
S

-1
v ≤ G (5)

The observation falling within the above-defined gate
is more likely to be from the track rather than from any
other extraneous source. A simple method to choose G is
based on chi-square distribution with M degrees of free-
dom. The distance d2 is the sum of the squares of M

independent Gaussian variables with zero means and unit

standard deviations. As such, the quadratic form of d2 has
a chi-square distribution and a gate on d2 can be deter-

mined using chi-square Tables [1].

For the results presented in this paper, an ellipsoidal
gate is used. The parameters of the ellipse (semi major and

semi minor axis length σx and σy) are given by the square

root of the diagonal elements of innovation covariance

matrix (for two dimensional gate).

Data Association

In a multi-target scenario, gating provides only a part
of the solution to the problem of track maintenance and

track update. Additional logic is required when an obser-
vation falls within the gates of multiple tracks or when

multiple observations fall within the gate of a single track.
Several techniques are available to handle data association

problem, the most popular among them being the Nearest
Neighborhood (NN) and Probabilistic Data Association

(PDA) algorithms [1]. In present work, a PDAF algorithm
is combined with IMM approach in order to track maneu-

vering targets.

Fig. 1  A 2-model IMMPDAF scheme

66 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.58, No.1



Probabilistic Data Association (PDAF)

Unlike NNKF, which considers only one of the vali-
dated measurements for data association, the PDAF algo-
rithm calculates the association probabilities for each
measurement lying in the validation region. PDAF is like
standard Kalman filter with the exception of two addi-
tional blocks for computation of association probabilities
βi (k) and combined innovations v(k). If vi(k) corresponds

to innovation on measurement i, then the combined inno-
vation is given by

v(k) = ∑
i=1

m(k)

β
i
(k)vi (k) (6)

where m(k) denotes the number of detections in kth scan.

Probability βi(k) that the i-th validated measurement

is correct one is given by

β
i
(k) =

⎧

⎨

⎩

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪

e
i

b + ∑
j=1

m (k)

e
j

          i = 1,2,..., m (k)

b

b + ∑
j=1

m (k)

e
j

         i = 0

(7)

where β0(k) is the probability that none of the measure-

ments are correct.

In equation 7, e
i
=~ e

1
2

 v
i
(k)′S (k)

−1
v
i
(k)

(8)

and b =~ ⎛
⎜
⎝

2π
γ
⎞
⎟
⎠

n
z

2
   m (k) c

n
z

−1 (1 − P
DPG

)
PD

(9)

where nz is the dimension of the measurement, cnz is the
volume of the unit hypersphere of this dimension
(c1 = 2, c2 = π, c3 = 4π ⁄ 3, etc) and PG and PD represent

the gate probability and probability of target detection,
respectively. The computed βi(k) and v(k) are then used
to estimate the state and covariance of the updated state.

Since, PDAF uses all the measurements falling in the
validation region for data association, it is also called an
"all-neighbors modified filter". There are less chances of
track loss with PDAF than with NNKF.

Interacting Multiple Model (IMMPDAF)

Interactive Multiple Model (IMM) [2,4] is an ex-
tremely versatile tool for adaptive state estimation in sys-
tems whose behavior changes with time. This approach
assumes that the system obeys one of a finite number of
models. Two or more models are run in concurrence (only
in case of parallel computer implementation) to achieve
better tracking performance of maneuvering targets. The
features of IMM are combined with PDAF described
above to develop the IMMPDAF algorithm, which is
described below.

Figure 1 illustrates one cycle of a 2-model IMMPDAF
algorithm, which is applicable to single sensor multi target
scenario. This could be extended to multi sensor scenarios
as well. Fig.2 shows the block schematic of the MSMT
fusion algorithm. The IMMPDAF algorithm has six major
steps: 

Automatic track formation:

The main objective of track initiation is to calculate
initial state estimates of all possible tracks and compute
the associated state covariance matrix. In practice, there is
every possibility of generating false tracks due to the
presence of spurious measurements and multiple targets.

Fig. 2  Block schematic - MSMT fusion
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A commonly used technique to initiate track is based on a
logic that requires M detections out of N scans in the gate.
In this approach, a tentative track is formed on all two-
measurement pairs with expected motions of targets of
interest.

