
FUSION OF OUT OF FOCUS IMAGES USING PRINCIPAL COMPONENT
ANALYSIS AND SPATIAL FREQUENCY

V.P.S. Naidu* and J.R. Raol*

Abstract

Details of principal component analysis and spatial frequency are presented. Two image fusion
architectures are developed to fuse multi focused images and their performance is compared.
In first architecture source images to be fused are considered as whole in the fusion process.
In second architecture the source images to be fused are divided into blocks and then used in
the fusion process. Overall SF shows slightly better performance. Block based image fusion
scheme (second architecture) shows superior performance. This architecture is very simple
and can be used in real time applications.
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Nomenclature

λ = eigenvalue
CF = column frequency
hIf

= normalized histogram

I1 and I2 = source images to be fused

If = fused image

Ir = reference or ground truth image

I1k and I2k = kth block source images

L = number of gray levels
NSFi = ith principal component

NPCi = ith principal component

RF = row frequency
SF = spatial frequency
th = threshold
V = orthogonal projection matrix
X = random vector
DCT = Discrete Cosine Transform
FFT = Fast Fourier Transform
MSIF = Multi Sensor Image Fusion
PCA = Principal Component Analysis
PFE = Percentage Fit Error
PSNR = Peak Signal to Noise Ratio
RMSE = Root Mean Square Error
SD = Standard Deviation
SF = Spatial Frequency

Introduction

Single imaging sensor cannot provide complete infor-
mation about a situation. Multi imaging sensor fusion
would provide better or enhanced information about the
situation. Off late multi sensor fusion has emerged as an
innovative and promising research area. Sensor fusion
could take place at signal level, pixel level, feature level
and symbol level [1]. Multi sensor image fusion (MSIF)
is a technique for merging the registered multi sensor
images to enhance the image information. The fused im-
age has improved contrast and it could be easy for the user
to detect, recognize and identify the targets and increase
users situational awareness [2]. The fusion of images is of
vast significance in numerous applications viz. micro-
scopic imaging, medical imaging, remote sensing, robot-
ics and computer vision. Some common requirements
would be imposed on the fusion results: (1) fused image
should preserve all relevant information contained in the
source images, (2) fusion process would not introduce any
artifacts or inconsistencies which would amuse the human
observer or following processing stages and (3) irrelevant
features and noise should be suppressed in the fused image
to a maximum extent [3]. When image fusion is done at
pixel level the source images are combined without any
pre-processing. The pixel level fusion (also called image
level fusion) algorithms vary from simple image averag-
ing to very complex algorithms. The simplest MSIF is to
take the average of the grey level source images pixel by
pixel. This technique would produce several undesired
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effects and reduced feature contrast. To overcome this
problem, multi-scale transforms, such as wavelets,
Laplacian pyramids, morphological pyramid and gradient
pyramid have been proposed. Multi-resolution wavelet
transforms could provide good localization in both spatial
and  frequency domains. Discrete wavelet transform
would provide directional information in decomposition
levels and contain unique information at different resolu-
tions [4, 5].

In some situations the objects in the scene would be at
different distances from the imaging sensor. Inexpensive
sensor would not focus everywhere. If one object is in
focus then another will be out of focus. Fusing these
images there would be little out of focus in the fused image
[6]. In this paper, an efficient image level fusion algo-
rithms based on principal component analysis and spatial
frequency are proposed. Two different fusion architec-
tures are evaluated. In former architecture source images
to be fused are considered as whole in the fusion process.
There would be some discrepancy in the fused image that
local variations (level of focus) in the source images are
not considered. In second architecture the source images
are decomposed into small blocks and these blocks are
used in the image fusion process. In this the discrepancy
would be reduced since the local variations are considered
in the fusion process. In Ref. 6, block size and threshold
are user defined parameters utilized in the second archi-
tecture. It could be very hard to choose the threshold to get
optimal fusion results. In this paper, a modified algorithm
that computes normalized spatial frequencies is intro-
duced in the fusion process. Since the spatial frequencies
of source images are normalized, the user can choose the
threshold in between 0 to 0.5. Similar methodology is
adopted for principal component analysis based image
fusion algorithm. Since choosing of block size and thresh-
old is complex, a simple solution is provided to get the
optimal fusion results at the cost of execution time. The
performances of these algorithms are evaluated with per-
formance evaluation metrics.

