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Abstract

The estimation of the states-parameters of non-linear system is often carried out using
Extended Kalman Filter (EKF). The EKF is only reliable for systems that are almost linear on
the time scale of the updates (i.e. sampling interval). The limitation of EKF can be overcome
by use of another class of recursive estimator named derivative free Kalman filter (DFKF) or
more popularly known as Unscented Kalman filter, a method that propagates mean and
covariance using non-linear transformation. In this paper two methods: i) factorized version
of EKF (UD Extended Kalman Filter or UDEKF) and ii) DFKF are studied and evaluated
using various sets of simulated data of the non-linear systems as well as one real data set.
Sensitivity study of DFKF with respect to tuning parameters such as α, β, and κ (used in
creation of sigma points and their associated weights) is also carried out using one set of
simulated data. DFKF as compared to EKF is more accurate, easier to implement and has
same order of calculations. The concept of DFKF is extended to data fusion (DF) for similar
sensors and algorithm is named DF-DFKF. Application of DFKF is demonstrated in parame-
ter estimation problem.

Key words:Non-linear systems, Target tracking, Kalman filter, Extended Kalman filter, UD
factorization, Derivative free transformation, Derivative free Kalman filter, Kinematic con-
sistency, Parameter estimation, Data fusion

Nomenclature

T = sampling interval
h(.) = non-linear sensor model 
Zm = sensor measurement vector 
W = weight of sigma point 
P = state error covariance matrix
K = filter gain
ρ = air density
C(.) = aerodynamic force and moment coefficients

C(.)(.)
= aerodynamic force and moment derivatives

f(.) = non-linear plant model
Zt = measurement vector with out noise
χ = state vector of sigma point
na = augmented state vector dim. of DFKF
S = innovation covariance matrix
Iyy = moment of inertia

c = mean aerodynamic chord

Introduction

Kalman Filter (KF) algorithm is used for recursive
estimation of any linear system being observed by single
or group of sensors with linear models, however, it is
found that in many practical situations, system dynamics
or/and sensor model have non-linear characteristics.
Therefore, in order to use Kalman filter for such cases, the
non-linear system or sensor model needs to be linearised
with respect to predicted/estimated states at every instant
of time and this results in Extended Kalman Filter (EKF)
approach.

EKF has been extensively used for many non-linear
applications and is widely accepted by estimation commu-
nity for more than three decades. EKF algorithm provides
only sub-optimal solution to a given non-linear estimation
problem and it has been observed that algorithm has major
two limitations such as:
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• The derivations of the Jacobian matrices (in case of
linearization of sensor model), in most applications, are
nontrivial and that can lead to implementation problem.

• Linearization can lead to highly unstable filter (even
divergence) if the assumption that system is almost
linear (local linearity) on the time scale of the updates
(i.e. sampling interval) is violated. The filter diver-
gence for highly non-linear system can occur only
when the update interval is large and within that inter-
val the system is treated as a linear one but in reality if
it is non-linear.

In target tracking application, sensor often provides
non-linear measurements in Polar frame i.e. range, bearing
or azimuth and elevation, whereas the state estimation is
performed in Cartesian frame. In such circumstances, state
estimation can be performed in several ways. For e.g. in
converted measurement Kalman filter (CMKF), the meas-
urements are transformed from Polar frame to Cartesian
frame and then these converted measurements are used for
state estimation. The major drawback of this approach is
that it introduces measurements inaccuracies due to trans-
formation, especially when the cross range error is more.
The other way is to use EKF but it gives poor estimation
if there is large bearing angle error or if there is any sort
of discontinuity in the measurements, in both the cases
there is a chance of violating assumption of local linearity.

A technique named Derivative Free Kalman Filter
(DFKF) [2] helps to alleviate the problems associated with
EKF. This filter yields an identical performance as com-
pared to EKF when the assumption of local linearity is not
violated. The DFKF operates on the principle that it is
easier to approximate a Gaussian distribution than it is to
approximate (i.e. linearization) an arbitrary non-linear
function. It does not require any sort of linearization and
uses deterministic sampling approach to capture the mean
and covariance estimates with a minimal set of sample
points or so called sigma points. The emphasis is shifted
from linearization of non-linear system to sampling ap-
proach of probability density function.

In this paper, two schemes: factorized version of EKF
and DFKF are studied and evaluated using various sets of
simulated data corresponding to the non-linear systems as
well as one real data set. In addition to that, sensitivity
study of DFKF with respect to tuning parameters such as
α, β, and κ (used in creation of sigma points and their
associated weights) is also carried out using one set of

simulated data. The concept of DFKF is extended to data
fusion for similar sensors. Application of DFKF is dem-
onstrated in parameter estimation problem also.

General Representation of Non-linear Systems

Consider a non-linear system/model in discrete do-
main:

X (k + 1)  =  f  [X (k), u (k), w (k), k ] (1)

where X (k) is the n-dimensional state of the model, u (k)
is control input vector, n-dimensional w (k) is the process
noise vector (due to external disturbances or/and modeling
errors) with Gaussian distribution and zero mean with
covariance matrix Q, and k is the scan number. Assume
that some of the states of the system represented by Eq.(1)
are observed by sensor that has the following model:

Zm (k)  =  h [X (k), u (k), k ]  +  v (k) (2)

where Zm (k) is the m-dimensional measurement vector,
m-dimensional v (k) is the measurement noise with Gauss-
ian distribution and zero mean with a covariance matrix
R.

