
COMPUTATION OF HEAT FLUX IN HYPERSONIC FLOW WITH A

CARTESIAN MESH USING NEAR-WALL RESOLUTION

Abstract

A hybrid solution methodology is developed to solve laminar hypersonic flow with a Cartesian

mesh approach. The hybrid grid consisting of a Cartesian mesh together with an unstructured

prism layer near the wall to capture the large gradients close to the surface is used for the

near wall viscous resolution. The prism layer is generated by extruding the panels formed by

the intersection of the Cartesian grid and the body and is stitched with the outer Cartesian

mesh away from the wall for solving axi-symmetric flows. For three dimensional flows, since

the prism layer cells are not stitched to the outer Cartesian mesh, the inviscid solution is carried

out first for background Cartesian mesh and later this solution is mapped to the extruded prism

layer cells and laminar Navier-Stokes solution is carried out for the prism layer cells alone.

The developed solver gives an unstructured prism layer solution near the wall and standard

Cartesian mesh solution away from the wall. This hybrid solution methodology is validated

against the experimentally measured heat flux data and could predict the heat flux with good

accuracy. The present methodology thus enables the computation of a viscous solution using

a Cartesian mesh based approach.

Nomenclature

a = speed of sound (m/s)

e = internal energy per unit mass (J/kg)

k = coefficient of thermal conductivity (W/m/K)

l = distance between centroids of cell i and cell j (m)

q = heat flux (W/sq.m)

u = velocity in X direction (m/s)

v = velocity in Y direction (m/s)

w = velocity in Z direction (m/s)

E = total energy per unit mass (J/kg)

H = total enthalpy per unit mass (J/kg)

M = Match number

P = pressure (Pa)

R = universal gas constant (8314.34 J/kg-mole K)

T = temperature (K)

U = vector of conserved variables

V = total velocity (m/s)

Fc = vector of convective flux

Fv = vector of viscous flux

pc = cell center pressure of the wall cell (Pa)

Sx = projected area in x direction of each face (sq.m)

Sy = projected area in y direction of each face (sq.m)

Sz = projected area in z direction of each face (sq.m)

∆Ui = cell centre gradient at cell i

∆Uj = cell centre gradient at cell j

V = contravariant velocity at the face of the cell (m/s)

Λc = convective spectral radius (m/s)

σ = CFL number

t→ij = unit vector of line connecting cell centroids i and j

Ω = volume (m
3
)

∆t = local time step of the cell (s)

τxx = normal stress in the X-plane and in

   X direction (N/m
2
)

τxy = tangential stress in the X-plane and in

   Y direction (N/m
2
)

τxz = tangential stress in the X-plane and in

   Z direction (N/m
2
)
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Pr = Prandtl number

Re = Reynolds number

µ = Coefficient of viscosity (kg/m-s)

γ = Specific heat ratio

ρ = Density (kg/ m
3
)

nx, ny, nz = Direction cosines of normal

α = Angle of attack (deg)

