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Abstract

Tracking of multiple targets using interactive multiple model and data association filter has
been developed on PC MA TLAB. The performance of the algorithmis evaluated in terms of
estimated and measured tracks in presence of clutter, mode probability, standard deviation,
root mean square position error and with varieties of simulated scenarios. Sensitivity of the
algorithm to the choice of tracking models and process noise covariance values has been
studied. This algorithm has also been evaluated for multi sensor multi target scenario using
fusiontechnique. It wasobserved that i nter active multiplemodel probabilistic data association
filter gives a realistic confidence in the estimates during maneuvers and lower RSSPE during

the non-maneuvering phase of the targets.

I ntroduction

Target tracking comprises of estimation of the current
state of atarget based on uncertain measurements sel ected
according to acertain rule as sharing acommon origin and
calculation of the accuracy and credibility associated with
the state estimate. The problemiscomplex evenfor single
target tracking because of target model and measurement
uncertainties. The complexity of the tracking problem
increases further when multiple targets are to be tracked
from measurements of multiple sensors[1,2].

Target tracking using sensor measurements in clutter
is of interest in military applications such as radar and
sonar systems, indigenous missile testing, tracking differ-
ent hostile missiles, aircraft and helicopters. It has also
found usein nonmilitary applications such asrobotics, air
traffic control and surveillance. In practice, scenarios for
target tracking could include maneuvering targets, cross-
ing targets and splitting targets. Various algorithms are
applied to achieve target tracking in these scenarios and
the selection of the algorithms is highly application de-
pendent. In general, kinematic quantities like position,
velocity and accel eration are of interest in target tracking.
The target track is updated by correlating measurements
with the existing tracks or initiating new tracks by using
measurements coming from different sensors. Data asso-
ciation is the step to associate the measurements to the
targets with certainty when severd targets arein the same
neighborhood. In practice, measurements arriving from

the sensors may not betrue dueto clutter, falsealarms, and
interference from other targets, limited resol ution capabil -
ity (spatial coverage limitation of the sensor) and several
targets in neighborhood.

The commonly used agorithms for multi sensor multi
target (MSMT) tracking in clutter are nearest neighbor-
hood Kaman filter (NNKF), Probabilistic dataassociation
filter (PDAF), interactive multiple model PDAF
(IMMPDAF) and multiple hypothesistracking (MHT). In
this paper, the performance of IMMPDAF for estimation
of multiple maneuvering target trgjectories in clutter is
investigated. Simulated data of two maneuvering targets
in clutter tracked by single sensor are used for the evalu-
ation. Sensitivity of the IMMPDAF to the choice of the
tracking models and process noise covariance values is
evaluated. Results are presented in terms of root sum
squares position error (RSSPE), standard deviations of the
estimates and maneuvering mode probabilities. Results of
using the IMMPDAF algorithm for tracking and fusion of
simulated data of four targets whose positions are meas-
ured by two sensors located at different spatial positions
are aso presented in the paper.

Gating

Gating is a technique for eliminating unlikely obser-
vation-to-track pairings. Gates (mostly rectangular, circu-
lar or elipsoida in shape) are defined for one or more
existing tracks and if an observation satisfies the gates, it
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becomes a candidate for association with that track
(Fig.1). The region enclosed by the gate is called the
validation region. Any of the following situations may be
encountered during gating -

e More than one observation may satisfy the gate of a
single track

e Theobservation may satisfy the gates of more than one
existing tracks

e Theobservation might not ultimately be used to update
an existing track even if it falls within the validation
region. Thus it may be used to initiate a new track.

e The observation might not fall within the validation
region of any of theexisting tracks. In such acase, itis
used to initiate a new tentative track.

If z(k) is the measurement at scan k given by

z(K) = Hx(k) +v(k) D

and y=HXKk|k-1) is the predicted vaue with
Q(k | k—1) representing the predicted value of the state at
scan (k-1), thentheresidual vector (or innovation) isgiven
by

v(k) = z(k) - y(k) @)
Theresidual covariance matrix Sis given by

S=HPH' +R 3

where R is the measurement noise covariance matrix.
Assuming_the measurement vector of dimension M, a
distance d? representing the norm of theresidua vector is
defined as follows

I =v'sly (4

A correlation between the observation and track is
alowed if the distance d is less than a certain gate
threshold, i.e.,

’=vish<c ®)

The observation falling within the above-defined gate
is more likely to be from the track rather than from any
other extraneous source. A simple method to choose G is
based on chi-square distribution with M degrees of free-
dom. The distance d? is the sum of the squares of M
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independent Gaussian variables with zero means and unit
standard deviations. As such, the quadratic form of d? has
a chi-square distribution and a gate on d? can be deter-
mined using chi-square Tables[1].

