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Abstract

In the early developments for automation of photoelasticity several researchers have proposed
phase shifting techniques (PST) with different optical arrangements. Several ways of calcu-
lating the isoclinic and isochromatic parameters were also reported. In many cases though
the optical arrangements were different, the intensity equations remained the same. Although
theoretically, each of the techniques provide the evaluation of isoclinics and isochromatics,
when applied to experimental images only some of the techniques remain robust. This indicates
that specific optical arrangements do play a very important role on the success of the phase
shifting technique experimentally. One of the main sources of error is due to the mismatch of
quarter wave plate. In this paper, the role of quarter wave plates in influencing the selection
of appropriate optical arrangement for PST is studied systematically. Different possibilities
of obtaining the photoelastic parameters with least error are explored.

Notations

Introduction 

Automation of the extraction of isoclinic and isochro-
matic data over the whole domain of the model was not
possible till the advent of PC-based digital image process-
ing hardware, which can record intensity data at video
rates. Several techniques for automating this were pro-
posed by various researchers [1]. Phase shifting technique
(PST) is one of the widely used techniques for determining
the isoclinic and isochromatic parameter at every point in
the model. In phase shifting techniques, the phase-shifted
images are recorded by changing the orientations of the
various optical elements of the polariscope. 
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Ii = Intensity of light transmitted for arbitrary 
    positions of optical elements in a polariscope

Ia = Light intensity accounting for the amplitude
   of light vector and the proportionality for 
   circular and plane polariscope arrangements
    respectively.

Ib = Background light intensity for circular and 
     plane polariscope arrangements respectively.

I′i−jL ⁄ R= ith equation of Table 1, jth equation in the
   table of intensity equations including quarter
   wave plate error and L or R  indicates the
   handedness of the input light.

K = Amplitude of incident light vector

keiωt = Incident light vector

β = Orientation of analyzer axis w.r.t. x-axis

δ = Fractional retardation in radians introduced
   by the model

δc = Calculated value of fractional retardation 
   in radians

δ′c = Calculated value of fractional retardation in 
    radians considering quarter wave plate error 

ε = Quarter wave plate error

λref = Wavelength of light for which the quarter 
    wave plate introduces the retardation of 
     π/2 radians

λ = Actual wavelength of light used

θ = Orientation of principal stress direction 
    w.r.t. x-axis

θc = Calculated value of isoclinic parameter
    w.r.t. x-axis

θ′c = Calculated value of isoclinic parameter 
    w.r.t. x-axis considering quarter wave plate
    error

ξ = Orientation of the I quarter wave plate axis 
    w.r.t. x-axis

η = Orientation of the II quarter wave plate axis 
    w.r.t. x-axis



Hecker and Morche [2] introduced the concept of
phase shifting to photoelasticity for the determination of
isochromatic parameter over the whole domain of the
model. Extending the work of Hecker and Morche, Patter-
son and Wang [3] proposed a six step phase-shifting
technique for the determination of both isoclinic and iso-
chromatic parameters. Later, Ajovalasit et al. [4] proposed
a six step phase-shifting algorithm which uses left and
right circularly polarized lights to minimize the effect of
quarter wave plate error on isoclinic and isochromatic
parameter calculation. A limited study on the role of
quarter wave plates on the performance of various algo-
rithms proposed by Ajovalasit and his group has been
reported [4]. However, a comprehensive study of role of
quarter wave plate mismatch on the performance of algo-
rithms proposed by various researchers is desirable. 

One of the issues in digital photoelasticity is to reduce
the number of images used for the calculation of the
photoelastic parameters. Several four step methods have
been reported in the literature [4-7]. Among the available
four step methods, the one that performs better experimen-
tally needs to be selected. A need thus exists to study the
performance of the available four-step phase shifting tech-
niques considering the quarter wave plate error. In this
paper, a systematic study has been carried out on the role
of quarter wave plate error on the performance of various
six step and four step phase-shifting techniques. 