Upper-Diagonal Extended Kalman Filter-UDEKF

The algorithm UDKF is numerically stable and com-
putationally efficient method for implementing Kalman
filter [1]. The term "U-D covariance factorization" comes
from a property of non negative definite symmetric matri-
ces, according to which such a matrix P can be factored
into P = UDUT, where U is an upper triangular matrix with
unit elements on its main diagonal and D is a diagonal
matrix. The algorithm for this filter is given in two parts
i.e. i) state and covariance propagation and ii) state and
covariance update. In present paper, UDEKF is used for
the comparison with DFKF. Due to page limits, UDEKF
equations can be found in [4].

Derivative Free Transformation and DFKF

As far as numerical stability is concerned, UDEKF
provides an edge over conventional EKF, but the basic
limitations of EKF remain same even for UDEKF. There-
fore, it becomes very essential to have an algorithm that is
possibly more accurate than linearization and meets the
requirements of almost similar implementation and com-
putational cost as of EKF.
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The fundamental difference behind the working prin-
ciple of EKF and DFKF [2] is that, in EKF, the non-linear
models are linearised to parameterise the probability den-
sity function (pdf) in terms of its mean and covariance,
whereas, for DFKF linearization is avoided and pdf is
parameterised through non-linear transformation of deter-
ministically chosen sample points. The non-linear trans-
formation is termed as derivative free transformation
(DFT) due to a fact that the transformation does not
involve any sort of derivative expression. The DFT tech-
nique is firmly established on the fact that it is easier to
approximate a Gaussian distribution than to approximate
an arbitrary non-linear function or transformation. Fig. 1
shows pictorial representation of DFT for the following
example:

Consider propagation of a random variable  x of di-
mension  L (in Fig.1, L=2) through a non-linear function
y = f (x). Assume that mean and covariance of sigma
points, shown by black dots in left side of Fig.1, for
random variable are x and Px respectively. These sigma
points and their associated weights are deterministically
created using the following equations:

χ0  =  x
_

χi  =  x
_
 + (√⎯⎯⎯⎯⎯⎯⎯⎯(L + γ) Px )i              i = 1, ... , L

χi  =  x
_
 − (√⎯⎯⎯⎯⎯⎯⎯⎯(L + γ) Px )i − L          i = L + 1 , ... , 2 L (3)

W0
 (m)  =  λ

L + λ

W0
 (c)  =  λ

L + λ
 + (1 − α 2 + β )

Wi
 (m)  =  Wi

 (c)  =  I
2 (L + λ)

        i = 1 , … ,  2 L (4)

The associated weights can be positive or negative, but
to provide unbiased transformation, they must satisfy the

condition ∑ 
i = 1

2 L

  Wi
  (m or c )  =  1. For square root in Eq. (3),

it is proposed to use numerically efficient and stable
method such as Cholesky decomposition. The scaling
parameters used for the creation of sigma points and their
associated weights are: α which determines the spread of
sigma points around x, β is used to incorporate any prior
knowledge about distribution of  x, λ = α2 (L+κ) - L and
κ is the secondary tuning parameter. The sigma points
created using Eq. (3) are propagated through the non-lin-
ear function (yi = f (χi), where, i = 0, ...., 2L) resulting in
transformed sigma points (black dots in right side of
Fig.1). The mean and covariance of transformed points are
formulated as: 

y
_
  =  ∑ 

i = 0

2 L

 Wi
 (m) yi (5)

Py  =  ∑ 
i = 0

2 L

 Wi
 (c)   ⎧

⎨
⎩ yi − y

_
 ⎫

⎬
⎭  

⎧
⎨
⎩ yi − y

_
 ⎫

⎬
⎭

T (6)

The DFKF is straightforward extension of the DFT for
the recursive estimation problems. The state of DFKF can
be reconstructed by introducing the concept of augmented
state vector that consists of actual system and process
noise states each with n-dimension, and m-dimensional
measurement noise state. Then the dimension of aug-
mented state vector becomes na = n+n+m = 2n+m. Al-
though augmentation technique lands up in use of
additional sigma points, it implicitly incorporates the ef-
fects noises at various stages. The steps required in imple-
mentation of DFKF at every sampling point can be
specified as follows in some details:

DFKF Initialization

X
^

 (0 ⁄ 0)  =  E [X (0 ⁄ 0)]

P
^

 (0 ⁄ 0)  =  E 
⎡
⎢
⎣
⎛
⎝X (0 ⁄ 0) − X

^
 (0 ⁄ 0)⎞⎠ ⎛⎝X (0 ⁄ 0) − X

^
 (0 ⁄ 0)⎞⎠

T
⎤
⎥
⎦

(7)

Fig.1 Derivative fre transformation [3]
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Augmented state and its error covariance are repre-
sented as :

X
^ a (0 ⁄ 0)  =  E ⎡⎣X

 a (0 ⁄ 0)⎤⎦

=  ⎡⎢
⎣
X T (0 ⁄ 0)    0, ... , 0

n − dim  w
     0, ... , 0

m − dim  v
⎤
⎥
⎦

T

P
^ a (0 ⁄ 0) = E 

⎡
⎢
⎣
⎛
⎝X

 a (0 ⁄ 0) − X̂ (0 ⁄ 0)⎞⎠ 
⎛
⎝X a (0 ⁄ 0) − X

^ a (0 ⁄ 0)⎞⎠

T
⎤
⎥
⎦

=  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

P
^

 (0 ⁄ 0)