Subscripts

c = Convective

v = Viscous

c = Cell center

x,y,z = x, y, z direction

wall = Wall

0 = Stagnation

∞ = Free stream

inf = Free stream

Introduction

Cartesian mesh has an advantage in terms of automated

grid generation for complex geometries, which makes it

quite useful in aerospace industry. However, it has a

serious limitation to handle the viscous boundary layer

near the wall.  There have been considerable efforts in the

last decade to overcome this limitation through different

approaches like hybrid meshes, immersed boundary meth-

ods, meshless methods and even pure Cartesian mesh

[1-12]. The literature shows Cartesian/prism method in

which an adaptive Cartesian grid and a fixed prism grid

are combined to tackle viscous flows. A nested multi-grid

viscous flow solver for body fitted adaptive quadrilateral

grids around solid bodies through surface extrusion, which

are then overlapped with an adaptive Cartesian grid is also

reported [2]. Multi-solver approach is also reported which

has curvilinear grids near the solid boundaries and

Cartesian grid away from the body to fill majority of the

boundary domain and the interface being handled by an

edge based grid free solver [3]. Hybrid Cartesian-body

fitted grid is another method wherein a near wall boundary

is automatically searched for a given geometry, which

merges with a Cartesian background grid without any

overlap [4]. A good amount of work is reported on im-

mersed boundary technique [5-10] in which locally re-

fined Cartesian mesh is used to solve three dimensional

Navier-Stokes equations. The viscous flow solution with

Cartesian mesh stitched to the wall and termed as

Cartesian like grids is also reported to give good solution

with Navier-Stokes equation for aerofoils in certain range

of Reynolds numbers [11]. Solution of two dimensional

high Reynolds number turbulent flow is reported with

even pure Cartesian mesh solver [12]. In this method small

cut cells are merged with the neighboring cells and local

mesh refinement is adapted to have a fine resolution near

the wall. However this approach leads to a very large

number of cells for three dimensional flows. The present

paper describes a hybrid solution methodology to solve

laminar hypersonic flow with a Cartesian mesh based

approach. All the methods mentioned above have not been

applied to hypersonic flows so as to obtain heat flux. The

present solution methodology differs from the previous

approaches in the literature in the sense that in this ap-

proach, the extrusion of background Cartesian mesh pan-

els obtained after the Cartesian mesh generation is done to

capture the large gradients near the wall and this prism

layer is in turn stitched with the outer Cartesian mesh away

from the wall and applied to obtain heat flux on the wall.

Problem Definition

To validate, the hybrid solver, a standard AGARD

HB-2 model, which is a sphere-cone-cylinder-flare ge-

ometry, with a core diameter of 100mm as shown in Fig.1

is chosen and for which hypersonic wind tunnel data [18]

are available in the open literature. The experiments are

conducted in JAXA 1.27 m blow-down cold type hyper-

sonic wind tunnel and one of the objectives of the tests is

for generating good quality experimental results for HB-2

geometry, which would serve as benchmark for hyper-

sonic computational fluid dynamics codes. The free

stream conditions for which the numerical simulations are

carried out is shown in Table-1.

Gridding Strategy

The initial Cartesian mesh is generated with a 100 x

100 x 1 basic mesh as shown in Fig.2. The hybrid mesh

Table-1 : Free Stream Conditions

P0 

(Mpa)

T0

(K)

M∞ ρ∞

(kg/m
3
)

T∞

(K)

P∞

(Pa)

U∞

(m/sec)

Re (x10
5
)

based on core

dia

α
(deg)

Twall

(K)
µ

(kg/m-s)

2.512 1025.8 9.59 0.00469 55.3 74.5 1429.6 1.85 0 300 3.62x10
-6
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with prism layer upto 40mm, 30mm and also up to 20mm

are generated and subsequently stitched with outer

Cartesian mesh. The 40mm prism layer has 45 cells with

a stretching factor of 1.14 yielding a first cell height of 15

microns and 30mm prism layer has 55 cells with a stretch-

ing factor of 1.1 giving first cell height of 16 microns.

Computations are carried out with two 20mm prism layer

mesh having 55 cells with a stretching factor 1.1 and 1.12

yielding a first cell height of 10 microns and 5 microns

respectively. This exercise is done to see the effect of

prism layer mesh on the solution, especially the heat flux

on the wall.

Initially a Cartesian mesh is generated for the body

using an existing Cartesian mesh code. The Cartesian

mesh that is generated for arbitrary three-dimensional

body gives rise to surface panels of 3 sides to 6 sides. To

generate the prism layer for each panel, the normal at each

nodal point of the body panel is obtained by average of all

the normals that share the particular node. This extrusion

follows an algebraic stretching function for which the user

specifies the stretching factor. Normally this stretching

factor used is of the range from 1.05 to 1.2. Fig.3 shows

the Cartesian mesh for the nose of the present geometry

and the hybrid mesh for select panels.

The details of the hybrid Cartesian mesh generation are

given below.

• Start with the Cartesian mesh having information on

the intersection point of mesh with the body. The

surface of the body is essentially the panels formed by

intersection of Cartesian mesh with the body. For 3D

geometry, the surface panels have 3 to 6 sides whereas

for a 2D geometry surface panels have 4 sides with one

grid in the third direction as in the present problem.

• The normal of each panel corresponds to the normal of

the largest triangle of the panel. Find out the average

normal at each node which is essentially the average of

the normal of the panels sharing the node.

• Since the Cartesian mesh would sometimes give rise to

very small panels while cutting a body, the small panels

whose area is less than 1/10
th

 of the neighbouring panel

is merged with the large panel.

• Generation of the hybrid prism layer by extrusion of

the surface panels is upto a height that is user specified.

Normally extrusion is based on the average normal of

a node. However this can also be user defined way of

projection for ease of stitching with the outer Cartesian

mesh.