Phase Shifting Techniques Based on
Circular Polariscope

In phase shifting techniques, one attempts to evaluate
the isoclinic and isochromatic parameters by processing
the intensity information obtained from a generic circular
polariscope as shown in Fig.1. The intensity of light
transmitted through the generic arrangement of a circular
polariscope with ξ = 135° can be represented as 
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where ξ, η and β represent the orientations of the first
quarter wave plate, the second quarter wave plate and the
analyzer respectively. The choice of appropriate set of
intensity equations to evaluate the photoelastic parameters
has been the study by several researchers and various
researchers have come up with different optical combina-
tions to get relevant intensity data. Table 1 gives the
optical arrangements used in a six step algorithm [3]. From

the equations listed in Table 1, the isoclinic parameter is
obtained as
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The isochromatic parameter is calculated as 
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However, the evaluation of isochromatic parameter
using Eqs. (3) and (4) is inconvenient to use and a new
equation to provide high modulation was proposed by
Quiroga et. al [8] as 
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The first two intensity equations of Table 1 correspond
to bright and dark field arrangements used in conventional
photoelasticity. However, the specific optical arrange-

Fig. 1. Generic arrangement of a circular polariscope
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ments shown in Table 1 for these are not the ones popu-
larly in use in conventional photoelasticity. Ajovalasit et.
al [4] proposed a new set of optical arrangements in which
the first two are the popular conventional polariscope
arrangements and also modified the last two arrangements

of Table 1. These are shown in Table 2. In the last two
arrangements, the input quarter wave plate orientation is
changed from 3π ⁄ 4 to π ⁄ 4 which made the input light to
change from left circular to right circular. The isoclinic
and isochromatic parameters can be obtained from Eqs.
(2) and (5) respectively.

In the early developments of phase shifting techniques,
the researchers have proposed several optical arrange-
ments. Though they looked different at first sight, they
were yielding one of the equations reported in Table 1.
Ramesh [1] reported that there could be multiple optical
arrangements from which the intensity equations given in
Table 1 can be obtained. The multiple optical arrange-
ments with left circularly polarised light are given in Table
3. It is instructive to note that with left circularly polarized
light (ξ = 3π/4), I1 can be obtained by 6 arrangements, I2
can be obtained by 6 arrangements, I3 can be obtained by
6 arrangements, I4 can be obtained by 2 arrangements, I5
can be obtained by 3 arrangements and I6 can be obtained
by 2 arrangements. If the incident light is right circularly
polarised, the various multiple optical arrangements are
summarized in Table 4. 

Intensity Equations Including
Quarter Wave Plate Error

One of the commonest problems in photoelastic analy-
sis is the mismatch of quarter wave plate. Its influence on
the experimental performance of phase shifting algo-
rithms can be understood if the intensity equations listed
in Tables 1 and 2 are re-derived considering the quarter
wave plate error. 

Quarter wave plates used for generating circularly
polarized light introduce a retardation of π ⁄ 2 only when
used with a light of reference wavelength λref. When used

with light of any other wavelength (λ) than the reference
wavelength (λref), quarter wave plates introduce a retarda-

tion of π ⁄ 2 + ε instead of π ⁄ 2, where quarter wave plate
error (ε ) is defined as
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π
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The Jones matrix representation of a quarter wave
plate with a quarter wave plate error of ε oriented at an
arbitrary angle θ is given by [9]

Table 1: Optical arrangements for a six step phase
shifting technique

Table 2: Optical arrangements for the phase shifting
technique proposed by Ajovalasit et. al

Table 3: Multiple optical arrangements for obtain-
ing intensity equations listed in Table 1 by left circu-
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The intensity of the light transmitted by the optical
system can be obtained as

I  =  Eβ Eβ
∗

(9)

where Eβ
∗ is the complex conjugate of Eβ

∗.

Tables 5 and 6 give the intensity equations including
quarter wave plate error for the multiple optical arrange-
ments corresponding to intensity equation I1 listed in
Tables 3 and 4 respectively. The intensity of light trans-
mitted is obtained by the symbolic computational software
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The components of the light vector along the analyzer axis (Eβ) and perpendicular to the analyzer axis (Eβ + π ⁄ 2) of the

generic circular polariscope can be obtained as
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Table 4: Multiple optical arrangements for
obtaining intensity equations listed in Table 1 

by right circularly polarized ( ξ = 3 π ⁄ 4)
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Maple. The intensity equation I′i−jL ⁄ R corresponds to ith

image of Table 1, jth optical arrangement to get this
intensity equation (Table 3) with L or R indicating the
handedness of the input light.