One of the important prerequisites to be able to apply
fusion techniques to source images is the image registra-
tion i.e., the information in the source images needed to be
adequately aligned and registered prior to fusion of the
images. In this paper, it is assumed that the source images
are already registered.

Fusion Algorithms

The details of principal component analysis and spatial
frequency computations are described in this section.

Principal Component Analysis

Principal component analysis (PCA) involves a mathe-
matical procedure that transforms a number of correlated
variables into a number of uncorrelated variables called
principal components. PCA computes a compact and op-
timal description of the data set. The first principal com-
ponent accounts for as much of the variance in the data as
possible and each succeeding component accounts for as
much of the remaining variance as possible. First principal
component is taken to be along the direction with the
maximum variance. The second principal component is
constrained to lie in the subspace perpendicular of the first.
Within this subspace, this component points the direction
of maximum variance. The third principal component is
taken in the maximum variance direction in the subspace
perpendicular to the first two and so on. PCA is also called
as Karhnen- Loeve transform or the Hotelling transform.
PCA does not have a fixed set of basis vectors like FFT,
DCT and wavelet etc. and its basis vectors depend on the
data set. PCA is used extensively in image compression
and image classification.

Let X be a d-dimensional random vector and assume it
to have zero empirical mean. Orthonormal projection ma-
trix V would be such that Y = VT X with the following
constraints. The covariance of Y, i.e. cov(Y) is a diagonal
and inverse of V is equivalent to its transpose. Using
matrix algebra [7].

cov (Y)  =  E ⎧⎨⎩Y YT⎫
⎬
⎭

              =  E ⎧⎨⎩(V TX ) (V T X )
T⎫

⎬
⎭

              =  E ⎧⎨⎩(V TX ) (X T V )⎫⎬⎭

              =  V T E  ⎧⎨⎩X X T⎫
⎬
⎭ V

              =  V T cov (X) V (1)

Multiplying both sides of (Eq.1) by V, one would get

V cov (Y)  =  V V T  cov (X)

                 =  cov (X) V (2)

One could write V as V = [V1, V2, ... , Vd] and cov (Y) in
the diagonal from as :
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By substituting (Eq.3) into (Eq.2) :

⎡
⎣
λ1 V1, λ2 V2, … , λd Vd⎤⎦

=  ⎡
⎣
cov (X) V1, cov (X ) V2, … , cov (X) Vd⎤⎦

(4)

This could be rewritten as :

λi Vi  =  cov (X) Vi (5)

where i = 1, 2, ..., d

Vi is an eigenvector of cov (X)

PCA Algorithm

Let the source images (images to be fused) be arranged
in two column vectors. The steps followed to project this
data into a two dimensional subspaces are:

• Organize the data into column vectors. The resulting
matrix Z is of dimension nx2.

• Compute the empirical mean along each column. The
empirical mean vector M has a dimension of 2 x 1.

• Subtract the empirical mean vector M from each col-
umn of the data matrix Z. The resulting matrix X is of
dimension nx2.

• Find the covariance matrix C of S i.e. C = XT X.

• Compute the eigenvectors V and eigenvalue D of C and
sort them by decreasing eigenvalue. Both V and D are
of dimension 2 x 2.

• Consider the first column of V which corresponds to
larger eigenvalue to compute the principal components
NPC1 and NPC2 as:

NPC1  =  V (1)

∑  V
  and  NPC2  =  V (2)

∑  V
(6)

Image Fusion by PCA

The information flow diagram of PCA based weighted
average image fusion algorithm (first architecture) is
shown in Fig.1a. The source images (images to be fused)
I1 and I2 are arranged in two column vectors and their
empirical means are subtracted. The resulting vector has a
dimension of nx2, where n is length of the each image
vector. Eigenvector and eigenvalues for this resulting
vector are computed and the eigenvectors corresponding
to the larger eigenvalue are obtained. The principal com-
ponents NPC1 and NPC2 (i.e. NPC1 + NPC2 = 1) using
eq.6 are computed from the obtained eigenvector. The
fused image is obtained by:

If  =  NPC1 I1  +  NPC2 I2 (7)

The information flow diagram of PCA based block
image fusion algorithm (second architecture) is shown in
Fig.1b. The input images are decomposed into blocks (I1k
and I2k) of size m x n.  Where I1k and I2k denotes the kth

blocks of I1 and I2 respectively.  Principal components for
each block using Eq.6 are computed. Let the principal
components corresponding kth blocks be  NPC1k and
NPC2k (i.e. NPC1k + NPC2k ).The fusion of kth block of
the fused image is:

Fig.1a Information flow diagram of PCA based weighted
image fusion algorithm

Fig.1b Information flow diagram of PCA based block
 image fusion algorithm
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Ifk  =  

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

 I1k          NPC1k  >  NPC2k  +  th 

 I2k          NPC1k  <  NPC2k  −  th 

 
I1k + I2k

2             otherwise

(8)

where th : user defined threshold

I1k  +  I2k
2  : gray level averaging of corresponding pixels

Spatial Frequency

Spatial frequency measures the overall information
level in an image [6,8]. The spatial frequency for a given
image I of dimension M x N is defined as follows:

Row Frequency :

RF  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯1
MN  ∑ 

i = 0

M − 1

    ∑ 
j = 1

N − 1

 [I (i, j) − I (i, j − 1) ]2 (9)

Column Frequency : 

CF  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯1
MN  ∑ 

j = 0

N − 1

    ∑ 
i = 1

M − 1

 [I (i, j) − I (i, − 1, j) ]2 (10)

Spatial Frequency :

SF  =  √⎯⎯⎯⎯⎯⎯⎯⎯ RF 2 + CF 2 (11)

where 

M = number of rows; N = number of columns
(i, j) = pixel index ; I = given image
I (i, j) = gray value at pixel (i, j)

Image Fusion by SF

The information flow diagram of SF based weighted
image fusion algorithm (first architecture) is shown in
Fig.2a. Denote the SF1 and SF2 spatial frequencies of input
images I1 and I2 respectively. The computed spatial fre-
quencies are then normalized as:

NSF1  =  
SF1

SF1 + SF2
  and  NSF2  =  

SF2
SF1 + SF2

(12)

The fused image is obtained by

If  =  NSF1 I1  +  NSF2 I2 (13)

The information flow diagram of SF based block im-
age fusion algorithm (second architecture) is shown in
Fig.2b. The input images are decomposed into blocks (I1k
and I2k). Normalized spatial frequencies for each block
using Eq.12  are computed. Denote the normalized spatial
frequencies of  I1k and I2k  by NSF1k and NSF2k respec-
tively. The fusion of the  kth  block of the fused image is:

Ifk  =  

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

 I1k          NSF1k  >  NSF2k  +  th 

 I2k          NSF1k  <  NSF2k  −  th 

 
I1k + I2k

2             otherwise

(14)

Majority Filter

In  block  image fusion algorithm, majority filter is
used to avoid the artifacts in fused image caused by the
fusion rules. If the center block comes from I1 and the
surroundings blocks are from I2 then the centre block will
be  replaced  by  the  block  from  I2 and vise versa [7].

Fig.2a Information flow diagram of SFA based weighted
image fusion algorithm

Fig.2b Information flow diagram of SFA based block
image fusion algorithm
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The majority filter with the order of 3 x 3 is used in this
study.

Example: Majority filter working principal is demon-
strated here. Denote a and b as the block images coming
from I1 and I2 respectively. A block window in the the-
matic map is shown in left side. One can see that the blocks
(a) from I1 is six times and blocks (b) from I2 is three times.
The majority filter replaces the centre block with the block
coming from I1, since the majority of neighboring blocks
are coming from the I1.

Performance Evaluation

With Reference Image

When the reference image is available, the perform-
ance of image fusion algorithms can be evaluated using
the following metrics.

• Root Mean Square Error (RMSE) [9]

This metric is computed as the root mean square error
of the corresponding pixels in the reference image Ir and
the fused image If. This metric will be nearly zero when
the reference and fused images are similar. This will
increase when the dissimilarity increases.