• Stitch the prism layer with the outer Cartesian mesh by

joining the prism layer to the nearby outer Cartesian

mesh node.

• Split the last hybrid layer if it is too large as compared

to neighbouring prism layer.

Figures 4 to 7 show the various steps of the hybrid

prism layer generation and finally stitched with the outer

Cartesian mesh. Fig.7 shows the final hybrid Cartesian

mesh and the magnified region of the nose and flare

portion. From the figure it can be seen that there are five

types of cells possible after the stitching of hybrid prism

layer with the outer Cartesian mesh. The first type of cell

is the hybrid prism layer whose neighbours are also prism

layer cells. The second type of cell is an edge cell which

is between the prism layer cell and the Cartesian mesh

which can have more than one Cartesian cell as its neigh-

bour. The third type of cell is the outer hybrid prism layer

hugging the Cartesian mesh which can have more than one

Cartesian mesh as its neighbor. The fourth type of cell is

the Cartesian cell where all the neighbours are not pure

Cartesian cells and finally the fifth type of cell is the one

whose all neighbours are Cartesian cells.

Boundary Conditions

The wall boundary conditions are the no-slip boundary

conditions for velocities and cold wall conditions for

energy equation. Since the flow is supersonic, supersonic

outflow boundary condition is applied at flow leaving

boundary. For axi-symmetric problems appropriate sym-

metry boundary conditions are applied.

Solution Methodology

The governing Navier-Stokes equations using the

standard notation is as follows

∂

∂ t
  ∫  

Ω
U d Ω + ∫o  


F

c
 − F

v
 

 d S  =  0 (1)

Where U is vector of conserved variables and Fc and Fv
are vector of convective and viscous fluxes respectively

as given below

168 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.65, No.2



U  =  















ρ

ρ u

ρ v

ρ w

ρ E















  F
c
  =  

















ρ V

ρ u V + n
x
 p

ρ v V + n
y
 p

ρ w V + n
z
 p

ρ HV

















F
v
  =  

















0

n
x
 τ

xx
 + n

y
 τ

xy
 + n

z
 τ

xz

n
x
 τ

yx
 + n

y
 τ

yy
 + n

z
 τ

yz

n
x
 τ

zx
 + n

y
 τ

zy
 + n

z
 τ

zz

n
x
 θ

x
 + n

y
 θ

y
 + n

z
 θ

z

















(2)

V  =  un
x
 + vn

y
 + wn

z
(3)

H  =  e + 
u

 2
 + u

 2
 + w

 2

2
  

p
ρ (4)
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

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∂ x
 − 

1

3
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

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τ
yy

  =  2µ 




∂ v
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 − 

1

3
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

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τ
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1
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τ
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∂ y
 + 
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

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τ
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
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∂ u
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∂ x



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τ
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  =  µ 




∂ v

∂ z
 + 

∂ w

∂ y





(11)

Where V is the contravariant velocity at the face of the cell,

nx , ny , nz are the direction cosines of the outward normal

to a face of the cell, e is the internal energy, H is the

enthalpy, and u,v,w are the Cartesian velocity components

in the x,y and z directions.

The coefficient of molecular viscosity µ is obtained

from Sutherland’s law wherein the coefficient of viscosity

is a function of temperature and coefficient of thermal

conductivity k is also obtained as a function of temperature

[13]. Perfect gas law has been used and is valid throughout

the flow field.

The wall boundary conditions are applied by invoking

the characteristic based boundary conditions [14]

p
wall

  =  p
c
 − a (ρ u n

x
 + ρ v n

y
 + ρ w n

z
) (12)

The heat flux on the wall is obtained from the numeri-

cal solution based on the coefficient of thermal conductiv-

ity of the cell adjacent to wall and the wall temperature

gradient at the wall and is expressed as given below

q
wall

  =  − k 




∂ T

∂ n



 wall

(13)

To achieve second order accuracy, the linear recon-

struction of the primitive variables is done to get the

interface values and inviscid fluxes are obtained using the

AUSM [15] solution. The Venkatakrishnan limiter [16] is

used to limit the gradients during reconstruction. The cell

centre gradients are evaluated by the standard Green-

Gauss procedure and the interface gradients, which are

used for estimation of viscous fluxes, are estimated using

the following expression [17]