For the results presented in this paper, an elipsoidal
gateisused. The parametersof theellipse (semi major and
semi minor axis length 6, and 6,) are given by the square
root of the diagonal elements of innovation covariance
matrix (for two dimensiona gate).

Data Association

In amulti-target scenario, gating provides only a part
of the solution to the problem of track maintenance and
track update. Additional logic is required when an obser-
vation falls within the gates of multiple tracks or when
multiple observationsfall within the gate of asingletrack.
Several techniquesareavailableto handle dataassociation
problem, the most popular among them being the Nearest
Neighborhood (NN) and Probabilistic Data Association
(PDA) agorithms[1]. In present work, aPDAF algorithm
is combined with IMM approach in order to track maneu-
vering targets.
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Probabilistic Data Association (PDAF)

Unlike NNKF, which considers only one of the vali-
dated measurements for data association, the PDAF ago-
rithm calculates the association probabilities for each
measurement lying in the validation region. PDAF islike
standard Kalman filter with the exception of two addi-
tional blocks for computation of association probabilities
B; (k) and combined innovationsv(k). If vj(k) corresponds
to innovation on measurement i, then the combined inno-
vation is given by

m(k)
vk =Y, B, (kv (k) (6)
i=1

where m(k) denotes the number of detectionsin kth scan.

Probability Bi(k) that the i-th validated measurement
is correct oneis given by

i=12... m(K)

B, (k)= ™

where B(K) is the probability that none of the measure-
ments are correct.

1 -1
SV (K'SK) v.(k)
27 i

In equation 7, e Ze 8

n
z

> 1-P_P
andb = [2—;‘]2 mige,! e ©

where n, is the dimension of the measurement, ¢, isthe
volume of the unit hypersphere of this dimension
(¢;=2,¢,=m, C3=4n/3, etc) and P and P, represent
the gate probability and probability of target detection,
respectively. The computed 3;(k) and v(k) are then used
to estimate the state and covariance of the updated state.
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Since, PDAF uses dl the measurements falling in the
validation region for data association, it is also caled an
"al-neighbors modified filter". There are less chances of
track loss with PDAF than with NNKF.

Interacting Multiple Model (IMM PDAF)

Interactive Multiple Model (IMM) [2,4] is an ex-
tremely versatile tool for adaptive state estimation in sys-
tems whose behavior changes with time. This approach
assumes that the system obeys one of a finite number of
models. Two or moremodelsare run in concurrence (only
in case of parallel computer implementation) to achieve
better tracking performance of maneuvering targets. The
features of IMM are combined with PDAF described
above to develop the IMMPDAF agorithm, which is
described below.

Figure 1illustrates onecycle of a2-model IMMPDAF
algorithm, whichisapplicableto single sensor multi target
scenario. Thiscould be extended to multi sensor scenarios
as well. Fig.2 shows the block schematic of the MSMT
fusion algorithm. TheIMMPDAF a gorithm has six major

steps:

Automatic track formation:

The main objective of track initiation is to calculate
initial state estimates of all possible tracks and compute
the associated state covariance matrix. In practice, thereis
every possibility of generating false tracks due to the
presence of spurious measurements and multiple targets.

Inftialize variables
FILE pointars
Mamory allocation
Sensor location

For each y
sensor ¢

Fig. 2 Block schematic - MSMT fusion
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A commonly used techniqueto initiate track is based on a
logic that requires M detections out of N scansin the gate.
In this approach, a tentative track is formed on al two-
measurement pairs with expected motions of targets of
interest.

Gating and data association:

After the track formation, measurement screening is
carried out using egs. 2-5 to get potentia candidates for
corresponding tracks. The combined innovation sequence
v is computed using egs. 6-9. The resultant measurement,
used in mode conditioned filtering, is computed using:

Z(k) = HX (k/K — 1) + V(K) (10)

where, X (k/k — 1) ispredicted target states at k" scanand
is computed from state and covariance prediction block
(seeFig.1-L6).