RMSE  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯1
MN  ∑ 

i = 1

M

    ∑ 
j = 1

N

 ⎛
⎝
Ir (i, j) − If (i, j − 1)⎞

⎠

2
(15)

• Percentage Fit Error (PFE) [9]

This metric is computed as the norm of the difference
between the corresponding pixels of reference and fused
image to the norm of the reference image.  This will be
zero when both reference and fused images are exactly
alike and it will be increased when the fused image is
deviated from the reference image.

PFE  =  
norm (Ir − If )

norm (Ir )
  ∗ 100 (16)

where  is the operator to compute the largest singular
value.

• Peak Signal to Noise Ratio (PSNR) [10]
Its value will be high when the fused and reference

images are similar. Higher value implies better fusion. The
peak signal to noise ratio is computed as:

PSNR = 201og10 
⎛

⎜

⎝

⎜
⎜
⎜
⎜

L2

1
MN  ∑ 

i = 1

M

  ∑ 
j = 1

N

 ⎛
⎝
Ir (i, j) − If (i, j − 1)⎞

⎠

2

⎞

⎟

⎠

⎟
⎟
⎟
⎟

(17)

where L in the number of gray levels in the mage

Without Reference Image

When the reference image is not available, the per-
formance of image fusion algorithms can be evaluated
using the following metrics.

• Standard Deviation [11]

It is known that standard deviation is composed of the
signal and noise parts. This metric would be more efficient
in the absence of noise. It measures the contrast in the
fused image. An image with high contrast would have a
high standard deviation.

σ  =  √⎯⎯⎯⎯⎯⎯⎯  ∑ 
i = 0

L

 (i − i
_
 )2 hI

f
 (i ) ,      i

_

  =  ∑ 
i = 0

L

 ihI
f

(18)

where 

hIf
 (i) is the normalized histogram of the fused image

If (x , y)  and L number of frequency bins in the histogram.

• Spatial Frequency [8]

This frequency in spatial domain indicates the overall
activity level in the fused image. It is computed using the
Eq.11.

The fused image with higher SF has to be chosen, since
SF shows the overall information content in the image.

Results and Discussion

The ground truth image It is shown in Fig.3a. The
source images I1 and I2 to be fused are shown in Fig.3b.
The source images have been created by blurring the some
portions of the reference image with a Gaussian mask
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using diameter of 12 pixels. The fused & error images by
PCA and SF with the procedure given in first architecture
are shown in Fig.4a and 4b respectively. Performance
evaluation metrics are shown in Table-1. From these re-
sults it is observed that image fusion by SF is marginally
better.

Figure 5a shows an 100 x 100 image block and Fig.5b
to d show the degraded versions after blurring with a disk
of radius 5, 9 and 21pixels respectively. Fig.5a is taken as
one of the source images I1 and the blurred image is taken
as another source image I2. The computed principal com-
ponents and normalized spatial frequencies are shown in
Table-2. Fig.6 shows the principal components and nor-

malized spatial frequencies with respect to increase in the
amount of blur. It is observed that second principal com-
ponent and spatial frequency are diminished as the images
get more blurred. The rate of change of principal compo-
nents and normalized spatial frequencies are shown in
Fig.7. It is observed that the rate of change of SF is high.
Hence, SF would be better indicator of the degradation.

The performance metrics for different thresholds and
block sizes are shown in Tables-3 and 4. It is observed that
threshold greater than 0.1 incase of PCA and 0.15 incase

Table-1 : Performance evaluation metrics
(first architecture)

RMSE PFE PSNR SD SF
PCA 9.3383 4.0057 38.4621 45.9203 9.1679
SF 9.2249 3.9570 38.5152 45.9901 9.2496

Table-2 : Principal components and normalized
spatial frequencies of blurred images

Radius=0 Radius=5 Radius=9 Radius=21
NPC1 0.5 0.5347 0.5611 0.6213
NPC2 0.5 0.4653 0.4389 0.3787
NSF1 0.5 0.7197 0.83 0.8936
NSF2 0.5 0.2803 0.17 0.1064

Fig.3a Ground truth image (It)