0

0

      

0

Q

0

      

0

0

R

⎤

⎥

⎦

⎥
⎥

⎥
⎥
2 n + m   by   2 n + m

(8)

Sigma Points Computation

χ0
 a (k ⁄ k) = X

^ a (k ⁄ k)

χ
i
 a (k ⁄ k) = X

^ a (k ⁄ k) + ⎛⎝√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ (na + λ) P
^ a (k ⁄ k) ⎞

⎠i
   i = 1 , … , na

χ
i

 a
 (k ⁄ k) = X

^ a
 (k ⁄ k) − 

⎛
⎜
⎝
√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ (n

a
 + λ) P

^ a (k ⁄ k) ⎞
⎟
⎠ i −n

a

 i = n
a
 + 1 , … , 2n

a

(9)

where, χ a  =  
⎡

⎢

⎣

⎢

⎢

χ
−

state

     
χw

−
process noise

     
χ v

−
meas .  noise

⎤

⎥

⎦

⎥

⎥

State and Covariance Propagation

χ (k + 1 ⁄ k)  =  f ⎛⎝χ (k ⁄k), u (k) + χw (k ⁄ k) , k⎞
⎠

X
~

 (k + 1 ⁄ k)  =  ∑ 
i = 0

2 n
a

 Wi
 (m)  χi (k + 1 ⁄ k)

P
~

 (k + 1 ⁄ k)  =  ∑ 
i = 0

2 n
a

 Wi
 (c)  ⎡⎢

⎣
χi (k + 1 ⁄ k) − X

~
 (k + 1 ⁄ k)⎤⎥

⎦

⎡
⎢
⎣
χi (k + 1 ⁄ k) − X

~
 (k + 1 ⁄ k)⎤⎥

⎦

T
(10)

W0
 (m)  =  λ

na + λ

W0
 (c)  =  λ

na + λ
 + (1 − α2 + β)

Wi
  (m)  =  Wi

 (c)  =  1
2 (na + λ)

      i = 1 , ... ,  2 na (11)

State and Covariance Update

y (k + 1 ⁄ k)  =  h (χ (k ⁄k), u (k) , k) + χv (k ⁄ k)

Z
~

 (k + 1 ⁄ k)  =  ∑ 
i = 0

2 n
a

 Wi
 (m)  yi (k + 1 ⁄ k) (12)

S  =  ∑ 
i = 0

2 n
a

 Wi
 (c)  ⎡⎢

⎣
yi (k + 1 ⁄ k) − Z

~
 (k + 1 ⁄ k)⎤⎥

⎦

⎡
⎢
⎣
yi (k + 1 ⁄ k) − Z

~
 (k + 1 ⁄ k)⎤⎥

⎦

T

Pxy  =  ∑ 
i = 0

2 n
a

 Wi
 (c)  ⎡⎢

⎣
χi (k + 1 ⁄ k) − X

~
 (k + 1 ⁄ k)⎤⎥

⎦

⎡
⎢
⎣
yi (k + 1 ⁄ k) − Z

~
 (k + 1 ⁄ k)⎤⎥

⎦

T

K  =  Pxy S
 −1     (filter gain) (13)

X
^

 (k+1 ⁄ k+1) = X
~

 (k+1 ⁄ k) + K ⎛
⎝
Zm (k+1) − Z

~
 (k+1 ⁄ k)⎞

⎠

P
^

 (k+1 ⁄ k+1)  =  P
~

 (k+1 ⁄ k)  −  K S KT (14)

Results of Numerical Simulation

Example 1: Target Tracking

A 3D Cartesian simulation is carried out for an aero-
space vehicle moving with constant acceleration and
locked by a sensor capable of giving vehicle information
in terms of range (meter), azimuth (rad.), and elevation
(rad.). For the simulation of process model and sensor
model, the following information is used:

- true (actual) initial state of the vehicle:
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Xt (0 ⁄ )  =  [x   x
.
   x..   y   y

.
   y

..
   z   z.   z.. ]

=  [10   10   0.1   10   5   0.1   1000   0   0]

- sampling interval (T) and total flight time (TF) : 0.1 sec
and 100 sec (note that simulation is carried out with
fixed-step size to save memory and to speed up process
which may not be possible with variable step-size)

- process noise variabce : Q = 0.01

- process mode (F) : 

F1  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢

1

0

0

      

T

1

0

      

T 2

2

T

1

⎤

⎥

⎦

⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥

 ;     F  =  
⎡

⎢

⎣

⎢

⎢

F 1
0
0

      

0
F 1
0

      

0
0

F 1

⎤

⎥

⎦

⎥

⎥

- process noise matrix (G) :

G 1  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

T 3

6

0

0

      

0

T 2

2

0

      

0

0

T

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 ;    G  =  
⎡

⎢

⎣

⎢

⎢

G 1
0
0

      

0
G 1
0

      

0
0

G 1

⎤

⎥

⎦

⎥

⎥

The noisy polar measurements are generated using
following model :

Zm} (k)  =  
⎡
⎢
⎣

⎢
⎢

r (k )
−

range
     

θ (k)
−

azimuth
     

φ (k)
−

elevation

⎤
⎥
⎦

⎥
⎥

r (k)  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯x (k)
2 + y (k)

2 + z (k)
2  + nr (k)

θ (k)  =  tan −1 ( y (k) ⁄ x (k) )  +  nθ (k)

φ (k)  =  tan−1  (z (k) ⁄  √⎯⎯⎯⎯⎯⎯⎯⎯⎯ x (k)
2 + y (k)

2 )  +  nφ (k) (15)

Here, nr , n θ and nφ  are random noise sequences with
Gaussian distribution. The standard deviation of measure-
ment noise for range (σr), azimuth (σ θ) and elevation are

computed offline based on pre-specified Signal-to-Noise
Ratio (SNR) of 10. The measurement noise covariance
matrix  R can be written as

R  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

σr
2

0

0

      

0

σ θ
 2

0

      

0

0

σ φ
 2

⎤

⎥

⎦

⎥
⎥

⎥
⎥

The state estimation process is carried out using UDEKF
and DFKF algorithms.