Gating and data association:

After the track formation, measurement screening is
carried out using eqs. 2-5 to get potential candidates for
corresponding tracks. The combined innovation sequence
v is computed using eqs. 6-9. The resultant measurement,
used in mode conditioned filtering, is computed using:

Z(k) = HX
~

(k ⁄ k− 1) + v(k) (10)

where, X
~ (k ⁄ k − 1) is predicted target states at kth scan and

is computed from state and covariance prediction block
(see Fig.1-L6).

Interaction and mixing (L1 and L2):

Using the mixing probabilities μi|j (k− 1|k − 1) as

weighting factors, the estimates of X̂i (k − 1|k − 1) and

P̂i (k − 1|k − 1) from the previous cycle are used to obtain

the initial conditions X̂0j (k − 1|k − 1) and

P̂0j (k − 1|k − 1) for the mode-matched filters M1 and M2

of the current cycle (See Fig.1)

For all i, j ∈ M,  the initial conditions for the filters are
given by

X
^

0j
(k − 1|k − 1) = ∑

i=1

r

x
^

i (k − 1|k −1) μ
i|j
(k − 1|k −1)

(11)

P
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⎭
×

⎧
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⎩
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⎭

T
]

⎤

⎥

⎦

⎥
⎥
⎥
⎥

μ
i⎢j

(k − 1 ⎢ k − 1)

(12)

where the time index is given by k ; mode-matched filters
j=1,..., r ; models i=1, ..., r ; r = 2  for the 2-model IMM
approach; X̂i (k|k) and Pi (k|k) are the state estimate and

covariance in mode i; and X̂0j (k|k) and P0j (k|k) are the

mixed initial conditions for filter j at time k.

Mode conditioned filtering (L3 and L4) :

With r parallel mode-matched Kalman Filters (r = 2
for 2-model IMM), the states and covariances are esti-
mated using the standard prediction and update steps.

X
^

j (k | k− 1) = Fj (k− 1) X
^

0j (k− 1 | k − 1)

    + Gj (k − 1) wj
(k − 1)

Pj (k | k − 1) = Fj (k − 1) P0j (k − 1 | k − 1) Fj (k − 1)
T

    + G j (k − 1) Q j (k − 1) G j (k − 1)
T

X
^

j (k | k) =  X
^

j (k | k − 1) + K j (k) vj (k)

P
j
(k | k ) =  P

j
(k | k − 1) − K

j
(k ) S 

j
(k ) K 

j
( k )T

(13)

If the measurement at time k is given Z(k), the meas-
urement prediction Ẑj (k | k − 1) is given by the relation

Z
^

j (k | k − 1) = H j (k) X
^

j (k | k − 1) (14)

The residual vj(k), residual covariance Sj(k) and the
filter gain Kj(k) in eq. 13 are given by

v
j
(k) = Z (k) − Z

^
j
(k | k − 1)

S
j
(k) = H 

j
(k) P 

j
(k | k − 1) H j

(k)T +  R 
j
(k)

K j (k) = P j (k | k − 1) H j (k)
T
 S j (k)

−1
(15)

The structure of the system given by F and H matrices,
and the process and measurement noise covariance matri-
ces given by Q and R, can differ from mode to mode.

The likelihood function for mode-matched filter j is a
Gaussian density function of residual v with zero mean and
covariance S. It is computed as follows

Λj (K) = 1

√⎯⎯⎯⎯⎯⎯⎯⎢S
j
(k) ⎢ (2π)

n ⁄ 2
e
−0.5 [v

j
(k )

T
S

j
(k )

−1
v
j
(k )]

(16)

where n denotes  the  dimension  of the measurement
vector Z.
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Probability Evaluations :

The mixing probabilities to be used in eqs. 11 and 12
are computed as follows:

μ
i|j
(k − 1|k − 1) = 1

c
_

j
pij μi (k−1) (17)

where,

c
_

j = ∑
i=1

r

pij μi (k −1) (18)