The intensity equation I1 is the bright field arrange-
ment in conventional photoelasticity. In the presence of

quarter wave plate mismatch not all the arrangements
yield the same value of the intensity of light transmitted.
The multiple optical arrangements mentioned in Tables 5
and 6 can be segregated into three categories namely the
optical arrangements with quarter wave plates crossed,
quarter wave plates parallel and others in which the quarter
wave plates are neither crossed nor parallel. The individual
relative orientations of the elements do play a role and this

Table 5: Intensity equations including quarter wave plate error corresponding to multiple optical arrangements
for obtaining I 1 using left circularly polarized light listed in Table 3
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is brought out in Tables 5 and 6. Thus from the experimen-
tal standpoint, one needs to select those optical combina-
tions that yield the least error in the presence of quarter
wave plate mismatch. 

Inspection of Tables 5 and 6 shows that in the presence
of quarter wave plate mismatch, intensity of light trans-
mitted is also a function of ε. Intensity equations corre-

sponding to optical arrangements with quarter wave plates
crossed are identical for both right circularly (ξ = 3 π ⁄ 4)
and left circularly (ξ = π ⁄ 4) polarized lights. However, the
intensity equations for parallel and other optical arrange-
ments differ when the input light handedness is changed.
The sinε term in these equations gets changed to -sinε
when the input light is changed. 

Table 6: Intensity equations including quarter wave plate error corresponding to multiple optical arrangements
for obtaining I 1 using right circularly polarized light listed in Table 4
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Since the equations are quite complex, the relative
behaviour of the equations could be understood by plot-
ting a graph of % error in intensity equation defined by 

% Error in Intensity = 
I
Q

 − I
i

I
i

 × 100 (10)

where Ii is the intensity of light transmitted in the absence
of quarter wave plate error and IQ is considering the
quarter wave plate error. These plots are obtained for
ε = − 9° [4] and δ varying from 0 to 2π  with θ as parameter
for θ = 0°, 22.5°and 45°.  Figs. 2a to 2h give the plot of
error in intensity for the case of bright field. 

Fig. 2. Influence of quarter wave plate mismatch (ε = − 9°) on the intensity of light transmitted for various optical arrangements for a
left circularly polarized light (ξ = 3π ⁄ 4) in Table 5 and right circularly polarized light (ξ = π ⁄ 4) in Table 6 as a function of δ with θ

as parameter, which would have given the same intensity equations as I1 in Table 1
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The intensity equation I2 is the conventional dark field
arrangement. Here again in the presence of quarter wave
plate mismatch, the intensity equations could be grouped
into three groups. Figures 3a to 3h give the plots of error
in intensity for the case of dark field for the two incident
light conditions. From Figs. 2 and 3, it is clear that the error
in intensity is minimum for crossed quarter wave plates
and maximum for the parallel arrangements for both bright

field (I1) and dark field (I2) and reconfirms the wisdom of
using crossed quarter wave plates in conventional photoe-
lasticity. 

The same study is extended to the rest of the optical
arrangements corresponding to the intensity equations I3,
I4, I5 and I6 of Table 1.  Surprisingly, for intensity equa-
tions I3 to I6 all the multiple optical arrangements of

Fig. 3. Influence of quarter wave plate mismatch (ε = − 9°) on the intensity of light transmitted for various optical arrangements for a
left circularly polarized light  (ξ = 3π ⁄ 4) in Table 3 and right circularly polarised light (ξ = π ⁄ 4) in Table 4 as a function of δ with θ

as parameter, which would have given the same intensity equations as I2 in Table 1
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Tables 3 and 4 yield the same intensity equation in the
presence of quarter wave plate mismatch. However, when
the input handedness is changed its behaviour is similar to
I1 and I2 viz., the term sinε gets changed to -sinε. These
are summarised in Table 7.