UDEKF and DFKF Initialization

For UDEKF, its initial state X̂1 (0 ⁄ 0) is kept near to
Xt (0 ⁄ 0), initial UD matrix contains 

P
^ 1 (0 ⁄ 0) = E ⎡

⎣
(Xt (0

 ⁄ 0) − X
^ 1 (0 ⁄ 0) (Xt (0

 ⁄ 0) − X
^ 1 (0 ⁄ 0))

T ⎤
⎦

and, G, i.e., ⎡⎣P̂ 1 (0 ⁄ 0) | G ⎤⎦. In case of DFKF, its initial
state  X̂ 2 (0 ⁄ 0)  and  its  covariance P̂ 2 (0 ⁄ 0) are  kept
equal to X̂ 1 (0 ⁄ 0) and

⎡

⎢

⎣

⎢
⎢
⎢
⎢

P̂ 1 (0 ⁄ 0)

0

0

      
0
Q

0
      

0
0
R

⎤

⎥

⎦

⎥
⎥
⎥
⎥

 respectively. The suitablevalues af-

ter various trials and run of additional tuning parameters
(for DFKF only) such as α, β, and κ are found to be 1, 0,
and 0 respectively. There is no straight rule or methodol-
ogy to find out the value of the tuning parameters and in
present case they are chosen based on observing the states
error (true-minus estimated) becoming minimum (nearly
optimal!). The results are generated for 25 Monte Carlo
simulations (for every run, seed of random number gener-
ator, used to generate measurement noise, is changed) only
since no significant change in results is noticed for higher
number (more than 25) of Monte Carlo runs. In Fig. 2, the
true and estimated target states in x-axis are compared for
both the filters. From this figure (especially by seeing
velocity and acceleration states), it is clear that estimated
states from DFKF are closer to true values than that from
UDEKF. Also DFKF shows less estimation lag (approxi-
mately 7 second less) compared to UDEKF. Additionally,
both filters are compared in term of Root Sum Square
Position Error

MAY 2008 NON-LINEAR STATE PARAMETER ESTIMATION 105



RSSPE = 1
25 ∑ 

m = 1

25

√⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(x
t
 (k) − x̂ (m, k))

2
 + (y

t
 (k) − ŷ (m, k))

2
 + (z

t
 (k) − ẑ (m, k))

2  ;

k = 1, ..., N ,

where N is the total data point,  x̂ , ŷ and ẑ are the estimated
target positions in x, y and z axis respectively, and m is the
Monte Carlo run index. The results are shown in Fig. 3. It
can be observed that the error due to UDEKF is initially
comparable with DFKF but increases with time whereas
DFKF shows almost constant error, much lesser in mag-
nitude for entire scans.

Example 2: Kinematic Consistency

In second example, an effort has been made to check
the performance of both the filters for kinematics consis-
tency (required for flight path reconstruction) using real-
istic longitudinal short period and lateral-directional (for
flight condition: Mach = 0.5 and altitude = 4 Km), gener-
ated from a six-degree-of freedom simulation of an air-
craft. The basic kinematic models required in state
estimation are as follows:

u
.
  =  − (q − Δ q) w + (r − Δ r) v − g sin θ + (ax − Δ ax) ,

v
.
  =  − (r − Δ r) u + (p − Δ p) w + g cos θ sin φ + ay ,

w
.
 = − (p − Δ p) v + (q − Δ q) u + g cos θ cos φ + (az − Δ az) ,

φ
.
 = (p − Δ p) + (q − Δ q) sin φ tan θ + (r − Δ r) cos φ tan θ ,

θ
.
 = (q − Δ q) cos φ − (r − Δ r) sin φ ,

h
.
 = u sin θ − v cos θ sin φ − w cos θ cos φ (16)

where, Δ ax , Δ az , Δ p , Δ q , Δ r , Kα , Kθ  are the bias
terms, and p , q , r , ax , ay , az are the control inputs to the
process model.

Observation or Measurement Model

Zt|m  =  ⎡
⎣
Vm   αm   βm   φm   θm   hm⎤

⎦

Vm  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯un
 2 + vn

 2 + wn
 2  ,     αm  =  Kα tan−1 

⎡
⎢
⎣

wn
un

⎤
⎥
⎦
 ,

βm = sin−1  
⎡
⎢
⎣

⎢
⎢

vn

√⎯⎯⎯⎯⎯⎯⎯⎯⎯  un
 2 + vn

 2 + wn
 2    

⎤
⎥
⎦

⎥
⎥
 ,

φm  =  φ + Δ φ ,     θm  =  K θ θ ,      hm  =  h (17)

where, un , vn , wn are the velocity components along the
three axes at the nose boom of the aircraft and computed
as follows:

un = u − (r − Δ r) Yn + (q − Δ q) Zn ,

vn = v − (p − Δ p) Zn + (r − Δ r) Xn ,

wn = w − (q − Δ q) Xn + (p − Δ p) Yn (18)

where, Xn , Yn and Zn  are the offset distances from nose
boom to CG and their values are kept at 12.586, 0.011, and
0.14 respectively. The measurement noise with SNR of 10
is added externally only to the observables
V , α ,β , φ , θ , h. No noise is added to the rates and accel-

Fig.2 Comparison of true and estimated states - Example 1 Fig.3 RSSPE calculated for UDEKF and DFKF - Example 1
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erations during the data generation because in general rate
and acceleration sensors are supposed to be very accurate.