Interaction and mixing (L1 and L 2):

Using the mixing probabilities p; (k—1k—1) as
weighting factors, the estimates of Qi (k-1k-1) and
ﬁi (k — 1]k — 1) from the previous cycle are used to obtain
the initid  conditions Rg(k-1k-1) and
Py (k — 1k — 1) for the mode-matched filters M ; and M,
of the current cycle (See Fig.1)

Forali,je M, theinitia conditionsfor thefiltersare
given by
N r N
X (K= 1k =1)= Y X (k=1k-1) py; (k= 1k -1)
i=1
(11)
Py (K-1]K-1)

Pk-1l k-1+
r
Y [{Ski(k—ll k—1)—$koj(k—1l k—1)ix ui|j(k—l| k- 1)

= Rk-1l k==& k-1l k-] ]
(12)

where thetimeindex isgiven by k ; mode-matched filters
j=1,...,r;moddsi=1, .., r;r =2 for the2-model IMM
approach; R, (k|k) and P; (k|K) are the state estimate and
covariance in mode i; and QOJ- (k|K) and POj (k|K) are the
mixed initial conditions for filter j at timek.

VOL.58, No.1

M ode conditioned filtering (L3 and L4) :

With r parallel mode-matched Kalman Filters (r = 2
for 2-model IMM), the states and covariances are esti-
mated using the standard prediction and update steps.

)lzj(k|k—1)= Fj(k—1)>A<Oj(k—1|k—1)
+G, (k=D w, (k-1)
Pklk-D=F (k-1 Pyk-1]k-1) F k-1

+Gj(k—1)Qj(k—1)Gj(k—1)T

>A<J.(k|k)= )Qj(k|k—l)+Kj(k)vj(k)

P.(Ik) = P (k|k=1) = K (K)S; K)K (k)
(13)

If the measurement at time kis given Z(k), the meas-
urement prediction 2j (k | k—1) isgiven by the relation

%j(k|k—1)=Hj(k)),2j(k|k—1) (14)

The residual vj(k), residua covariance §(k) and the
filter gain Kj(k) in eq. 13 are given by

v].(k)=Z(k)—2j(k|k—1)
s, (k)=Hj(k)Pj(k|k—l)Hj(k)T +R,(

Kj(k)=P].(k|k—l)Hj(k)TSj(k)_1 (15)

Thestructure of the system given by F and H matrices,
and the process and measurement noise covariance matri-
cesgiven by Q and R, can differ from mode to mode.

Thelikelihood function for mode-matched filter j isa
Gaussian density function of residual vwith zero mean and
covariance S. It is computed as follows

T -1
A (K= 1 — RAVOEGRIO!
S®I (2w

(16)

where n denotes the dimension of the measurement
vector Z.
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Praobability Evaluations:

The mixing probabilities to be used in egs. 11 and 12
are computed as follows:

My (k=1k=1) = %pij K, (k-1) (1n
]
where,
"
i=1

u;(k) is the mode probability at timek and C, isanormali-
zation factor. p;; is the Markov transition probability
which takes care of switching from modei to modej. This
is a design parameter and is chosen by the user. The
switching probabilities are generally known to depend
upon sojourn time. For example, consider the following
Markov chain transition matrix between the two modes of
theIMM

b _[09 01
ij ~[0.33 0.67

The basis for selecting p1» = 0.1is that, in the initial
stages, the target islikely to bein non-maneuvering mode
and probability to switch over to maneuvering mode will
be relatively low. On the other hand, po is selected based
on the number of sampling periodsfor which thetarget is
expected to maneuver (sojourn time). If the target maneu-
ver lasts for 3 sample periods (t = 3), the probability po,
isgiven by

1
pp=1-2=067 (19)

Tocomputey (k|k) and ¢ inegs. 17 and 18in thefirst
cycle of estimation agorithm, the initiadl mode prob-
abilitiesp;(k) corresponding to non-maneuver and maneu-
ver mode can be taken as 0.9 and 0.1, respectively. This
selection is based on the assumption that thetarget ismore
likely to be in non- maneuver mode than in maneuver
mode during the initial stages of target motion. For sub-
sequent computations, the mode probabilities are updated
using the following relation

1 — .
pj(k)=EAj(k)cj j=1..r (20
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where A:(k) represents the likelihood function corre-
sponding to filter j (see eg. 16) and the normalizing factor
cisgiven by

c=)y A () EJ (21)

=1

Combined state and covariance prediction/
estimation (L6and L7) :

Prediction (L 6) : Theaverage mode probabilities obtained
in eg. 20 are used as weighting factors to combine the
predicted the state and covariance (L 5) from eqg. 22, for all
filters (j = 1, ..., r), to obtain overall state estimate and
covariance prediction (used in gating).