Fig.3b Source images to be fused

Fig.4a Fused and error images by PCA

Fig.4b Fused and error images by SF

Fig.5 Original and its blurred versions with standard
deviation of 10 (a) radius = 0 pixels; (b) radius = 5 pixels;

(c) radius = 9 pixels; (d) radius = 21pixels
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of SF show the degraded performance. The fusion algo-
rithm becomes gray level averaging of corresponding
pixels when the chosen threshold is too high (see Eq. 8 and
14). And block sizes 4 x 4, 8 x 8 and 32 x 32 show the
degraded performance in both PCA and SF. The fused and
error images by PCA and SF are shown in Fig.8a and 8b
respectively with block size 64 x 64 and th = 0.025.
Table-5 shows the performance evaluation metrics. It is
observed that SF shows slightly better performance.
Fig.9a and Fig.9b show the fused and error images by PCA
and SF respectively with block size 4 x 4 and th = 0.2. And
and Table-6 shows the performance evaluation metrics. It

is observed that in this situation also SF showed slightly
better performance.

SF shows slightly better performance. Block based
image fusion scheme (second architecture) shows en-
hanced performance. It could be due to the consideration
of local variations presented in the source images. Selec-
tion of block size and threshold are very difficult in prac-
tice. One way to obtain optimal fusion image is, compute
the performance of the fusion for different combination of
block sizes and thresholds and then select the fused image
corresponding to maximum value from the performance
metrics.

Fig.6 Normalized spatial frequencies and  principal compo-
nents for varying radius and standard deviation of 10

Fig.7 Rate of change of NSF/NPC with magnitude blur

Table-3a : RMSE of fused image by PCA for different thresholds and block sizes
th 4x4 8x8 16x16 32x32 64x64 128x128 256x256
0 8.0595 6.5148 3.8312 0.0880 0.7468 0.8170 0.0214

0.025 8.0261 6.5426 3.8312 0.0882 0.7468 0.8170 0.0214
0.05 8.0046 6.5426 3.8312 0.0882 0.7468 0.8170 0.0214
0.075 7.9869 6.5014 3.8311 0.0702 0.7468 7.7641 7.5779
0.1 7.9500 6.5014 3.8311 0.0702 0.7530 8.8116 7.5779

0.125 7.9454 6.5012 3.8311 0.0702 0.7539 8.8116 7.5779
0.15 7.9717 6.5208 3.8311 0.0702 0.7695 9.2799 7.5779
0.175 7.9111 6.4796 3.8311 0.0848 0.7695 9.2799 9.4173
0.2 7.9420 6.4796 3.8311 0.0932 1.3909 9.9585 9.4173

0.225 8.0528 6.5012 3.8311 0.0932 2.5048 10.5712 9.4173
0.25 8.0637 6.5454 3.8311 0.1074 2.5068 9.9022 9.4173
0.275 8.0652 6.5080 3.8311 0.1153 2.5034 9.9022 9.4173
0.3 8.0737 6.5274 4.8848 0.1402 2.5127 9.9022 9.4173
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Table-3b :  SD of fused image by PCA for different thresholds and block sizes
th 4x4 8x8 16x16 32x32 64x64 128x128 256x256
0 49.1966 49.6046 49.9234 50.1269 50.1223 50.1231 50.1270

0.025 49.2081 49.6216 49.9234 50.1269 50.1223 50.1231 50.1270
0.05 49.2135 49.6216 49.9234 50.1269 50.1223 50.1231 50.1270
0.075 49.2137 49.6237 49.9235 50.1268 50.1223 48.3723 47.2823
0.1 49.2343 49.6237 49.9235 50.1268 50.1216 47.4560 47.2823

0.125 49.2401 49.6238 49.9235 50.1268 50.1214 47.4560 47.2823
0.15 49.2367 49.6235 49.9235 50.1268 50.1210 47.0240 47.2823
0.175 49.2784 49.6412 49.9235 50.1267 50.1210 47.0240 45.8803
0.2 49.2811 49.6412 49.9234 50.1266 50.0752 46.4345 45.8803

0.225 49.2512 49.6238 49.9234 50.1266 49.8585 45.8920 45.8803
0.25 49.2527 49.6213 49.9234 50.1267 49.8574 46.1012 45.8803
0.275 49.2497 49.6220 49.9234 50.1267 49.8576 16.1012 45.8803
0.3 49.2652 49.6218 49.7869 50.1265 49.8567 46.1012 45.8803