The additional information used in both the filters is:

- initial state X̂ 1 (0 ⁄ 0) and X̂ 2 (0 ⁄ 0)

= [u  v  w  φ  θ  h  Δ ax  Δ az  Δ p  Δ q  Δ r  Kα  K θ]

=  [167   0.001   17.305   0   0.10384   4000   0   0   0    0   0   1   1]

- sampling interval : T = 0.025 sec. and process noise
variance : Q = 1.0e - 15* (eye (nx)

- measurement noise variance : 

R = E ⎡
⎣
⎛
⎝
Zm − Zt⎞⎠

 ⎛
⎝
Zm − Zt⎞⎠

T
⎤
⎦
 where Zt is the noise free

measurement from simulator and Zm is the noisy measure-
ment

- initial state errror covariance : eye (nx) for UDEKF and
and 

⎡

⎢

⎣

⎢

⎢

eye(nx)
0
0

      
0
Q
0

      
0
0
R

⎤

⎥

⎦

⎥

⎥
  for DFKF.

where, nx = 13 is the number of estimated states.

The results shown in Figs. 4-5 are generated for 25
Monte Carlo simulations. Fig. 4 shows the comparison of
true, measured and estimated observables such as
V , α , β , φ , θ , h. From the plots it is clear that wherever

(e.g. between 0-5 seconds or around 10 second) the non-
linearity in measurement data is more severe, the perform-
ance of UDEKF is degraded as compared to DFKF. This
can be further proved by comparing the measurement
residuals or innovation sequences with corresponding
1 σ (σ = ± √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯HPH ′ + R )  theoretical bounds which repre-
sent the bounds on the accuracies achievable by the filter
given the covariances (P, Q, R). If 1σ bounds are plotted,
theoretically it is expected that for ideal filter performance,
90% of the innovation sequence points should be within
bounds.

It is observed from Fig. 5 that the bounds are compa-
rable (due to same initial conditions) for both filters but in
case of UDEKF its residuals go out of bounds for more
number of times as compared with DFKF.

Example 3: Sensitivity Study of DFKF

The common tuning parameters for UDEKF and
DFKF are initial state covariance (P0), process noise vari-
ance (Q) and measurement noise variance (R). The affects
of these three parameters on the filters performance are
well known. The additional tuning parameters (not re-
quired/specified for UDEKF) in DFKF areα , β ,  and κ.
The sensitivity study of DFKF is carried out using these
additional parameters only.

For this example, a two-dimensional particle is consid-
ered with constant speed in x-direction only. It is initially
released in x-direction [3]. The goal is to estimate the mean
and covariance of target state for rest of its projectile. The
discontinuities in system dynamics are introduced by ob-

Fig.4 Comparison of true, measured, and estimated
observation date - Example 2

Fig.5 Comparison of innovation sequence with (1σ)
 bounds - Example 2
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structing the path of particle by a wall located in the
"bottom right quarter plane" (x ≥ 0, y ≤ 0), see Fig.6. If the
particle hits the wall, with an assumption of perfectly
elastic collision, its projectile is reflected back at the same
velocity as it traveled forward. The process model for the
particle at any instant of time is represented by following
equations:

x (k +1) =  ⎧⎨
⎩

x (k) + T x.  (k)           y (k) ≥ 
− (x (k) + T x

.
 (k))     y (k) < 0

x
.
 (k + 1)  =  x

.
 (k)

y (k + 1)  =  y (k) + w (k)

y
.
 (k + 1)  =  y

.
 (k) (19)

where, T is the sampling interval, k is the scan number, and
w is the process noise with Gaussian distribution and has
zero mean with variance of Q. In present case, initial state
of target is kept at x = − 10 , x

.
 = 1 , y = 0 , y.  = 0. Here, N

= 20, T = 0.1 and Q = 0.001. The particle positions in x
and y directions are measured by sensor placed at origin
of x-y plane and its noise variance R is equal to
⎡
⎢
⎣

1
0      

0
0.001

⎤
⎥
⎦
. The state estimation is carried out using

DFKF with its initial state 0.01% less than true initial value
and state error covariance

P0  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

1
0
0
0

      

0
1
0
0

      

0
0
1
0

      

0
0
0
1

⎤

⎥

⎦

⎥
⎥

⎥
⎥

The results are generated for 100 Monte Carlo simulations
for various cases (for sensitivity study) obtained by appro-
priate selection of tuning parameters such as α , β , and
κ. The sensitivity study is carried out for following cases:

In order to retain the positive semi definiteness of
predicted covariance matrix (refer Eq. (10)), a sensitivity
study has been carried out on positive values of tuning
parameters only. From various trials and run it is found
that DFKF gives optimal estimation for α = 1, β = 0, κ =
0. Keeping this as a reference values (for performance
comparison), above three cases are created. In case 1,
estimation is carried out for α = 0.1, 0.5, 1, 5, 10. Fig.7
compares the RSSPE for various values of α. From the
figure following observations are made:

• For low or high α, RSSPE is high

• For extreme low and extreme high α, RSSPE are com-
parable

• For α - > 1,  RSSPE approaches to an optimal value
(when α = 1, β = 0, κ = 0)

• RSSPE is highly sensitive to α

In case 2, estimation is carried out for κ = 0, 1, 5, 10.
Fig. 8 compares the RSSPE for various values of κ. From
the figure following observations are made :

• with increase in κ, RSSPE increases

• For κ - > 0,  RSSPE approaches to an optimal value

• RSSPE is moderately sensitive to κ

Fig.6 Pictorial representation of a discontinuous system [3] -
Example 3

Parameter → α β κ

case 1 varying 0 0
case 2 1 0 varying
case 3 1 varying 0

Fig.7 RSSPE calculated for different values of α - Example 3
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In case 3, estimation is carried out for b = 0. 10. 50,
100. Fig. 9 compares the RSSPE for various values of β.
From the figure following observations are made :

• with increase in β, RSSPE fluctuates around an optimal
value

• For β - > 0, RSSPE approaches to an optimal value

• RSSPE is less sensitive to β

In summary, i) estimation performance of DFKF is
more sensitive to tuning parameter α. The reason could be
that α is the key parameter which decides the spread of
sigma points around mean value of estimated state, ii)
filter is moderately sensitive to κ and less sensitive to
secondary tuning parameter β, and iii) parameter β can be
used for fine tuning to reduce the overall prediction errors
thereby enhancing the filter performance to some extent.

Example 4: Parameter Estimation

DFKF algorithm is applied to perform estimation of
non-dimensional longitudinal parameters using simulated
short period data of an aircraft. The relevant mass, moment
of inertia and other aircraft geometry related parameters
are provided below:

The data is simulated with a sampling time of 0.03
second by giving a doublet input to the elevator. Random
process noise (zero mean and Gaussian) with standard
deviation of 0.001 is added to certain states u, w, q, and θ.
The noisy measurements u, w, q, θ, ax, az and q

.
 with

SNR=10 are generated. The state and measurement mod-
els for estimation of the parameters in body axis are
formulated as follows:

State Model

u
.
  =  q

_
S

m  CX − qw − g sin θ

w
.
  =  q

_
S

m  CZ − qu − g cos θ

q
.
  =  q

_
S c

_

Iyy
 Cm

θ
.
 = q (20)

where,

CZ = CZ
0
 + CZ

α
 α  +  (− 4.32) q c

_

2 V + CZ
δ
e

 δe

CX = CX
0
 + CX

α
 α  +  CX

α
2  α

2

Cm = Cm
0
 + Cm

α
 αm + Cm

α
2  α

2 + Cm
q
 q m c

_

2 V  + Cm
δ
e

 δe

(21)

where,

q
_
 = 0.5 ρ V2 , V = √⎯⎯⎯⎯⎯⎯u2 + w2  and α = tan−1 (w ⁄u)

Fig.8 RSSPE calculated for different values of κ- Example 3 Fig.9 RSSPE calculated for different values of β- Example 3

Mass = 2280.0 kg
Moment of inertia, Iyy = 6940.0 kg-m2

Mean aerodynamic chord, c = 1.5875 m
Wing area, S = 23.23 m2

Air density, ρ = 0.9077 kg/m3

u0 = 36 m/s and w0 = 7.2 m/s
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Measurement Model

Zt|m  =  ⎡
⎣
y1     y2     y3     y4     y5     y6     y7⎤

⎦
y1  =  u ;          y2  =  w

y3  =  q ;          y4  =  θ

y5 (ax)  =  q
_
 S
m  CX ;      y6 (az)  =  q

_
 S
m  CZ

y7  −  q
_

(22)

For estimating the parameters C() i.e. RHS of Eq. (21)
using DFKF, they are modeled as augmented states in the
state model specified by Eq. (20). In this case there are 4
states and 11 parameters to be estimated using 7 observ-
ables specified by Eq. (22). The initial states and parame-
ters for the DFKF are assumed to be 10% off from their
true values. The initial estimation covariance matrix is
chosen to reflect this uncertainty. The tuning parameters
Q and R are as follows:

Q = diag [1.0e − 6    1.0e − 6    1.0e − 6    1.0e − 6] ,

R = E ⎡
⎣
⎛
⎝
Zm − Zt⎞⎠

 ⎛
⎝
(Zm − Zt)⎞⎠

T
⎤
⎦
 ,

where, Zm and Zt stand  for noisy and clean measurements
respectively. The additional tuning parameters such as α,
β, and κ are kept at 1, 0, and 0 respectively.

The estimated values of the parameters are compared
with the true values of the derivatives in Table-1. The
estimates are fairly close to the true values. The conver-
gence of the pitching moment related deriva-
tives:Cmα

 , Cmα
2 , Cmq

 , Cmδe
  is shown in Fig. 10. It is

clear that even in the presence of noise in the data, the
parameters converge close to their true values. However,
some deviation is observed for Cmq

 estimate.

