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Abstract

A globally and locally reliable strain recovery based a-posteriori error estimator for laminated
composite plates is proposed in this study. An extensive check of the local and global quality
of the proposed error estimator is carried out for the bending problem. Effect of material
orientation, ply stacking sequence, boundary condition and loading profile is carried out for
a square plate. It is found that this estimator is reliable for almost all the cases, and even
predicts errors for the preasymptotic range reliably.
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Nomenclature

d = plate thickness
p = approximation order
u = generalized displacement field
x,y,z = generalized coordinates 
NEL = number of elements
NLAY = number of layers in laminate
U = strain energy
ε = strain vector
ε∗ = recovered strain vector
σ = stress vector
τ = element of interest
ητ = element error indicator for element τ
ξΩ = global error indicator
ω = local region
Ω = global region 

Introduction

Laminated composite plates are fast replacing metal
alloys in most light transport vehicles. Increasingly, many
aerospace and high speed rail components are being fab-
ricated with composites. As the use of these materials
grows, the need for refined analysis tools for composite
structures assumes more importance. Several higher order
plate models have been proposed in the literature (see
[1-2] and references therein). In order to obtain local and
global response quantities (e.g. first ply failure load, point
of delamination, stress concentration at cut-outs, buckling

load, etc.) a detailed finite element analysis of the lami-
nated plate is required. In order to assure the reliability of
the response quantities obtained from the finite element
analysis, an adaptive analysis is required such that the
discretisation error is controlled within acceptable toler-
ances. The adaptive analysis is driven by an a-posteriori
error estimator. Several error estimators have been pro-
posed in the literature (see [3-13] and references therein)
for either the steady-state heat conduction, planar elastic-
ity or Stokes problems. For laminated composite plates,
not much has been reported in the literature (see [14] for
an example).

Several possible projection based a-posteriori error
estimators have been proposed in [15]. One of the possible
projection proposed was based on strain recovery. In this
paper, we define and study in detail the strain recovery
based a-posteriori error estimator, as this estimator proved
to be the most reliable of all the estimators proposed in
[15]. The goal of the study is to present a reliable a-poste-
riori error estimator for laminated composite plates, with
a further aim to make the definition of the estimator model
independent. The estimator will be subjected to a series of
tests, to ensure both local and global quality for a wide
class of boundary conditions, material orientation and ply
stacking sequences. An effort will be made to clearly bring
out the effect of each factor contributing to the quality of
the proposed error estimator. Further, the study will also
bring out the effect of locking (of the plate, model) on the
local quality of this error estimator.
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Model Problem

As the model problem we consider a laminated com-
posite plate with the following higher order displacement
field in terms of the thickness variables z (see [1]) :
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The higher order plate theory given by Eqn.(1), is one
of the many proposed in the literature. We are taking this
model in order to elucidate various principles associated
with the design of strain-recovery based error estimators.

The laminate is made by stacking laminae with given
material properties, orientation and ply thickness. For a
given lamina ‘l’, the generalised Hooke’s law (see [16-
17]) gives :
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is the enginering stress vector for the lth lamina; 

ε
l
(u) = 


εxx
( l )

(u) , εyy
( l )

(u) , εzz
( l )

(u) , γyz
( l )

(u) , γxz
( l )

(u) , γxy
( l )
(u)



T

is the engineering  strain vector for the lth lamina; Q
__

 ( l ) 
is the material matrixd for the lth lamina (transformed to
the x-y coordinate system). Using the definition of ε(l) in
terms of the displacement field u (x, y, z),  the strain energy

u, and the potential v due to the transverse loads acting
on the top and bottom faces of the plate are :
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Here Ω is the plate domain of interest (of rectangular
cross section Ω2 D = {(x,y) | 0 ≤ x ≤ a, 0 ≤ y ≤ b } and depth
d), as shown in Fig.1a; N LAY is the number of laminae;
zi are the z coordinates of interlaminar interfaces (as
shown in Fig.1b; R+ and R- are the top and bottom faces
of the plate, respectively; q+ (x,y) and q- (x,y) are the
transverse loads on R+ and R-, respectively.

