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Abstract

Here, the dynamic snap-through buckling characteristics of clamped functionally graded
spherical caps suddenly exposed to a thermal field are studied using finite element procedure.
The material properties are graded in the thickness direction. The temperature load corre-
sponding to a sudden jump in the maximum average displacement in the time history of the
shell structure is taken as the dynamic buckling temperature. Numerical study is carried out
to highlight the influences of shell geometries and material gradient index on the critical
buckling temperature.
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Introduction

Functionally graded materials [1] are high perform-
ance heat resistant materials able to withstand ultra high
temperatures and extremely large thermal gradients used
in fusion reactors and aerospace industries. These materi-
als are microscopically inhomogeneous, in which the ma-
terial properties vary smoothly and continuously from one
surface of the material to the other surface. Typically,
these materials are made from a mixture of ceramic and
metal, or a combination of different materials. Although
these materials are initially designed as thermal barrier
materials, they are now employed for general use as
structural elements for different applications.

Among various structural elements, shell elements, in
particular, spherical shells form an important class of
structural components, with many significant engineering
applications. These shells when subjected to dynamic load
could encounter deflections of the order of the shell thick-
ness. The dynamic response of such shells may lead to the
phenomenon of dynamic snapping or dynamic buckling.
The investigation of such phenomenon considering exter-
nally applied pressure load has received considerable at-
tention in the literature [2-4]. Budiansky and Roth [2] have
employed the Galerkin method whereas Simitses [3]
adopted Ritz-Galerkin procedure. Haung [4], has solved
using finite difference scheme. The limited studies are also
available on dynamic buckling of orthotropic shallow

spherical shells [5-6]. However, studies pertaining to
FGM shell structures are mainly limited to thermal stress,
deformation, and static analysis in the literature [7-9].
Work on vibration/dynamic stability of FGM shell struc-
tures are also reported in the work of Ng et al. [10]. To the
author’s knowledge, work on the dynamic buckling be-
havior of isotropic/orthotropic/functionally graded mate-
rial spherical shells suddenly exposed to thermal
environment is rather meager in the literature and such
studies are important to the structural designers.

In the present work, the nonlinear dynamic thermal
buckling of functionally graded spherical caps suddenly
exposed to a heat flux that results in a uniform temperature
change over the surface is investigated using a three-
noded shear flexible axisymmetric curved shell element
based on field-consistency principle [6]. Geometric non-
linearity is assumed using von Karman’s strain-displace-
ment relations. The material properties are graded in the
thickness direction according to the power-law distribu-
tion in terms of volume fractions of the constituents of the
material. The nonlinear governing equations derived are
solved employing Newmark’s numerical integration
method in conjunction with the modified Newton-Raph-
son iteration scheme. The critical dynamic buckling tem-
perature difference is taken as the temperature difference
between the shell surfaces corresponding to a sudden jump
in the maximum average displacement in the time history.
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Numerical results are presented considering different val-
ues for geometrical parameter and material power law
index on the dynamic snap through thermal bucking be-
havior of functionally graded spherical caps.

Formulation

An axisymmetric functionally graded shell of revolu-
tion (radius a, thickness h) made of a mixture of ceramics
and metals is considered with the coordinates s, θ and z
along the meridional, circumferential and radial/thickness
directions, respectively. The materials in outer (z = h/2)
and inner (z = -h/2) surfaces of the spherical shell are
ceramic and metal, respectively. The locally effective
material properties are evaluated using homogenization
method that is based on the Mori-Tanaka scheme [11].
The effective bulk modulus K, shear modulus G, coeffi-
cients of thermal conductivity κ and thermal expansion α
of the functionally gradient material evaluated using the
Mori-Tanaka estimates [11-12] are as 
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where,

f1  =  
Gm (9 Km + 8 Gm )
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Here, V is volume fraction of phase material. The
subscripts m and c refer the ceramic and metal phases,
respectively. The volume-fractions of ceramic and metal
phases are related by Vc + Vm = 1, and  Vc    is expressed
as
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where k is the volume fraction exponent (k ≥ 0).

The effective values of Young’s modulus E and Pois-
son’s ratio υ can be found as from

E (z) = 9KG
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 and υ (z) = 3 K − 2 K
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(4)

The locally effective heat conductivity coefficient κ is
given as
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The coefficient of thermal expansion α is determined
in terms of the correspondence as
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The effective mass density ρ can be given by rule of
mixture as

ρ ( z )  =  ρc Vc + ρm Vm (7)

The temperature variation is assumed to occur in the
thickness direction only and the temperature field is con-
sidered constant in the xy plane. In such a case, the
temperature distribution along the thickness can be ob-
tained by solving a steady-state heat transfer equation

− d
dz 


κ ( z ) d T

d z  

 = 0  ,     T  =  Tc  at  z = h ⁄ 2 ;

T  =  Tm  at  z =  − h ⁄ 2 (8)

By using the Mindlin formulation, the displacements
at a point (s, θ, z) are expressed as functions of the
mid-plane displacements uo, vo and w, and independent
rotations βs, and βθ of the radial and hoop sections, respec-
tively, as

u ( s, θ, z, t ) = uo ( s , θ, t ) + z βs ( s, θ, t )

v ( s, θ, z, t ) = vo ( s , θ, t ) + z βθ ( s, θ, t )

w ( s, θ, z, t ) = w ( s , θ, t ) (9)

where t is the time.

Using von Karman’s assumption for moderately large
deformation, Green’s strains can be written in terms of
middle-surface deformations as,

224 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.59, No.3





ε 


 = 











εp
L

0










 + 











zεb

εs










  +  











εp
 NL

0










 (10)

where, the membrane strains 
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, bending strains 
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,

shear strains 
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 and the nonlinear  in-plane strains 
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in Eqn. (10) are written as [13]
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where r, R and φ are the radius of the parallel circle, radius
of the meridional circle and angle made by the tangent at
any point in the middle-surface of the shell with the axis
of revolution.