Example 5: Target Tracking using Real Data

The performance of DFKF is evaluated using real data.
The real data consists of target information in polar frame
measured by sensor. The state estimation, consisting of
targets position, velocity, and acceleration information, is
carried out in 3D Cartesian frame using constant accelera-
tion model (mentioned in example 1) and polar data. The
sampling time interval chosen is 0.25 second with process

noise covariance Q kept at 0.01*eye (9,9), whereas, meas-
urement noise covariance value R is obtained from sensor
specification. The initial state of DFKF is kept close to true
initial target state and accordingly initial state error covari-
ance is computed. The additional tuning parameters α, β,
and κ are kept at 1, 0, and 0 respectively.

Figure 11 illustrates measured, true and estimated po-
lar data. It is clear from the plots that estimated data is
fairly close to true data. Some discontinuities (more
clearly visible in range), due to sensor data loss, are
observed somewhere between 5000-6000 data points.
Fig.12 shows the RSSPE (definition mentioned in exam-
ple 1) computed w.r.t. true target positions. It is noticed

Table-1 : Estimated parameters of an aircraft - 
Example-4

Parameter True Values Estimated
CX0 -0.9540 -0.0616

CXa 0.2330 0.2531

CXa
2 3.6089 3.6840

CZ0 -0.1200 -0.1279

CZa -5.6800 -5.7084

CZδe -0.4070 -0.5033

Cm0 0.0550 0.0604

Cma -0.7290 -0.7108

Cma
2 -1.7150 -1.7701

Cmq -16.3 -14.9726

Cmδe -1.9400 -1.8779

Fig.10 Parameter convergence for an aircraft-pitching
moment derivatives - Example 4
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from the figure that on average RSSPE value comes
around 0.1 on y-scale and it is comparatively high only at
those points where sensor data loss is encountered. Addi-
tionally, a sudden increase in RSSPE is attributed to
spikes/outliers observed in sensor data. Fig.13 compares
the state error (true position - estimated position) with 1
sigma bound i.e. ± √⎯⎯⎯⎯⎯⎯⎯diag (p) . It can be observed from the
figure that most of the time state error does not exceed its
theoretical bounds and where ever it exceeds the bounds
is either due to data loss or spikes present in sensor data.

Example 6: Data Fusion

Consider the vehicle reentry problem [3,5] shown in
Fig. 14. It is assumed that a vehicle entering the atmos-
phere at high altitude and at high speed is tracked by two

ground-stationed sensors with different accuracies. It is
assumed that sensors are placed nearby. The measure-
ments from either of sensors are in terms of range and
bearing. The strong non-linearities present in vehicle dy-
namic are due to the different types of forces acting on it.
The most dominant force is aerodynamic drag as a func-
tion of vehicle speed and altitude. Gravitational force
accelerates the vehicle towards the center of Earth. In
initial phase of flight, vehicle has almost ballistic trajec-
tory but as density of the atmosphere increases, drag
effects become more important and the vehicle rapidly
decelerates until its motion is almost vertical. The state
space formulation of vehicle dynamics is as follows:

x
.
1 (k) = x3 (k)

x
.
2 (k)  =  x4 (k)

Fig.11 Comparison of meas., true, and estimated polar data -
Example 5

Fig.12 RSSPE w.r.t. true data - Example 5

Fig.13 Target’s position error compared with theoretical
bounds - Example 5

Fig.14 True positions of re-entered vehicle to earth
atmosphere [3] - Example 6
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x
.
3 (k)  =  D (k) x3 (k)  +  G (k) x1 (k)  +  w1 (k)

x
.
4 (k)  =  D (k) x4 (k)  +  G (k) x2 (k)  +  w2 (k)

x
.
5 (k)  =  w3 (k) (23)

where, x1 and x2 are the target positions in 2-D plane, x3
and x4 are the corresponding velocities, x5 is a parameter
related to aerodynamic properties, is the drag-related term,
is the gravity-related term and w1, w2, w3 are uncorrelated
white Gaussian process noises with zero mean and stand-
ard deviations of σw1

 = 0.0049,  σw1
 = 0.0049 and σw1

 =

4.9e - 8 respectively. In Eq. (23), drag and gravitational
terms are computed using following equations.

D (k)  =  − β (k) exp 
⎧

⎨

⎩

⎪

⎪

r0 − r (k)

H0

⎫

⎬

⎭

⎪

⎪
 V (k)

G (k)  =  − 
Gm0

r3 (k)
β (k)  =  − β0  exp (x5 (k))

r (k)  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯x1
 2 (k) + x2

 2 (k)

V (k)  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯x3
 2 (k) + x4

 2 (k) (24)

where, β0 = - 0.59784, H0 = 13.406,  Gm0 = 3.9860 x 105

and r0 = 6374 are  the parameters reflecting typical envi-
ronmental and vehicle characteristics. The initial state of
vehicle is equal to [6500.4, 349.14, -1.8093, -6.7967,
0.6932]. The data is simulated for total number of  N =
1450 scans. The vehicle is continuously tracked by two
sensors in proximity at (xr = 6375 Km, yr = 0 Km). The
rate at which measurements arrive is at a frequency of 5Hz
i.e. sampling interval T = 0.2 seconds and model of sensor
is represented by following equations:

ri (k)  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯(x1 (k) − xr)
2  +  (x2 (k) − yr)

2   +  vir (k)

θi (k)  =  tan−  
⎛
⎜
⎝

⎜
⎜

x2 (k) − yr
x1 (k) − xr

⎞
⎟
⎠

⎟
⎟
  +  viθ (k) (25)

where, ri and θi are the measure range and bearing of ith

sensor, vir and viθ are the corresponding white Gaussian
measurement noises. 