Thus, the total potential energy is given as :

Π (u ) = u (u) − v (u) (4)

Minimizing Π (u) with repesct to u, we get,
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The variational formulation (5) is often written in its
equivalent form in terms of stress resultants at the central
surface Ω2D of the plate. The above formulation leads to
seven coupled equation in terms of the seven independent
functions u0 , v0 , w0 , u1 , v1 , u2 , v2. The finite element
formulation of the above problem follows by replacing the
given functions by the approximating series repre-
sentation in terms of the basis functions. Here we will take
elementwise p order approximation for all the unknown
functions.

Fig.1  Plate domain with interlaminar interfaces and top and
bottom faces
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Strain Recovery Procedure

The finite element solution leads to a stress field that
is less accurate than the displacement field itself. Zien-
kiewicz-Zhu [8] gave a stress recovery procedure for the
extraction of a more accurate stress field, using a patch
projection of the finite element data. This was extended to
isotropic plates (see [24]), where the stress resultants were
recovered using a procedure similar to [8]. However, in
[21-22] it has been observed that instead of nodal patches
for projection, use of element patches, i.e. by using one or
two layers of elements surrounding an element, a better
stress recovery can be obtained. Below, we present the
proposed strain I recovery procedure (see  [15] as well),
which is based on recovery of strain components instead
of stress resultants.

Following the representation of the solution by
Eqn.(1), we get the components of strain as:
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The recovered strain ε∗ is also assumed to have the
same form (in terms of z) as the exact one. Thus, the
recovered strain is also represented as :
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Given the representation of ε∗, it is now desired to
obtain the recovered strain field as a polynomial element
by element, such that the recovered strain components are

polynomials that are one order higher than the correspond-
ing finite element strain components. Thus, if elements of
order p are employed all the recovered in-plane strain
components are polynomials of degree p and the out of
plane strain components are polynomials of degree p+1,
and are given by:
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where N I N = (p+1) (p+2) /2, N OUT = (p+2) (p+3)/2 and
qj (x̂, ŷ ) are the monomials given by :

q1 ( x̂, ŷ )  =  1,   q2 ( x̂, ŷ )  =  x̂,   q3 ( x̂, ŷ ) = ŷ, 

q4 ( x̂, ŷ )  =  x̂ 2,   q5 ( x̂, ŷ )  =  x̂, ŷ,   q6 ( x̂, ŷ ) = ŷ 2 (9)

Here x̂ = x − xc
τ,  ŷ = y − yc

τ are the local coordinates with
the origin at the centroid of the element of interest, τ.

The unknown coefficients of the strain components are
obtained using a local energy .f projection of the finite
element strains, over a layer of elements surrounding
element τ (see Fig.2). This is done by finding the coeffi-
cients that minimize
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where Np is the number of elements in the patch P,  and
N LAY is the number of laminae. Note that J is the strain
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energy of the error in the strain, ε∗ − εFE, where εFE   is
the finite element strain.

The minimization of J gives as many linearly inde-
pendent equations as the number of coefficients in
Eqn.(10). The coefficients are solved for each element
patch P, and the values retained for the element τ.

Remark 1 : No attempt is made here to obtain a smooth-
ened stress or strain field (as prescribed in [9-10]). It is
expected, following [21], [23], that the recovered strain
field will be more accurate than that obtained by the finite
element solution.

Remark 2 (Presence of Material interfaces) : If the plate
is formed by using different materials in subregions
(Fig.3), then for strain recovery only elements lying in the
same material region will be used for the projection. For

example, given the element τ0
P,  the patch consists of

elements 

τi

P


 6
i=0

.

Definition of a-Posteriori Error Estimator Based on
Strain Recovery

The recovered strain ε∗ can be used to define an
a-posteriori estimate of the error. The element error indi-
cator ητ , for an element τ is given as:
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The element error indicators can be used to define the
global error estimator ξΩ  as :

ξΩ   = √  ∑
τ − 1

       N EL

  ητ
2 (12)

where N EL is the total number of elements in the mesh.