The potential energy functional U can be written in
terms of the field variables uo , vo , wo , βs , β θ and their
derivatives. The kinetic energy includes the effects of
in-plane and rotary inertia terms. The governing equations
obtained using Lagrange’s equation of motion are solved
based on finite element procedure. Using Eqs. (4-11) and
following the procedure outlined in the work of Ra-
jasekaran and Murray [14], the finite element equations
thus derived are
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where [K] and [M] are the linear stiffness and mass
matrices, respectively. [N1] and [N2] are non-linear stiff-
ness matrices linearly and quadratically dependent on the
field variables, respectively and 


F



 is the load vector

consisting of mechanical load 


FM




 and thermal load 



FT




.



δ
..


 , 



δ



 are the acceleration and displacement vectors,

respectively. The three-noded finite element employed
here has five degrees of freedom (uo , vo , wo , βs , β θ) per
node. The resulting nonlinear Eq. (12) is solved for dy-
namic response histories employing Newmark’s numeri-
cal integration method coupled with Newton-Raphson
iteration. The dynamic buckling loads are evaluated based
on the displacement response histories.

The criterion suggested by Budiansky and Roth [2] is
employed here as it is widely accepted. This criterion is
based on the plots of the peak non-dimensional average
displacement in the time history of the structure with
respect to the amplitude of the thermal load (e. g. inserted
figure in Fig. 2). There is a temperature difference range
where a sharp jump in peak average displacement occurs
for a small change in load magnitude. The inflection point
of the load-deflection curve is considered as the dynamic
buckling temperature difference.

Results and Discussion

Based on progressive mesh refinement, 15-element
idealization is found to be adequate in modeling the
spherical caps. The static thermal buckling load obtained
from the present formulation for isotropic spherical shells
have been compared with the analytical solutions [15] and
excellent agreement was seen. For the sake of brevity,
such comparisons are not presented here. Next, the non-
linear formulation developed herein is also examined for
clamped isotropic spherical caps subjected to uniform
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external pressure of infinite duration and the results are
shown in Fig. 1 along with those of results from Haung
[4] for different values of the geometrical parameter

λ = 2  3 (1 − v2)


1⁄4
 ; H, a are the central shell rise and

base radius, respectively. H, a are the central shell rise and
base radius, respectively). It is inferred that the present
results are in very good agreement with the analytical
solutions. The FGM spherical shell considered here con-
sists of aluminum and alumina. The material properties for
alumina and aluminum are taken from Lanhe [16] : 

For alumina : Ec = 380 GPa,  κc = 10.4 W/mK, 
αc = 7.4 x 10-6 (1/°C)

For aluminum : Em = 70 GPa, κm = 204 W/mK, 
αm = 23 x 10-6 (1/°C)

Next the results for nonlinear dynamic thermal buck-
ling analysis of functionally graded spherical caps is pre-
sented in terms of critical bucking temperature difference
∆Tcr (=Tc - Tm). For the chosen shell parameter and power
law index of FGM, the thermal buckling study is con-
ducted for suddenly applied temperature load. The length
of response calculation time 

τ 


 =√Eef h

2

12 (1 − v2
) ρef a

4   t 




in the present study is varied between 1 and 2 with the
criterion that in the neighborhood of the buckling, τ is
large enough to allow deflection-time curves to develop

fully. Eef  ( = (1 ⁄ 2)  ∫ 
−h ⁄2

h ⁄ 2

 E (z) d z ) corresponds to effective

modulus of corresponding gradient index. The detailed
investigation for dynamic buckling of clamped function-
ally graded spherical caps is carried out for different
geometrical parameters and material power law index. A
typical nonlinear axisymmetric dynamic response history
with time for a clamped isotropic spherical shell parameter
(λ = 6, a/h = 400 and k = 0),  considering temperature loads
is shown in Fig 2. Further, using such plots, the variation
of maximum average displacement with applied tempera-
ture obtained is also highlighted as an insert in Fig. 2 for
predicting the critical temperature difference. It is seen
that there is a sudden jump in the value of the average

Fig.1  Comparison of axisymmetric nondimensional critical
dynamic pressure for clamaped isotropic (k = 0) spherical

cap under mechanical loading

Fig.2  Average displacement versus nondimensional time for
clamped isotropic spherical cap (λ = 6, k = 0)

under thermal loading

Fig.3  Variation of critical dynamic buckling temperature
against shell geometry parameter (λ), of a clamped FGM

spherical cap
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displacement when the temperature difference reaches the
value ∆Tcr = 4.7492 for the shell considered here. Fig. 3
depicts the behavior of critical dynamic temperature dif-
ference of FGM shell pertaining to clamped case. It is
revealed from this Figure that, with the increase in power
law index k, the critical dynamic buckling temperature
difference ∆T decreases, irrespective of shell geometrical
parameter. This is attributed due to the stiffness reduction
because of the increase in the metallic volumetric fraction
and the introduction of different stiffness couplings due to
elastic properties variation through the thickness of FGM
shell. It can be also noted that the rate of increase in the
critical dynamic buckling temperature difference highly
depends on the values of shell geometric parameter and
material gradient index. Furthermore, It is observed while
varying the shell parameter value that the average dis-
placement increases gradually with increase in tempera-
ture load for low values of geometrical parameter (λ < 5)
indicating the absence of sudden jump in amplitude with
temperature. For the sake of brevity, these studies are not
reported here. Such shell may fail due to material failure.
It is hoped that the present study is useful for the re-
searchers dealing FGM shell structures.
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