∇ U
ij
  =  ∇U

_

    ij
 − 




∇U

_

    ij
 t→

ij
  − 





∂ U

∂ t




ij

  




  t→
ij

(14)

where

∇U

_

     ij
 = 

1

2
 

∇U

i
 + ∇U

j



(15)

and t→ij  = Unit vector of line connecting Cell centroids i

and j

∇Ui  and ∇Uj =  Cell centre gradient at Cell i and Cell j

respectively

MAY 2013 COMPUTATION OF HEAT FLUX IN HYPERSONIC FLOW 169



l = Distance between centroids of Cell i and Cell j

The scheme is fully explicit and time marching is done

with local time stepping which is calculated as below

∆t
cell

  =  σ 
Ω

cell

(Λ
 c

x
 + Λ

 c

y
 + Λ

  c

z
)
cell

 + (Λ
v

x
 + Λ

 v

y
 + Λ

 v

z
)
cell

(16)

where σ is the CFL number which is less than 0.5 for a

stable solution since the scheme is fully explicit and

Λ c
x  , Λ c

y  , Λ  c
 z

 are the convection spectral radii which are

given as

Λ
 c

x
  =  ( | u | + a ) ∆ S

x
 , Λ

 c

y
  =  ( | v | + a ) ∆ S

y
 ,  and  

Λ
 c

z
  =  ( | w | + a ) ∆ S

z
(17)

The viscous spectral radii for the x direction is ex-

pressed as

Λ
v

x
  =  max 



4

3 ρ
 , 

γ

ρ



  










µ
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Pr
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








  











(∆ S
x
)
 2

Ω
cell










(18)

Ωcell  is the volume of the cell and ∆Sx , ∆Sy , ∆Sz are

the projections of the control volume on y-z, x-z and x-y

plane. These are given by the formulae

∆S
x
  =  

1

2
  ∑ 

J = 1

N
F

  | S
x
  |

J

∆S
y
  =  

1

2
  ∑ 

J = 1

N
F

  | S
y
  |

J
(19)

∆S
z
  =  

1

2
  ∑ 

J = 1

N
F

  | S
z
  |

J

Where Sx, Sy and Sz, and are the projected area in the x, y

and z direction of each face and NF is the number of faces

of the cell. The hybrid solver program is written in C

language with an appropriate data structure for panel and

hybrid cell. Each panel corresponds to the partial cell of

the Cartesian mesh. The panel data structure contains the

information on normal, number of sides of panel, area and

node numbers and their coordinates and information about

its neighbouring panels.  It also has the pointer to the

hybrid cell array above the panel. Similarly for each hybrid

cell, the data structure has all the information about its

faces, neighbour of each face, cell center coordinates,

volume and conserved variable vector. The code is written

keeping in mind a general three dimensional case although

the sample case present in this paper is an axi-symmetric

solution.

Results and Discussion

Figure 8 shows the wall heat flux along the length of

the body for various iterations for 20mm prism layer with

55 cells in which the first cell height is 5 microns. The

iteration convergence is clearly seen after 20000 iterations

and for this case all the residues had reduced by more than

3 orders of magnitude.

Figures 9 and 10 show the Mach number profile at two

typical stations with Mach palette to see whether the prism

layer height has any influence on the profiles and espe-

cially in the region of transition from the unstructured

prism layer to the Cartesian mesh. It is seen that the Mach

number profiles at the two typical stations is almost same

and shows that the solutions are grid independent. As

expected the boundary layer starts becoming thicker as the

axial distance increases. The Mach line contours with

values marked and showing the expansion waves and

oblique shock is also presented in Fig.11.

Figures 12 to 14 show the pressure, temperature and

Mach number along the body obtained from the pure

Cartesian mesh Euler solution which would correspond to

the boundary layer edge conditions. The pressure is maxi-

mum at the stagnation point followed by continuous ex-

pansion till the cylinder after which the pressure is

constant and then a further rise is observed at the start of

the flare due to the oblique shock at the cylinder flare

junction. The Mach number along the body is shown in

Fig.13 which shows continuous increase till the flare after

which the Mach number falls due to the oblique shock and

the temperature distribution along the axial distance is

shown in Fig.14 which corresponds to the behaviour of the

pressure and Mach number plots. Fig.15 shows the static

temperature, total temperature and total velocity profile at

a typical station 0.374m plotted along the vertical height

from the wall. The temperature in the boundary layer

initially increases due to the viscous dissipation and then

gradually achieves the free stream temperature. The total

temperature achieves the maximum value at around 1cm

from the wall and is constant beyond this height as ex-

pected. The total velocity profile is also on the expected

line. Fig.16 shows the plot of static density profile at the
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station 0.374m from nose. The density at the wall is