The error estimator based on the recovered strain has
to be tested for robustness and accuracy. Following [21,
[23], it is imperative to subject an estimator to rigorous
bench marking tests in order to ascertain the quality of the
estimator for the class of materials, domains, loading and
boundary conditions of interest. In  [20], [23], a rigorous
mathematical proof was given, which lead to a simple
computer-based procedure for testing the quality of a-pos-
teriori error estimators for general second order elliptic
problems. The basic idea of [20] can be outlined as fol-
lows: 

Let  ω
__

 be a small subregion of interest, lying inside the
domain Ω. Then asymptotically, for ω

__
 sufficiently small,

the finite element solution is essentially the best approxi-
mation of the local (p + 1)th order Taylor series expansion
of the exact solution u, over a region slightly bigger than
ω
__

. The assumptions for the asymptotic error analysis
were: 

• All global contributions to error in the local region ω
__

(i.e. pollution error) were negligible.

• The dominant part of the local error was due to the
(p + 1)th degree terms of the local Taylor series expan-
sion of the exact solution.

Fig.2  An element τ with a layer of elements

τ i

 P


 11
 i = 0

 surrounding it, forming the patch P

Fig.3  Rectangular plate showing the presence of
material interface
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However, for laminated composite plates no such de-
tailed interior analysis of local error exists. Following
[25], [28],  we get the global component of the error (for
a rectangular plate) in a local region ω

__
 due to only bound-

ary layer effect. The effect of the thickness of the plate, d,
on the convergence rate is seen through a slowing down
in the setting of asymptotic behavior, i.e. a more refined
mesh may be required to get asymptotic behavior (this is
also known as locking). For the h-version of the finite
element method, the boundary layer effect can be control-
led by using sufficient mesh refinements near the bounda-
ries. Assuming that the thickness d is  fixed (away from
zero) we get, for the error e = u - uFE,

||e|| E(Ω)  ≤  C (d ) hµ (13)

where µ = min (p, r)  and τ depends on the regularity of
the  solution u  to  the  plate  model;

||.||E (ω
__
) is the  energy norm given by

||u ||E (ω
__
)  =  √ 2 uω__  (u)   where u ω

__  is the strain energy

of u over region ω
__

.

We further assume that, for a subregion ( ω
__

 ) ∈ Ω,
sufficiently removed from the boundary

||e ||E(ω
__

 )  ≤  C (d ) h p (14)

in the absence of boundary layer effects, and for a fixed d
(see [18] for a detailed proof on convergence of local error
for isotropic plates). Thus, if the finite element solution is
obtained over the same mesh using (p+1) order elements,
the error e p+1  =  u − u  FE

  p+1 in the finite element solu-

tion u  FE
  p+1 satisfies :

||ep+1 ||E(ω
__

 )  ≤  C (d ) h p+1 (15)

Hence, we can obtain, 

||e E (ω
__

 ) = ||u − u FE
 p+1 + u FE

 p+1 − u FE || E ( ω
__

 ) ≤ ||u − u FE
 p+1 || E ( ω

__
 )

     + ||u FE
 p+1 − u FE || E ( ω

__
 ) ≈ || u FE

 p+1 − u FE || E ( ω
__

 ) (16)

or the error is essentially the difference between the (p+1)
order solution and the p order solution, when h → 0.

Letting ξω
__ be the error estimator for subregion ω

__
 we

define

κω
__  =  

ξω
__

||e||E (ω
__
)
  ≈  

ξω
__

||u FE
 p+1 − u FE ||E (ω

__
)

(17)

where κω
__  is the effectivity index for the subregion ω

__
 .

Ideally κω
__ = 1 is desired. However, we can say that the

estimator is reliable if 0.8≤  κω
__  ≤ 1.2 (heuristic choice).

Defining

ℜω
__ = |1 − κω

__ |  +  |1 − 1
κω
__ | (18)

as the robustness measure for the error estimator, we can
say that an estimator is robust if ℜω

__  =  0.45 (correspond-
ing to the reliable κω

__  fixed above).

Remark 3 : An estimator may overestimate or underesti-
mate the error, depending on the region of interest, mesh,
loading data and boundary conditions. The robustness
measure gives a uniform scale for measuring the reliability
over a given domain.

Remark 4 :  If the solution has converged for the given p,
the error  ||u FE

 p+1 − u FE ||E (ω
__
) will be close to zero. In this

case, the effectivity index will not be meaningful. In such
cases, if ε∗  ≈  ε FE  then the recovery is said to be reliable.