>~(J.(k+ 1 =F K& &l K
P (k+1] W =F, (P, k)FJ.(k)T+

GROQMGM': =11 (22)

r
Xk+1l =3 X (k+ 1l K (K
j=1
r

E>(|<+JJk)=z[E>j (k+|k)+{>~<j (k +JJk)—>*<(k)+JJk)}

j=1

- _ T
{xj (k+ 1] =X (k+ 1] k)} T ) 23)

Estimate (L7) : The average mode probabilities obtained
ineq. 20 are a'so used asweighting factorsto combine the
updated state and covariance from eq. 13, for al filters
( =1, ..., r), to obtain overall state estimate and covari-
ance.

r

Xkl =Y Skj Kl ®

=1

r
Pkllg =Y, [P, (kl k)+{$kj Kl -%k®l 9]

=1

Rl =Kl k)}T] m K 24)
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Data Simulation

Data of multiple maneuvering targets in clutter are
simulated using PC MATLAB. Thetarget motionissimu-
lated using a2" order constant vel ocity model during the
non-maneuvering phase of the target motion and a 3d
order constant accel eration model during the maneuvering
phase of the target.

The target motion model is described in the Cartesian
coordinate system by linear discrete-time difference equa-
tion with additive noise:

X (k+1) = FX(K) + Gw(k) (25)
Z(K) = HX(K) + v(K) (26)

where the Cartesian state vector X consists of the position
and velocity of the target moving in 2D space
(i.e. X=[x X y y] when the target is in non-maneu-
veringphaseand X =[x X X y y V] whenthetarget
is maneuvering. The process noise w and measurement
noise v are assumed to be white and zero mean with
covariance Q and R respectively.

Constant Velocity Model (M odel1)

The 2™ order kinematic model, with position and
velocity components in each of the two Cartesian coordi-
nates X and y. has the following transition and process
noise gain matrices.

J

1 T 0 0 0 O
O 1 0 0 0 O
c_[0 0o 0o 0o 0 0
0O 0 0 1 T 0
O 0 0 0 1 0
0o 0o 0 0 0 o0
122 0
T 0
o @
o T
L O 0 .

Note that the acceleration component in the above
model, though identically equal to zero, has been retained
for compatibility with the 39 order model to be discussed
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next. In eg. 27 the variations in velocity are modeled as
zero-mean white noise accel erations. Low noise variance
Qq isused with themode! to represent the constant course
and speed of the target in a non-maneuvering mode. The
process noise intensity in each coordinate is generaly
assumed to be equal

(28)

2 2
Ql=csx=csy

Constant Acceleration Model (Model 2)

The 3" order model , with position, velocity and accel -
eration components in each of the two Cartesian coordi-
nates X and y, has the following transition and process
noise gain matrices.

1 T T%2 0 0 0
o1 T 0 0 0
oo 1 0 0o o0
- 2
o0 o0 1 T T%2
o o o o 1 T
o 0o 0o 0o 0o 1|
T2/2 0
T 0
e * O (29)
0 T2
o T
L O 1 .

The acceleration increments over a sampling period
are adiscrete time zero-mean white noise. A low value of
process noise variance Q, (but relatively higher than Q)
will yield nearly aconstant accel eration motion. Thenoise
variances in each coordinate are assumed to be equal

Q=0y=0 (30

The following are the components of the target data
simulation scenario :

a. Data Simulation for Single Sensor

e Number of targets = 2

e Targetinitial states-

Target1:[x x Xy y ¥]=[05 0 100 5 0]
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Target2:[x X X y ¥ ¥]=[ 1200 5 0 — 1200 5 0]

e SamplingtimeT =1 sec

o Fasealarm density = 1.0e-005

¢ Measurement noise convariance R = 25

e Process noise covariance (for model 1) Q1 =0.1
o Process noise covariance (for model 2) Q2=0.1
e Number of data points N=150

e Maneuvering injectiontimeand magnitude of injection
for two targets

Target | Maneuvering Maneuvering magnitude
No. time (in sec.) (m/sec 2)
Start end X-axis | y-axis | z-axis
30 50 1g -1g 0
70 100 1g -1g 0
2 50 80 -1g 1g 0

b. Datasimulation for Multiple Sensors

e Number of sensors= 2
e Sensor locations -

Sensor 1 location : [0, O, O]
Sensor 2 location : [1000, 1000, Q]

e Number of targets = 3 sensor 1 and 3 for sensor 2
e Target initial states -

Target1:[x XXy y ¥]=[05 0100 5 0]
Target2:[x X X y y y]=[1200 5 0 —1200 5 0]
Target3:[x X X y y y]=[1200 5 0 —1200 5 0]
Target4:[x x X y y y]=[1200 5 0 —1200 5 0]

e SamplingtimeT =1 sec

e Falsealarm density = 1.0e-007

e Measurement noise covariance R=5

o Process noise covariance (for model 1) Q1 =0.01
e Process noise covariance (for model 2) Q2 =0.01
e Number of data points N = 100

e Target 1 maneuverswith 1g acceleration from 40to 50
sec while there is no acceleration in the other three
targets
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Results and Discussions
Single Sensor and Multiple Targets