μi(k) is the mode probability at time k and cj is a normali-
zation factor. pij is the Markov transition probability
which takes care of switching from mode i to mode j. This
is a design parameter and is chosen by the user. The
switching probabilities are generally known to depend
upon sojourn time. For example, consider the following
Markov chain transition matrix between the two modes of
the IMM

Pij =
⎡
⎢
⎣

0.9
0.33

0.1
0.67

⎤
⎥
⎦

The basis for selecting p12 = 0.1is that, in the initial
stages, the target is likely to be in non-maneuvering mode
and probability to switch over to maneuvering mode will
be relatively low. On the other hand, p22 is selected based
on the number of sampling periods for which the target is
expected to maneuver (sojourn time). If the target maneu-
ver lasts for 3 sample periods (τ = 3), the probability p22
is given by

p
22

= 1 − 1
τ
= 0.67 (19)

To compute μi|j (k|k) and cj in eqs. 17 and 18 in the first

cycle of estimation algorithm, the initial mode prob-
abilities μi(k) corresponding to non-maneuver and maneu-
ver mode can be taken as 0.9 and 0.1, respectively. This
selection is based on the assumption that the target is more
likely to be in non- maneuver mode than in maneuver
mode during the initial stages of target motion. For sub-
sequent computations, the mode probabilities are updated
using the following relation

μj(k) =
1
c
Λj(k)c

_
j         j = 1,...,r (20)

where Λj(k) represents the likelihood function corre-
sponding to filter j (see eq. 16) and the normalizing factor
c is given by

c = ∑
j=1

r

Λ
j
(k) c

_
j

(21)

Combined state and covariance prediction/
estimation (L6 and L7) :

Prediction (L6) : The average mode probabilities obtained
in eq. 20 are used as weighting factors to combine the
predicted the state and covariance (L5) from eq. 22, for all
filters (j = 1, ..., r), to obtain overall state estimate and
covariance prediction (used in gating).

X
~

j
(k + 1 ⎢ k) = F

j
(k) X̂

j
(k ⎢ k)

P
~

j (k + 1 ⎢ k) = Fj (k) P̂j (k ⎢ k)Fj(k)
T
+

G
j
(k)Q

j
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j
(k)

T
; j = 1,...,r (22)
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r

X
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⎧
⎨
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X
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⎭

T
 ] μj (k) (23)

Estimate (L7) : The average mode probabilities obtained
in eq. 20 are also used as weighting factors to combine the
updated  state  and  covariance from eq. 13, for all filters
(j =1, ..., r), to  obtain overall state estimate and covari-
ance.

X̂(k ⎢ k) = ∑
j=1

r

X̂j (k ⎢ k) μj (k)

P(k ⎢k) = ∑
j=1

r

 [P
j
(k ⎢ k) + ⎧

⎨
⎩
X̂

j
(k ⎢ k) − X̂ (k) ⎢ k) ⎫

⎬
⎭

⎧
⎨
⎩
X̂j (k ⎢ k) − X̂ (k ⎢ k)⎫⎬

⎭

T
 ] μ

j
(k) (24)
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Data Simulation

Data of multiple maneuvering targets in clutter are
simulated using PC MATLAB. The target motion is simu-
lated using a 2nd order constant velocity model during the
non-maneuvering phase of the target motion and a 3rd

order constant acceleration model during the maneuvering
phase of the target.

The target motion model is described in the Cartesian
coordinate system by linear discrete-time difference equa-
tion with additive noise:

X(k+1) = FX(k) + Gw(k) (25)

Z(k) = HX(k) + v(k) (26)

where the Cartesian state vector X consists of the position
and velocity of the target moving in 2D space
(i.e.  X = [x x

.
   y  y

.
] when the target is in non-maneu-

vering phase and X = [ x   x
.

x
..
   y   y

.
  y
..
] when the target

is maneuvering. The process noise w and measurement
noise v are assumed to be white and zero mean with
covariance Q and R respectively.

Constant Velocity Model (Model1) 

The 2nd order kinematic model, with position and
velocity components in each of the two Cartesian coordi-
nates x and y. has the following transition and process
noise gain matrices.

