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Abstract

This paper investigates a new evolving neural network classifier based on real coded genetic
algorithm for automatic multi-spectral satellite image classification (land cover mapping
problem). The evolving neural network classifier is designed using hybrid genetic operators
with classification accuracy as a measure of performance. The evolving neural network
methodology is implemented in Pentium clusters. The proposed methodology searches for the
best neural network architecture and its connection weights for a given set of training patterns.
The performance of the proposed evolving neural network based classifier is evaluated for
Level-II classifier model using the Landsat 7 Thematic Mapper high resolution imagery. After
evolving the neural network at pixel level, the system performance is tested with sites not seen
during training. Results are compared with maximum likelihood classifier, gradient based
fully connected multilayer perceptron and growing and pruning radial basis function classi-
fier. The proposed classifier is more accurate, robust with respect to the noise in the input
spectrum and also overcomes the common limitations of the standard neural based classifier
models.

Keywords: Land Cover Mapping, Multi-spectral Classification, Multilayer Perceptron Net-
work, Growing and Pruning Radial Basis Function Network, Maximum Likelihood Method,
Genetic Algorithm

Introduction

Land cover mapping has emerged as a subject in itself
because of its importance in management of resources on
the planet of Earth. In land cover mapping, classification
is regarded as a fundamental process, which transforms
the multi-spectral satellite or remotely sensed images to
usable geographic products. So far, several pattern classi-
fication algorithms have been adopted in remote sensing
land cover mapping problems [1]. The evolution of pattern
classification algorithms for land cover mapping prob-
lems can be broadly divided in three categories [2]. In the
first category, the classifier models are developed based
on many supervised and unsupervised classification algo-
rithms such as supervised maximum-likelihood approach
[3], [4], artificial neural networks [5]-[15], [24], decision
tree [16], and genetic algorithm [17]. In the second cate-
gory, classifier models consist of many novel-system level
approaches that integrate the outputs of the fundamental
classifier algorithms [18], [19]. In the last category, the
classifier models are developed by exploiting the multiple
data types or ancillary information such as texture, struc-
tural and spatial information [20]-[23].

Among various classifier models, the neural network
based classifier models are the most promising approach
for land cover mapping problem due to their ability to
approximate the complex nonlinear function accurately
and also provide the information on probability distribu-
tion. The first research work on neural network based
classifier model for remotely’ sensed imagery appeared in
1990 [3]. Since then, many researchers developed differ-
ent neural network classifier models for different applica-
tions and data sources [5]-[15]. In most of the cases, the
neural network classifiers can improve the classification
accuracy by 10-30% compared to the traditional classifi-
ers [6], [11]. In literature, neural network architectures
such as multilayer perceptron network [5]-[10], radial
basis function network [22]-[26], binary diamond network
[27] and fuzzy-neural networks [19], [28] have been de-
veloped to tackle the multi/hyper spectral satellite data
classification problem. The performance of neural classi-
fier depends on the finite training samples and number of
samples per class. The small number of training samples
and the presence of imbalance in training set result in not
knowing the input distribution completely. This affects
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the performance of neural classifier considerably. Also,
finding an appropriate number of hidden neurons to ap-
proximate the input-output distributions affects the per-
formance considerably.

 In remote sensing literature, multilayer perceptron
(MLP) network is widely used rather than any other neural
network architecture. The multilayer perceptron network
is a fully connected layered feed forward neural network.
For a given fully connected neural network model, the
weight connection between the neurons are calculated
using error backpropagation learning algorithm. The
learning algorithm is based on the gradient descent ap-
proach where the connection weights in the network are
adjusted continuously in order to minimize an error func-
tion. The commonly used error function is mean square
error between the target and network outputs over the
entire training set. Since backpropagation uses a gradient-
descent procedure, the network may converge to a local
minima, which represent sub-optimal solutions. In litera-
ture, many modifications in learning algorithms are de-
scribed to overcome the local minima problem [29]-[31].
However, these algorithms are computationally intensive
and also do not solve the many existing problems in neural
network design as described below [32].

Multilayer perceptron, trained using back-propagation
algorithms learn the complex input-output relationship in
stages. In a typical learning process, the mean-square error
decreases with an increasing number of epoches. Initially,
the reduction in mean- square error is rapid and later it
decreases slowly as the network reaches the local minima.
The stopping criteria, learning rate, weight initialization,
selection of activation functions, network size and scaling
of input/output data set affects the learning process and
have to be selected properly [5], [32]. In neural network
approach, the ‘best’ network architecture is not known a
priori. The performance of network depends on the neural
network architecture and also depends on the training data
set and method of presenting the training data in training
process. Hence, the neural network design (network archi-
tecture selection and weight parameter estimation) for any
given realworld application is formulated as a search
problem.