Selection of Intensity Equations to Reduce the
Influence of Quarter Wave Plate Error on

Photoelastic Parameters Evaluation

Table 8 gives the intensity equations including quarter
wave plate error corresponding to the optical arrange-
ments given in Table 1. The equations for θc and δc can

be recast to get the values of θ′c and δ′c in the presence of

quarter wave plate error.
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By substituting the intensity equations of Table 8 in
Eq. (11) and Eq. (12), they get simplified to
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Table 7: Intensity equations including quarter wave plate error corresponding to multiple optical arrangements
given in Tables 3 and 4 for obtaining intensity equations I3 to I6 in Table 1

Table 8: Intensity equations including quarter wave plate error corresponding to the
optical arrangements listed in Table 1
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For θ′c to represent isoclinic parameter, its expression

should be a function of only θ at δ ≠ 0, π, 2π… as in Eq.
(2). For δ′c to represent isochromatic parameter, its ex-

pression should be a function of only δ as in Eq. (5). But
Eq. (13) is a function of θ, δ and ε and Eq. (14) is a function
of θ′c, θ, δ and ε. Thus, the θ′c and δ′c obtained from Eq.

(11) and Eq. (12) are not representing the isoclinic or
isochromatic parameter correctly. In other words if the
values of θ′c or δ′c are used for further analysis they

represent these parameters with error.

It is seen in the previous section that the error in
intensities in the case of bright field and dark field is
minimum only when the quarter wave plates are crossed.
When the light is changed from right circularly polarized
to left circularly polarized, the error in the intensity of light
transmitted gets negated for the equations I3 to I6. To
eliminate or minimize the effect of quarter wave plate error
in the evaluation of isoclinic and isochromatic parameters,
the intensity equations should be selected such that the
intensity equations corresponding to both left and right
circularly polarized lights are judiciously used. 

The possible combinations of intensity equations to
get θ′c and δ′c with minimum error are given in Table 9.

Table 10 gives the equations for isoclinic and isochromatic
parameters including quarter wave plate error for the
combinations listed in Table 9. It is interesting to note that
the fifth combination of intensity equations given in Table
9 corresponds to the six-step algorithm proposed by
Ajovalasit et. al [4]. The expressions for θ′c and δ′c for the

six cases mentioned in Table 10 are
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Unlike Eq. (13) Eq. (15) is a function of only θ when
sinδ ≠ 0. Hence it represents the isoclinic parameter (θc).

But Eq. (16) is a function of θ, δ and ε. Hence, similar to
δ′c obtained by Eq. (12), δ′c obtained from Eq. (14)

represents the isochromatic parameter with error. The plot
of error (δ′c − δ) ⁄ 2π due to quarter wave plate mismatch

for the cases of Eq. (14) and Eq. (16) is shown in Fig. 4.

Table 9: Combinations of intensity equations including quarter wave plate error that gives θ′c and δ′c 
with minimum error as in Eqs. (15) and Eq. (16)
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Four Step Phase-Shifting Techniques

One of the issues in phase shifting techniques is to
minimize the number of images required for the evaluation
of photoelastic parameters. Since there are four unknowns
(Ib, Ia, θ and δ), a minimum of four images are required.

Several four step methods have been reported in the litera-
ture [4-7]. Table 11 gives the optical arrangements along
with the corresponding intensity equations including quar-
ter wave plate error for Ajovalasit et. al 4-step, Asundi et.
al 4-step, Barone et. al 4-step and Patterson et. al 4-step
phase shifting techniques. Since the available four step
methods use different combination of optical arrange-
ments, the one that performs better in the presence of
quarter wave plate mismatch needs to be selected. It is also
to be kept in mind that the selected method is amenable
for simultaneous recording of four phase shifted images.