Remark 5 : In case of locking the rate of convergence
becomes sub-optimal. In such a situation no error estima-
tor will be reliable for the boundary patches as well as for
the interior patches. However, if the locking is taken care
of (by proper h or p refinement, or by selecting locking
free plate models) the estimator performs well for interior
as well as, boundary patches (see [20]). In this study, we
will bring out the effect of locking by using low p (p=2)
or high p (p=3), especially for thin plates.

 The effectivity index κΩ  is important in giving the
stopping criterion for an adaptive mesh refinement proce-
dure accurately. Small κω

__  (for subregion ω
__

 ) is essential
to ensure that the right elements get refined. Thus for
elements with significant error, the estimator should be
reliable.
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Validation of Quality of the a-Posteriori Error
Estimator 

The computational analysis of laminated composite
plates requires consideration of several factors. The major
factors are:

• Effect of ply orientation, stacking sequence

• Effect of boundary conditions

• Effect of type of loading

• Effect of thickness of plate

• Effect of plate model

• Effect of approximation order

In this study, we are fixing the plate model to the one
given by Eqn. (1). For this plate model, the quality of the
recovery based a-posteriori error estimator will be studied.
The properties of the material of interest (T300/5208
Graphite/Epoxy (prepreg)) are given as [29} :

Eu = 132.5 GPa;     Ett = 10.8 GPa;     vlt = 0.24;
vtt = 0.49;               Glt = 5.7 GPa

Here, the analysis is done for two types of boundary
conditions, namely, simply supported and clamped. When
we specify any boundary condition it is imposed on all
four edges. By simply supported we mean soft simply
supported in which transverse displacement and displace-
ment tangential to the edge is fixed (eg. for edge x=con-
stant, v = w = 0). For clamped boundary condition all the
three displacements are fixed (eg. for any edge u = v = w
= 0).

Below, we present a detailed analysis of the global and
local quality of the proposed error estimator.

Case 1: Quality for elements in the interior of the domain,
Ω2D ,interior

The local performance of the error estimator has to be
understood for the various possible scenarios separately.
We know that the boundary layer effect in the finite
element solution may be present only in few layers of
elements adjoining the boundary. For elements removed
from boundary, the finite element solution behaves like
the local best approximation, i.e. the local error converges
at the optimal rate. Thus, the first check for the quality of
the error estimator should be for elements in the interior

of the domain, i.e. for elements in the subregion
Ω2D, interior. In Fig.4, the elements at the boundary and
interior for the meshes used, are shown.

All the numerical results presented will be for the
four-layered laminates, with the ply thickness fixed to dl
= 0.127 mm, l = 1,2,3,4. In Tables-1 to 5,  the values of
the effectivity index, for the elements in the interior of the
domain (see Fig.4) are given for various ply orientations
and boundary conditions. Effect of plate thickness is ac-

counted for by taking ad = 5 (thick plate), 10 (moderately

thick plate), 100 (thin plate). Elements of order p=2  are
taken for all the problems. The transverse load is fixed to
a uniformly distributed load of intensity q+ = 2N/mm2 and
q- = 0.

From the results we observe that:

• For all the ply orientations and stacking sequences, the
estimator is very reliable for thick and moderately thick
plates, i.e.ℜτ  ≤  0.25.

• For the thin plates the elemental quality deteriorates.
However, for the group of elements in the interior
ℜ2D,interior  ≤  0.2.

• The results are relatively independent of the boundary
condition type.

For the thin plates 


a
d = 100


, the error estimator was

found to be globally accurate (0.92 ≤  ξΩ  ≤ 1.03), and the
global error was found to be greater than 10%. This
indicates a tendency of the model to lock slightly. Thus,
the results of Tables-1 and 2 are not asymptotic in nature.

Fig.4 : The square plate of dimensions a x a, with the 
mesh shown. The inner and outer patches of elements are

given by Ω2D, interior  and Ω2D, outer, respectively
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To get the asymptotic results, p=3 was taken to solve the
problem. The result is given in Table-5. From Table-5 we
note that:

• In the absence of locking, the error estimator is reliable


ℜτ  ≤  0.05


.

• The error estimator is relatively insensitive to the thick-
ness of the plate, when no locking effects are present.

• Even when locking is present, the performance of the
estimator for the interior patch is very good, i.e.
ℜ2D,interior  ≤  0.15.