Table-4a :  RMSE of fused image by SFA for different thresholds and block sizes
th 4x4 8x8 16x16 32x32 64x64 128x128 256x256
0 6.9607 3.9930 2.0716 0.1861 0.2168 0.0214 0.0214

0.025 6.7950 3.7123 2.0716 0.1861 0.2168 0.0214 0.0214
0.05 6.7549 3.7123 2.0716 0.1861 0.4002 0.0214 0.0214
0.075 6.6645 3.7866 2.0716 0.1861 0.4002 0.0214 0.0214
0.1 6.6217 3.7202 2.0716 0.1861 0.4002 0.0214 0.0214

0.125 6.5846 3.5754 2.0717 0.1862 0.4002 0.0214 0.0214
0.15 6.4883 3.6633 2.0717 0.1862 0.4002 0.0214 0.0214
0.175 6.4092 3.5619 2.0570 0.1862 0.4002 0.0214 0.0214
0.2 6.3023 3.5618 2.0570 0.1862 0.4002 0.0214 0.0214

0.225 5.9935 3.5868 2.0570 0.1862 0.4002 0.0214 0.0214
0.25 5.9588 3.5869 2.0570 0.1862 0.4002 0.0214 0.0214
0.275 5.9126 3.5873 2.0570 0.1862 0.4002 0.0214 0.0214
0.3 5.8955 3.5873 2.0570 0.1862 0.4002 0.0214 0.0214
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Table-4b :  SD of fused image by SFA for different thresholds and block sizes
th 4x4 8x8 16x16 32x32 64x64 128x128 256x256
0 49.6070 49.9562 50.0699 50.1265 50.1262 50.1270 50.1270

0.025 49.6653 49.9744 50.0698 50.1265 50.1262 50.1270 50.1270
0.05 49.6709 49.9744 50.0698 50.1265 50.1262 50.1270 50.1270
0.075 49.7048 49.9712 50.0698 50.1265 50.1262 50.1270 50.1270
0.1 49.7127 49.9714 50.0698 50.1265 50.1262 50.1270 50.1270

0.125 49.7371 49.9786 50.0698 50.1265 50.1262 50.1270 50.1270
0.15 49.7499 49.9736 50.0699 50.1265 50.1262 50.1270 50.1270
0.175 49.7714 49.9810 50.0706 50.1265 50.1262 50.1270 50.1270
0.2 49.8036 49.9811 50.0706 50.1265 50.1262 50.1270 50.1270

0.225 49.8809 49.9792 50.0706 50.1265 50.1262 50.1270 50.1270
0.25 49.8991 49.9792 50.0706 50.1265 50.1262 50.1270 50.1270
0.275 49.8958 49.9790 50.0706 50.1265 50.1262 50.1270 50.1270
0.3 49.8886 49.9790 50.0706 50.1265 50.1262 50.1270 50.1270

Fig.8a Fused and error images by PCA (th = 0.025 and
block size 64 x 64)

Fig.8b Fused and error images by SFA (th = 0.025 and
block size 64 x 64)

Fig.9a Fused and error images by PCA (th = 0.02 and
block size 4 x 4)

Fig.9b Fused and error images by SF (th = 0.02 and
block size 4 x 4)
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Conclusion

PCA and SF based image fusion algorithms are devel-
oped to fuse multi focused images and their performance
is compared. It is concluded that SF showed slightly better
performance. Block based image fusion scheme showed
enhanced performance. This architecture is very simple
and can be used in real time applications.
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Table-5 : Performance evaluation metrics with
block size of 64x64 and th = 0.025 

RMSE PFE PSNR SD SF
PCA 0.1669 0.073 55.9395 57.0859 18.8963
SF 0.161 0.0704 56.0964 57.086 18.8962

Table-6 : Performance evaluation metrics with
block size of 4x4 and th = 0.2

RMSE PFE PSNR SD SF
PCA 4.8068 2.102 41.3462 56.7722 18.7141
SF 4.0151 1.7558 42.1279 56.8962 18.8518
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