F =

⎡

⎢

⎣

⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢

1

0

0

0

0
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T
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0

0

0

0
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0

0

0

0

       

0

0

0

1

0

0
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0

0

T
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0

0

0

0

0

⎤

⎥

⎦

⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥

G =

⎡

⎢

⎣

⎢
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⎢
⎢

⎢
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 2 ⁄ 2
T
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0
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0

0

0

0

T
 2
⁄ 2

T

0

⎤

⎥

⎦

⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥

(27)

Note that the acceleration component in the above
model, though identically equal to zero, has been retained
for compatibility with the 3rd order model to be discussed

next. In eq. 27 the variations in velocity are modeled as
zero-mean white noise accelerations. Low noise variance
Q1 is used with the model to represent the constant course
and speed of the target in a non-maneuvering mode. The
process noise intensity in each coordinate is generally
assumed to be equal

Q1
= σ

x
2 = σy

2
(28)

Constant Acceleration Model (Model 2)

The 3rd order model, with position, velocity and accel-
eration components in each of the two Cartesian coordi-
nates x and y, has the following transition and process
noise gain matrices.

F =

⎡
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⎥
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(29)

The acceleration increments over a sampling period
are a discrete time zero-mean white noise. A low value of
process noise variance Q2 (but relatively higher than Q1)
will yield nearly a constant acceleration motion. The noise
variances in each coordinate are assumed to be equal

Q2
= σ

x
2 = σy

2
(30)

The following are the components of the target data
simulation scenario :

a. Data Simulation for Single Sensor

• Number of targets = 2

• Target initial states - 

Target 1 : [ x x
.
  x
..

  y  y
.

y
..
] = [ 0  5  0 100  5  0 ]
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Target 2 : [ x x
.
  x
..

  y y
.
  y
..
] = [ 1200  5  0  − 1200  5  0 ]

• Sampling time T = 1 sec

• False alarm density = 1.0e-005

• Measurement noise convariance R = 25 

• Process noise covariance (for model 1) Q1 = 0.1 

• Process noise covariance (for model 2) Q2=0.1 

• Number of data points N=150 

• Maneuvering injection time and magnitude of injection
for two targets

b.  Data simulation for Multiple Sensors

• Number of sensors = 2

• Sensor locations -

Sensor 1 location : [0, 0, 0]
Sensor 2 location : [1000, 1000, 0]

• Number of targets = 3 sensor 1 and 3 for sensor 2

• Target initial states -

Target 1 : [ x x
.
  x
..

  y  y
.
  y
..
] = [ 0  5  0  100  5  0 ]

Target 2 : [ x x
.
  x
..

  y y
.
  y
..
] = [ 1200  5  0  − 1200  5  0 ]

Target 3 : [ x x
.
  x
..

  y y
.
  y
..
] = [ 1200  5  0  − 1200  5  0 ]

Target 4 : [ x x
.
  x
..

  y y
.
  y
..
] = [ 1200  5  0  − 1200  5  0 ]

• Sampling time T = 1 sec

• False alarm density = 1.0e-007

• Measurement noise covariance R=5

• Process noise covariance (for model 1) Q1 = 0.01

• Process noise covariance (for model 2) Q2 = 0.01

• Number of data points N = 100

• Target 1 maneuvers with 1g acceleration from 40 to 50
sec while there is no acceleration in the other three
targets

Results and Discussions

Single Sensor and Multiple Targets 

The performance of the tracking filters are sensitive to
the process noise covariance (Q) It is known that conven-
tional Kalman filter with a constant velocity model can be
used for tracking maneuvering targets if a higher value of
Q is used during maneuver phase. However, during non-
maneuver phase higher Q results in degraded perform-
ance. If a lower Q is used for tracking maneuvering targets,
during maneuver phase there could be filter divergence
and track loss due to the filter being unable to account for
the maneuver. In order to bring out this, the sensitivity of
the three association algorithms to the choice of Q values
and models is evaluated by considering the following two
combinations of models and Q values.

The constant parameters used in each tracking algo-
rithm are:

• Probability of detection PD = 0.99

• Gate probability PG = 0.99998

• Gate threshold G = 25

• Sojourn time τ = 15 seconds

• Onset model probability P12 = 0.12

Target
No.

Maneuvering
time (in sec.)