It is assumed that first sensor gives good bearing
information but has noisy range measurement and vice-

versa for second sensor (thought this may not be true in
general, it is assumed here for the sake of performance
evaluation of the algorithm). The standard deviations of
range and bearing noises used in simulation are: 

Sensor 1 : σ1r = 1 Km, σ1θ = 0.05 deg
Sensor 2 : σ2r = 0.22 Km, σ2θ = 1 deg

In this paper, an effort has been made to evolve a Data
Fusion (DF) scheme for similar sensors using DFKF to get
more information about an entity of interest that would
have been not possible by single sensor alone. In order to
develop a fusion scheme, following assumptions and
changes are required in DFKF algorithm formulated by
Eqs. (7)-(14) :

Assumptions

• sensors are of similar type i.e. same data type/format

• measurements originating from sensors are synchro-
nized in time

DF-DFKF Initialization

X̂ (0 ⁄ 0)  =  E [X (0 ⁄ 0)]

P
^

 (0 ⁄ 0)  =  E 
⎡
⎢
⎣
⎛
⎝X (0 ⁄ 0) − X

^
 (0 ⁄ 0)⎞⎠ ⎛⎝X (0 ⁄ 0) − X

^
 (0 ⁄ 0)⎞⎠

T
⎤
⎥
⎦

(26)

Augmented state and its error covariance are presented
as :

X
^ a (0 ⁄ 0)  =  E ⎡⎣X

 a (0 ⁄ 0)⎤⎦

= ⎡⎢
⎣

⎢
⎢
X
^ T

 (0 ⁄ 0)  0, ... , 0
n − dim  w

  0, ... , 0
m − dim  v

1
 (sensors 1)

  0, ... , 0
m − dim  v

2
(sensors 2)

  0, ... , 0  0, ... , 0
m − dim  v

NS
 (sensors NS)

⎤
⎥
⎦

⎥
⎥

T

P
^ a (0 ⁄ 0)  =  E 

⎡
⎢
⎣
⎛
⎝X a (0 ⁄ 0) − X

^ a (0 ⁄ 0)⎞⎠ ⎛⎝X a (0 ⁄ 0) − X
^ a (0 ⁄ 0)⎞⎠

T
⎤
⎥
⎦
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=  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢
⎢
⎢

P̂ (0 ⁄ 0)

0

0

0

0

0

   

0

Q

0

0

0

0

   

0

0

R1

0

0

0

   

0

0

0

R2

0

0

   

0

0

0

0

,...,

0

   

0

0

0

0

0

RNS

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
⎥
  2 N + NS

 ∗
 m  by  2 n + NS

∗
m

(27)

where, NS is the total number of sensors. The dimension
of new augmented state vector becomes na = n + n + NS*
m = 2n + NS* m.

Sigma Points Computation

Same as Eq. (9). 

where,

State and Covariance Propagation

Same as Eqns (10) - (11).

State and Covariance Update

y j (k + 1 ⁄ k)  =  h (χ (k ⁄k), u (k) + χv
j (k ⁄ k)

Z
~ j (k + 1 ⁄ k)  =  ∑ 

i = 0

2 n
a

 Wi
 (m)  yi

 j (k + 1 ⁄ k) (28)

where, j = 1, . . . , NS and

y (k + 1 ⁄ k) = ⎡⎣y
 1

 (k + 1 ⁄ k)  y
2
 (k + 1 ⁄ k) , ... ,  y

NS
 (k + 1 ⁄ k)⎤⎦

T

Z
~

 (k + 1 ⁄ k) = ⎡⎣Z
~ 1

 (k + 1 ⁄ k)  Z
~ 2

 (k + 1 ⁄ k) , ... ,  Z
~ NS

 (k + 1 ⁄ k)⎤⎦

T

DF-DFKF  uses Eqs.(13) - (14)  for  remaining   compu-
tations. In  Eq. (14), variable  Zm is  reformulated  as
follows :

Z m (k + 1) = ⎡⎢
⎣
Z m

 1  (k + 1)   Z m
 2  (k + 1) , ... ,  Z m

 NS (k + 1)⎤⎥
⎦

T

where, Zm
1  , Zm

2  , . . . , and Zm
NS are the measuremnts from

sensor 1, sensor 2, . . . , and sensor NS resepctively at k+1
scan.

The results are generated for 25 Monte Carlo simula-
tions and performances of DF-DFKF and two DFKF (i.e.
for sensor 1 and sensor 2 respectively) are compared. It is
clear from Fig.15 that fused state, as compared to esti-
mated state from other two methods, is close to true state.
It is clear that data fusion increases the estimation accuracy
that would not have been possible using single sensor
measurements.

Conclusions

The performances of UDEKF and DFKF are compared
for applications like target tracking using non-linear meas-
urement model, and kinematic consistency checking using
realistic longitudinal short period and lateral-directional
data of an aircraft. It is observed that DFKF performs
better than UDEKF and hence can be used for many
non-linear filtering and control applications. Also, a sen-
sitivity study of DFKF is carried out and found that the
filter is more sensitive to tuning parameter α,  moderately
sensitive to κ and less sensitive to secondary tuning pa-
rameter β. Application of DFKF is also illustrated for
parameter estimation. A data fusion scheme for similar
sensors is proposed and its performance evaluated.

Fig.15 Comparison of true, estimated and fused state x5 -
Example 6
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