minimum in the boundary layer portion were static tem-

perature is highest and gradually increases as the distance

from the wall increases reaching a maximum value at the

shock location and subsequently reducing to free stream

value. Fig.17 shows the plot of stagnation density along

the vertical height from the wall at the location 0.374m

with small increase in the boundary layer portion and then

increasing sharply beyond this and finally reaching the

stagnation density value at a distance of about 11cm from

the wall.

Figure 18 shows the comparison of computed heat flux

for the HB-2 geometry with that of the experimental

results [18]. The heat flux is maximum at the stagnation

point and decreases sharply as the flow expands over the

conical region and then remains nearly constant in the

cylindrical region with slight increase in the flare region

due to compression. The plot shows that the results are

clearly grid independent and also good match with the

experimental data is seen from the computation. The en-

larged view of the heat flux comparison is given in Fig.19

to show the prediction of the heat flux in expansion as well

as compression regions of the geometry. The present

methodology demonstrated for an axi- symmetric geome-

try to obtain the near wall resolution of a laminar hyper-

sonic flow from a Cartesian mesh based approach can be

considered as the first step before extending to three

dimensional geometries.

Heat Flux Estimation for a Typical Bulbous Heat

Shield Configuration

The present hybrid solution methodology is also ap-

plied to a typical bulbous heat shield geometry for which

the shock tunnel experimental results are available at

hypersonic mach numbers [19]. The geometric details are

given in Table-2 and Fig.20. The free stream conditions

are given in Table-3.

The computations are carried out with hybrid mesh

consisting of prism layer of 20mm stitched to the outer

Cartesian mesh. The computations are done for laminar

flow conditions as in the tunnel. The first grid point is of

the order of 11 microns with about 45 number of prism

layer cells.

Figure 21 shows the heat flux along the length of the

model which gives a reasonable match with the shock

tunnel measurements. The maximum heat flux of about

119 W/sq.cm is computed at stagnation point against the

experimental measurement of 114 W/sq.cm.

This is followed by a steep fall due to the expansion

and nearly constant in the cone portion followed by a drop

in the heat flux after the cone due to the expansion at the

cone cylinder junction and after little downstream of the

cylindrical region constant heat flux is observed followed

by further small drop in the boat tail region. After the boat

tail a slight increase in heat flux is noticed due to compres-

sion and remains constant after the pressure recovery in

the cylinder.

Hybrid Solution for Three Dimensional Flows

After reasonable validation of the hybrid solution

methodology to axi-symmetric flows, the next logical step

is to extend it to three dimensional flows. As a first step to

extend this method to three dimensional flows, initially an

Euler solution is obtained over the body with the Cartesian

mesh. In the subsequent step, the prism layers are extruded

from the background Cartesian mesh panels up to a certain

height and the Cartesian mesh Euler solution obtained in

the first step is mapped to this prism layer. Subsequently,

the laminar viscous solution is carried out for this prism

layer of cells alone and the outer boundary condition for

the prism layer cells will be the Cartesian mesh solution.

It is to be noted that, in this case, the interaction of the

viscous layer would not be considered with the outer

inviscid solution and hence will be similar to the boundary

Table-2 : Geometry Details of a Typical Bulbous Heat Shield

D1 (mm) Rn/D1 θc (°) L1/D1 θb (°) D1/D2 L2/D2 L (mm)

50 0.2188 20 1.4062 15 1.1429 1.5 195

Table-3 : Flow Conditions of the Shock Tunnel Experiment (Ref.19)

M∞ P∞ ρ∞ T0 Twall Re based on 50mm dia α (Angle of Attack)

5.75 1320 Pa 0.019 kg/m
3

1829 K 300 K 1.143 x 10
5

0
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layer type of solution. However if the prism layer cells are

stitched to the outer Cartesian mesh then this interaction

would automatically be taken into account as in the hybrid

solution methodology described for axi-symmetric flows

in the previous section. The stitching of this prism layer of

cells in a three dimensional case with the outer Cartesian

mesh is a very involved task and is planned to be taken up

in the next phase of this work. However in many cases, if

the prism layer is extended sufficiently to a distance be-

yond the interaction region, this in itself would give good

solution. In order to demonstrate this methodology, a three

dimensional flow case for the HB-2 geometry described

in Fig.1 is chosen for which the free stream conditions are

given in Table-4.