In general, we can conclude that the proposed estima-
tor is very reliable for interior patches of elements.

Case 2: Quality for elements in the boundary patch,
Ω2D, outer

Following [23], the quality of error estimators for
elements at or near the domain boundary is expected to be
different from that for the elements in the interior of the
domain. This is because of the boundary layer in the exact
solution as well as in the finite element solution. For the
laminated plates, this effect can be significant. Thus, the
local quality of the proposed error estimator is investi-
gated separately for elements in Ω2D, outer. From the re-
sults given in Tables-6 to 10, we observe that:

• For the simply-supported plate, the estimator is reliable

upto the boundary for all ad  ratios and symmetric cross

ply ([0/90]s), as well as the antisymmetric cross ply
([0/90/0/90]), with ℜτ  ≤  0.4.

• For the angle ply laminate ([45/-45]s) the estimator is
not reliable for the simply supported plate.

• For the clamped plate, the estimator is not reliable
(elementwise) for all lamination sequences.

Table-1 : Quality of error estimator for elements in
Ω 2D, interior : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/90]s laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.116 0.986 1.142 1.004
10 1.181 0.980 1.152 0.989

100 1.646 0.757 1.633 0.710

Table-2 : Quality of error estimator for elements in
Ω 2D, interior : p = 2, uniform transverse load

(q+ = 2N/mm2), [45/-45]s laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.082 0.964 1.056 0.976
10 1.043 0.938 1.089 0.963

100 1.578 0.614 1.219 0.661

Table-3 : Quality of error estimator for elements in
Ω 2D, interior : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/90/0/90] laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.019 0.994 1.038 0.984
10 1.018 0.993 1.055 0.997

Table-4 : Quality of error estimator for elements in
Ω 2D, interior : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/45/90/45] laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.127 0.907 1.063 0.973
10 1.112 0.928 1.059 0.978

Table-5 : Quality of error estimator for elements in

Ω 2D, interior  for thin plates ( ad = 100) :

Unlocked solution with p=3, uniform transverse
load (q+ = 2N/mm2), for [0/90]s and [45/-45]s 
laminates. The values in parenthesis are the 

preasymptotic ones (or "locked")
B.C. Type [0/90]s [45/-45]s

ξ max ξ min ξ max ξ min

Simply
supported

1.041
(1.646)

0.984
(0.757)

1.052
(1.578)

0.881
(0.614)

Clamped 1.099
(1.633)

0.995
(0.710)

1.091
(1.219)

0.948
(0.661)
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We note that the elementwise quality of the error
estimator cannot be guaranteed for elements at the bound-
ary, especially for angle ply laminates. However, it was
found that ℜΩ 2D,outer

  ≤  0.2  for all the cases considered.
Hence, for a group (or patch) of elements, the estimator is
very reliable, even for the locked case.

Remark 6 : It is observed from the results that in neigh-
bouring elements (see Fig.5), the value of ξ τ seems to
alternate between a high and low value. This is the so-
called "chattering" effect observed in [19].

Remark 7: The estimator does remarkably well in estimat-
ing the global error, and hence should lead to an accurate
stopping criterion for an adaptive mesh refinement proc-
ess.

Case 3: Influence of transverse loading type and mesh
topology

The local solution depends on the transverse loading
acting on the plate. In order to see the effect of the load
type on the quality of error estimator, we let q+ = 10 sin

(π x
a )  sin (π y

a ) N/mm2 be the intensity of the applied load.

Table-6 : Quality of error estimator for elements in
Ω 2D, outer : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/90]s laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.134 0.925 1.965 0.641
10 1.115 0.874 2.138 0.641

100 1.313 0.853 1.295 0.729

Table-7 : Quality of error estimator for elements in
Ω 2D, outer : p = 2, uniform transverse load

(q+ = 2N/mm2), [45/-45]s laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 2.464 0.659 2.057 0.571
10 2.085 0.626 1.888 0.569

100 1.419 0.597 1.520 0.577

Table-10 : Quality of error estimator for elements

in Ω 2D, outer  for thin plates ( ad = 100) :

Unlocked solution with p=3, uniform transverse
load (q+ = 2N/mm2), for [0/90]s and [45/-45]s 
laminates. The values in parenthesis are the 

preasymptotic ones (or "locked")
B.C. Type [0/90]s [45/-45]s

ξ max ξ min ξ max ξ min

Simply
supported

1.225
(1.312)