Although the methodology of evaluation of isoclinic
data is straight forward, in isochromatic parameter evalu-
ation the proponents of four step methods did not take care
of the issue of modulation as it was done in six step
methods. Extending the methodology adopted for six step
methods to four step methods, the equations are recast in
this study to have high modulation over the field and is
summarized in Table 12. The expressions for isoclinic
parameter in the presence of quarter wave plate mismatch
are given in Table 13. The Table shows that the algorithms
of Ajovalasit et. al, Barone et. al and Patterson and Wang
give same expression for isoclinic evaluation. The expres-
sion for evaluation of isoclinic parameter by Asundi’s
algorithm is different. However, by looking at the graphs
in Fig. 5, it is seen that these set of algorithms give isoclinic
values that are quite different from the actual values. In
summary, the algorithms cannot be classified on the basis
of isoclinic evaluation. Table 14 gives the simplified ex-

Fig. 4. Error in isochromatic parameter (δ′c ⁄ δ) ⁄ 2π for six step phase shifting techniques
(a) Ajovalasit six step algorithm (b) Patterson six step algorithm

Fig. 5. Plot of variation of θ′c  with δ  for various Four Step Algorithms with θ as parameter. (a) variation of θ′c  for Ajovalasit,

Barone and Patterson four step algorithm. (b) Variation of θ′c  for Asundi four step algorithm
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pression for isochromatic parameter including quarter
wave plate error (δ′) in terms of ε, δ and θ. Figure 6 shows
the variation of error [(δ′ − δ) ⁄ 2π] in isochromatic pa-
rameter as a function of retardation (δ) introduced by the
model with θ as parameter. The error [(δ′ − δ) ⁄ 2π] varies
as a function of δ and θ. To compare the four step algo-
rithms in an overall sense, the RMS of the error
[(δ′ − δ) ⁄ 2π] for δ = 0 to 2π for  different values of θ is
plotted as shown in Fig. 7. From Fig. 7 it is clear that RMS
error of isochromatic parameter by Barone et. al and
Patterson and Wang  four step methods are higher than the
four step algorithm of Ajovalasit et. al. On the other hand,
the RMS error by Asundi’s algorithm in the region
θ = 0° to 7.5° and θ = 30° to 45° is lower  than that of
Ajovalasit et. al’s algor ithm, but is much higher in the
region θ = 7.5° to 30°. Since input quarter wave plate has
to be kept at different orientation to record four phase
shifted images in the algorithm of Asundi, the methodol-

ogy is not quite convenient to device a hardware for
recording four phase shifted images simultaneously. On
the other hand, in the algorithm of Ajovalasit et. al the
orientation of input quarter wave plate is not altered and
hence it is amenable for devising  a hardware to record
four images simultaneously.

Conclusion 

Equations including quarter wave plate error for the
intensity of light transmitted in a generic circular polaris-
cope for all the multiple optical arrangements are derived.
The influence of quarter wave plate error on the selection
of appropriate optical arrangements for phase shifting
techniques is studied. Various possibilities of obtaining
the isoclinic and isochromatic parameter by six step algo-
rithm with least error in the presence of quarter wave plate
mismatch are explored. The available four step methods
are analyzed based on their performance in the presence

Table 10: Equations for isoclinic parameter θ′c and isochromatic parameter δ′c  for combinations of intensity
equations mentioned in Table 9
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Table 11:  Intensity equations for various four step phase shifting algorithms considering quarter wave plate

129 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL. 58, No. 2



Fig. 6. Plot of error in isochromatic parameter (δ′c ⁄ δ) ⁄ 2π due to quarter wave plate error (ε = − 9°)  for various Four Step

Algorithm with θ as parameter. (a) for θ = 0°, (b) θ = 10°, (c) θ = 22.5°,  (d ) θ = 30°,  (e)  θ = 40°,  (f)  θ = 45°

Table 12: Equations for isochromatic parameter in Table 13 recast to get high modulation over the whole field
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Table 13: Simplified forms of isoclinic parameter for various four step algorithms

Table 14:  Simplified forms of isochromatic parameter  for various four step algorithms
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of quarter wave plate error. The four step methodology of
Ajovalasit et. al is amenable for devising a hardware to
record four phase shifted images simultaneously. The
error in isochromatic parameter evaluation by this four
step method is smaller than the methods by Patterson and
Wang and Barone et. al and is comparable to the Asundi
four step method.
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