The performance of the tracking filters are sensitiveto
the process noise covariance (Q) It is known that conven-
tional Kalman filter with aconstant velocity model can be
used for tracking maneuvering targetsif ahigher value of
Q is used during maneuver phase. However, during non-
maneuver phase higher Q results in degraded perform-
ance. If alower Qisused for tracking maneuvering targets,
during maneuver phase there could be filter divergence
and track loss due to thefilter being unable to account for
the maneuver. In order to bring out this, the sensitivity of
the three association agorithms to the choice of Q values
and modelsis evaluated by considering thefollowing two
combinations of models and Q values.

Table-1: Combination of Q valuesfor sensitivity
study (IMMPDAF

Combinations Q1 Q2
Casel Low High
Case 2 Low Low

The constant parameters used in each tracking ago-
rithm are:
e Probability of detection Pp = 0.99
¢ Gate probability Pg = 0.99998
e Gatethreshold G = 25
e Sojourn timet = 15 seconds
¢ Onset model probability Py, = 0.12

30000

20000 e targett +* .

10000

20 0 20 40 60 80 100 120 140 160
scans
Fig. 3 Truetrjectoriesin clutter
(Target - 1 turns twice and target - 2 turn once)
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Evaluation of IMMPDAF

Figure 3 showsthe simulated x-position dataof thetwo
maneuvering targets in clutter. The performance of ago-
rithm is tested under the two conditions of Q in terms of
i) estimated and true x-position in clutter, ii) estimated
standard deviations (Gy_pqs), and (iii) RSSPE defined by

RSSPE=V (x - R+ (- 3 -D”

where x;, y;, z are the true target position and X.9,2are
the estimated target position.

For case 1, process noise covariance for model1 and
model 2 iskept at 0.1 and 30 respectively whereasfor case
2 process noise covariance vaues of 0.1 and 2 are used.
Fig.4-5 show the performance comparison for case 1 and
case 2 in terms of estimated and measured tracks with
clutter, mode probability of tracks, 6y_pos and RSSPE. It

is clear that the tracking performance for both the combi-
nations of Q are good. The mode probability clearly indi-
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cates the switching from the non-maneuver to the maneu-
ver mode. The 6_posshowsahigher value during maneu-
ver reflecting the correct situation (i.e. the filter is
adaptively tracking the target which maneuvering). The
results of case 2 show a delay in maneuver detection as
compared to case 1 and aso RSSPE is higher than that of
case 1.

Fusion of Data from Multiple Sensors

Dataof four targets seen by two sensorsarefused using
the IMMPDAF/case 1 agorithm. The data from each of
the sensors are used to initiate tracks using the first two
scans of measurements. Thetracksare updated after meas-
urement-to-track association with the valid measurements
using IMMPDAF/case 1 algorithm. A state vector fusion
algorithm is used to fuse the confirmed tracks after each
scan. It is necessary to transform the data to a common
reference point before fusion. Track-to-track association
is used for combining similar tracks to avoid redundant
tracks.
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——a— gstimated - target1 -

30000 4 —o— sastimated - target2 - IMMPDAF1
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(Q1=0.1, Q2= 30)
(NMM - non-maneuver mode, MM - maneuver mode)

Fig. 4 Performance evaluation results- IMMPDAF (Case 1)
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Fig. 6 Measurements from sensor -1 and sensor -2
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Fig. 7 Estimated/fused tracks and mode probability

In the present simulated scenario among four targets,
three targets are seen by both the sensors. Fig.6 shows
measurements for sensorl and sensor 2. The estimated
tracks and mode probability are shown in Fig.7. As ex-
pected, four targets are seen from the estimated positions
after combining similar tracks using track-to-track fusion.
From the mode probability of al tracks, it can be con-
cluded that the event of target maneuvering is noticed in
track-1 only.

Concluding Remarks

In this paper the performance of IMMPDAF for esti-
mation of multiple maneuvering target trajectoriesin clut-
ter has been evaluated. It is found that the IMMPDAF
givesaredlistic confidencein the estimates during maneu-
vers and lower RSSPE during the non-maneuvering phase
of thetargets. Sensitivity of the algorithm to the choice of
the tracking models and process noise covariance values

has al so been evaluated. Results of fusion of datafromtwo
sensors using IMMPDAF have been presented.
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