0.892
(0.853)

1.649
(1.419)

0.649
(0.597

Clamped 1.375
(1.295)

0.777
(0.729)

1.347
(1.520)

0.776
(0.577)

Table-8 : Quality of error estimator for elements in
Ω 2D, outer : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/90/0/90] laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 1.099 0.959 1.706 0.687
10 1.088 0.950 1.649 0.653

Table-9 : Quality of error estimator for elements in
Ω 2D, outer : p = 2, uniform transverse load

(q+ = 2N/mm2), [0/45/90/45] laminate
a
d ratio Simply supported Clamped

ξ max ξ min ξ max ξ min

5 2.052 0.651 1.096 0.972
10 1.687 0.604 1.594 0.649

Fig.5  The chattering effect observed in [45/-45]s 
laminate, simply supported, uniform transversed load 

q+ = 2N/mm2, p = 2
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In Table-11, we report the values of the best and worst
element effectivity indices obtained for Ω2D, interior and
Ω2D, outer. From the result we note for this loading the
observations are similar to that obtained for a uniform
load.

For triangular elements, the topology of the elements
can affect quality of the error estimation (see [20] for
details). In order to see the influence of the mesh topology,
we consider meshes formed by repetition of the periodic
patterns shown in Fig.6.

All the results given till now are for the meshes of
Union Jack type. In Table-12, we give some values of
ξmax and ξmin obtained for meshes of Regular type and the
[0/90]s laminate. From the results we note that:

• For Ω2D, interiorthe estimator is more accurate for the
Regular pattern, as compared to the Union Jack pattern.
Here  ℜτ  ≤  0.45 for all cases. Even for thin plate, this
result is valid, even when the error is large (> 15%).

• For Ω2D, outer the estimator behaves similarly for both
patterns. Here, the elemental accuracy is not good (0.4
≤  ξ τ  ≤ 2.2) but the patch accuracy is very good
ℜpatch  ≤  0.3.

Conclusions

A simple, strain recovery based error estimator is
proposed in this study. A detailed analysis of the local and
global quality of this error estimator for laminated com-
posite plate is carried out, when the plate is loaded by a
distributed transverse load. From the study we can con-
clude that :

1. The error estimator is very reliable globally.

Table-11 : Effect of change of loading on quality of error estimator : Range of effectivity index for Ω 2D, interior

and  Ω 2D, outer. p=2. Sinusoidal loading q+ = 10 sin (π x
a )  sin (π y

a ) N/mm2, [0/90]s laminate

a
d ratio B.C. Type Ω 2D, interior Ω 2D, outer Ω

ξ max ξ min ξ max ξ min ξΩ

10
Simply supported

Clamped
1.062
1.059

0.972
0.978

1.096
1.594

0.972
0.649

1.008
1.001

Table-12 : Effect of mesh topology on error estimator. Regular pattern p = 2, [0/90]s laminate,
uniform transverse loading with q+ = 2N/mm2. Range of ξτ for Ω 2D, interior and Ω 2D, outer

a
d ratio B.C. Type Ω 2D, interior Ω 2D, outer Ω

ξ max ξ min ξ max ξ min ξΩ

5
Simply supported

Clamped
1.025
1.035

0.909
0.954

1.073
2.011

0.903
0.481

0.997
0.998

10
Simply supported

Clamped
1.023
1.062

0.893
0.919

1.064
2.158

0.893
0.438

0.984
0.933

100
Simply supported

Clamped
1.203
1.241

0.855
0.874

1.027
1.097

0.704
0.414

0.961
0.931

Fig.6  The periodic pattern (a) Union Jack  (b) Regular
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2. For mesh patches in the interior of the domain the
estimator is very reliable.

3. For boundary patches, the estimator is reliable but the
quality is inferior as compared to that in the interior
of the domain.

4. The estimator is relatively insensitive to the material
orientation or ply stacking sequence.

5. For thin plates, in the pre asymptotic range, the
estimator does well to predict the global error accu-
rately. The prediction of the local error in element
patches is also reliable.

6. Mesh topology does not affect the performance of the
error estimator significantly.

7. The estimator is independent of the plate model by
design.
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