In the first step, an Euler solution is obtained for the

pure Cartesian mesh for the free stream conditions at angle

of attack 15 degrees. In the next step, unstructured prism

layer is generated from the Cartesian mesh panels on the

body for a distance of 40mm in the normal direction from

the wall with 45 numbers of prism layer cells and the Euler

solution is mapped to the unstructured prism layer. Sub-

sequently, laminar Navier-Stokes equation is carried out

for the prism layer alone with Euler solution boundary

condition imposed for the outer layer of prism cells. Fig.22

shows the ratio of the heat flux to the stagnation point heat

flux plotted along the windward side of the sphere cone

cylinder flare geometry. The figure shows that the com-

puted non-dimensional heat flux distribution along the

body with the hybrid solution methodology shows a rea-

sonable match with the experimentally measured data

obtained from reference 18. The stagnation point is

slightly downstream of the nose cap starting point due to

angle of attack effect. The stagnation point heat flux

obtained from the present computation is 20.3 W/sq.cm

against the experimentally obtained value of 18.23

W/sq.cm. Also at the nose cap starting point, the compu-

tation shows a higher non dimensional heat flux of 0.98 as

compared to the experimentally measured value of 0.95.

Conclusions

A Cartesian mesh based hybrid solution methodology

to resolve the near-wall viscous region in a laminar hyper-

sonic flow is demonstrated for a typical sphere-cone-

cylinder-flare geometry and bulbous heat shield geometry.

The Cartesian mesh based approach consists of building

prism layer from the basic Cartesian mesh intersecting the

body and subsequently stitching the extruded prism layer

with the outer Cartesian mesh and this method is demon-

strated for axi-symmetric flows. For three dimensional

geometries, as a first step, Euler solution is obtained and

this is mapped to the hybrid prism layer and subsequent

laminar Navier-Stokes solution for the prism layer alone

is carried out. The stitching of the prism layer mesh with

the outer Cartesian mesh for three dimensional geometries

is the future work identified. The hybrid solution method-

ology is a combination of unstructured mesh solution for

the near wall prism layer and Cartesian mesh solution

away from the wall. Heat flux computed for a typical cone

cylinder flare geometry and bulbous heat shield type con-

figuration shows good comparison with the reported ex-

perimental results.
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Fig.1 HB-2 Geometry {Ref.18] - (All dimensions in mm)
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Fig.2 Based Cartesian Mesh for HB-2 Geometry

Fig.3 Panels Obtained from Cartesian Mesh Intersecting

Three Dimensional Body (Nose Cone Portion) and Prism

Layer for a Select Panel

Fig.4 Prism Layer at Sphere Cone Region Without

Merging of Small Panels

Fig.5 Prism Layer at Sphere Cone Region with

Merging of Small Panels

Fig.6 Prism Layer Mesh for the Full Geometry

Fig.7 Hybrid Prism Layer Stitched with Outer Cartesian Mesh
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Fig.8 Iteration Convergence for Hybrid Solution for

20 mm Prism Layer

Fig.9 Mach Number Profile at X = 0.153m

Fig.10 Mach Number Profile at X = 0.335 m

Fig.11 Mach Line Contours Over the Geometry

Fig.12 Boundary Layer Edge Static Pressure Along the Body

Obtained from Inviscid Solution

Fig.13 Boundary Layer Edge Mach Number Along the Body

Obtained from Inviscid Solution
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Fig.14 Boundary Layer Edge Static Temperature from

Inviscid Solution

Fig.15 Profiles of Total Velocity and Static and

Total Temperture at X = 0.374 m

Fig.16 Profile of Static Density at Location 0.374 m from Nose

Fig.17 Stagnation Density Profile at Location

0.374 m from Nose

Fig.18 Comparison of Heat Flux along the Wall for

Different Prism Layer Grids

Fig.19 Enlarged View of Heat Flux along the Wall
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Fig.20 Schematic of a Typical Bulbous Heat Shield

Fig.21 Cold Wall Heat Flux along the Wall of the

Bulbous Heat Shield

Fig.22 Cold Wall Heat Flux Distribution along the Windward

Side of HB-2 Geometry at Angle of Attack 15°
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