Maneuvering magnitude
(m/sec 2)

Start end x-axis y-axis z-axis

1 30 50 1g -1g 0

1 70 100 1g -1g 0

2 50 80 -1g 1g 0

Table-1 : Combination of Q values for sensitivity
study (IMMPDAF)

Combinations Q1 Q2

Case 1 Low High

Case 2 Low Low

Fig. 3  True trjectories in clutter
(Target - 1 turns twice and target - 2 turn once)
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Evaluation of IMMPDAF

Figure 3 shows the simulated x-position data of the two
maneuvering targets in clutter. The performance of algo-
rithm is tested under the two conditions of Q in terms of
i) estimated and true x-position in clutter, ii) estimated
standard deviations (σx−pos),  and (iii) RSSPE defined by

RSSPE= √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(x
t
− x̂)2 + (y

t
− ŷ)2 (z

t
− ẑ)2

where xt, yt, zt are the true target position and x̂ , ŷ , ẑ are
the estimated target position.

For case 1, process noise covariance for model1 and
model 2 is kept at 0.1 and 30 respectively whereas for case
2 process noise covariance values of 0.1 and 2 are used.
Fig.4-5 show the performance comparison for case 1 and
case 2 in terms of estimated and measured tracks with
clutter, mode probability of tracks, σx−pos and RSSPE. It

is clear that the tracking performance for both the combi-
nations of Q are good. The mode probability clearly indi-

cates the switching from the non-maneuver to the maneu-
ver mode. The σx−pos shows a higher value during maneu-

ver reflecting the correct situation (i.e. the filter is
adaptively tracking the target which maneuvering). The
results of case 2 show a delay in maneuver detection as
compared to case 1 and also RSSPE is higher than that of
case 1.

Fusion of Data from Multiple Sensors

Data of four targets seen by two sensors are fused using
the IMMPDAF/case 1 algorithm. The data from each of
the sensors are used to initiate tracks using the first two
scans of measurements. The tracks are updated after meas-
urement-to-track association with the valid measurements
using IMMPDAF/case 1 algorithm. A state vector fusion
algorithm is used to fuse the confirmed tracks after each
scan. It is necessary to transform the data to a common
reference point before fusion. Track-to-track association
is used for combining similar tracks to avoid redundant
tracks.

Fig. 4  Performance evaluation results - IMMPDAF (Case 1)
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Fig. 5  Performance evaluation results - IMMPADF (Case 2)
(Q1=0.1, Q2=2.0)

Fig. 6  Measurements from sensor -1 and sensor -2
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In the present simulated scenario among four targets,
three targets are seen by both the sensors. Fig.6 shows
measurements for sensor1 and sensor 2. The estimated
tracks and mode probability are shown in Fig.7. As ex-
pected, four targets are seen from the estimated positions
after combining similar tracks using track-to-track fusion.
From the mode probability of all tracks, it can be con-
cluded that the event of target maneuvering is noticed in
track-1 only.

Concluding Remarks

In this paper the performance of IMMPDAF for esti-
mation of multiple maneuvering target trajectories in clut-
ter has been evaluated. It is found that the IMMPDAF
gives a realistic confidence in the estimates during maneu-
vers and lower RSSPE during the non-maneuvering phase
of the targets. Sensitivity of the algorithm to the choice of
the tracking models and process noise covariance values

has also been evaluated. Results of fusion of data from two
sensors using IMMPDAF have been presented.

References

1. Blackman, S.S.,  "Multiple-Target Tracking with Ra-
dar Applications", Artech House Inc., 1986.

2. Yaakov Bar-Shalom and Xiao-Rong Li.,  "Multitar-
get-Multisensor Tracking", Principles and Tech-
niques, 1995.

3. Naidu, V.P.S., Girija, G. and Raol, J.R., "Evaluation
of Data Association and Fusion Algorithms for
Tracking in the Presence of Measurement Loss".
AIAA Paper No. 5733, August  2003, Austin, U.S.A.

4. Jatinder Singh and Sudesh Kashyap., "Interacting
Multiple Model Approach for Tracking Maneuver-
ing Targets", NAL, PD-FC-0205, May 2002.

Fig. 7  Estimated/fused tracks and mode probability
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