 The Genetic Algorithm (GA) is perhaps the most
well-known of all evolution based search techniques [33],
[34]. Genetic algorithms are developed in an attempt to
explain the adaptive process of natural systems and to
design artificial systems based upon these natural systems.
Genetic algorithms are widely used to solve complex

optimization problems where the number of parameters
and constraints are large and the analytical solutions are
difficult to obtain [33], [34]. In recent years, many
schemes for combining genetic algorithms and neural
networks have been proposed and tested. The combination
of these two techniques is either supportive or collabora-
tive or both. Supportive combinations typically involve
using one of these methods to prepare data for consump-
tion by the other. For example, genetic algorithms can be
used to select the features and neural network will gener-
ate the classifier based on the selected features [35], [36].
Collaborative combinations typically involve using the
genetic algorithms to determine the neural network
weights [37], [38] or the network topology [39], [40] or
both [39]. A complete survey of evolving neural network
using genetic algorithm can be found in 41].

In this paper, we present a evolving multilayer percep-
tron neural network design using a real coded genetic
algorithm (RCGA). The evolving neural network has two
different set of genetic operators. The first set of genetic
operators control the neural network architecture and the
second set of genetic operators evolve the connection
weights. The proposed RCGA based evolving neural net-
work design in turn reduces the cost of implementing the
neural network, in terms of hardware and processing time.
The parallel evolving neural network is implemented in
Pentium cluster. The processor in the cluster exchange the
intermediate population using message passing interface
(MPI) routine [42]. The parallel evolving neural network
reduces the computation time required to obtain optimal
neural network for a given training data considerably. The
performance of the neural classifier models depends on
selection of training data, the network architecture, objec-
tive function and stopping criterion. In the proposed
model, overall classification accuracy is used as a measure
to evolve the optimal/best neural architecture and it’s
weights. Hence, in this study, the evolving neural network
is used to develop Level-II classifier model from the
multi-spectral satellite image. The inputs to the classifier
model is the multi-spectral band data of Landsat 7 The-
matic Mapper (TM) image from the southern part of India.
The performance of the classifier is analyzed using differ-
ent imagery from the same region. For comparison pur-
pose, the same satellite image is classified using a
maximum likelihood classifier, a gradient based fully
connected multilayer perceptron and a growing and prun-
ing radial basis function network [43]. Overall, the evolv-
ing neural network classifier outperformed the other
models by 5-25% and obtains approximately 90% classi-
fication accuracy.
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The contribution of the present work consist of (1)
introducing evolving neural network approach for multi-
spectral satellite image classification problem; (2) intro-
ducing the usage of classification accuracy as a measure
for evolving the network architecture; and (3) compare the
performance with other classifier models. In addition, the
other important issues such as computational complexity,
number of parameters, influence of training data and
effect of noise in spectral bands are also analyzed.

 This paper is organized as follows: In Section - The
Neural Network Model, we introduce the multilayer
perceptron network and backpropagation learning algo-
rithm, Section - Evolving Neural Network Design, pre-
sents the real-coded genetic algorithm based neural
network design, describing the solution representation,
genetic operators and other details. In Section - Experi-
mental Results and Discussion, we present satellite data
description and the experimental results for multi-spectral
satellite image classification problem. Finally, we discuss
the results and conclude in Conclusion Section.

The Neural Network Model

In this study, we consider a three layered feed forward
neural network as shown in Fig.1. The network consist of
N0 input neurons, N1 hidden neurons and N2 output neu-

rons. Each neuron in the hidden layer uses bipolar sigmoi-
dal function as its activation function (f [x] ) and each
neuron in the output layer uses pure linear function
(p [x] ) as its activation function. The output of the neurons
in the hidden and output layer are expressed as 
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where yi
1 is the output of ith hidden neuron, yi

2 is the

output of ith output neuron, the term wij
1 is the weight

connection between the ith hidden neuron and jth input

neuron, the term wij
2 is the weight connection between the

ith output neuron and jth hidden neuron and the vector
U = [u1, u2 ... ,uN1] is input to the network. The activation

functions f [x] and p [x] are defined as:
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where a is non-zero constant.
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The weights describing the input-output relationship
between the training data set can be obtained by minimiz-
ing the training error. For a given fully connected neural
network structure, there are number of learning algorithms
available to determine the connection weights [29]-[31].
These algorithms are based on gradient descent ap-
proaches where the weights in the network are adjusted
continuously in order to minimize the training error. The
weight adaptation is stopped only when the training error
is less than certain specified value. The trained network is
tested with the new data set to study the generalization
ability of the network. The selection of number of hidden

Fig.1  Architecture of three layered feed forward
neural network
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neurons and corresponding weight matrices affects the
generalization performance considerably. The problem of
finding optimal number of hidden neurons and weight
matrices is difficult and is formulated as optimization
problem.

Given: three layer perceptron network and input-output
training data set.

To find: the optimal number of hidden neuron (N1) and

the weight matrices (W1, W2) such that the training error
is a minimum.

We can see that the above optimization problem is
combinatorial (number of hidden neurons is integer and
weight matrices are real number) in nature. Hence, in the
next section, we present a real coded genetic algorithm
based evolving neural network design.

Evolving Neural Network Design

Genetic Algorithms (GA’s) are stochastic optimiza-
tion algorithms based on the concepts of biological evo-
lutionary theory [33], [34]. GA maintains a population of
search nodes, which represents potential solutions to the
optimization problem. Each search node in the population
has an associated fitness value indicating the performance
of the solution. In our problem, the search nodes are the
neural network architectures. In general, GA, starts with
a population of randomly generated search nodes and
advances towards the better search nodes by applying
genetic operators. During the successive generations, the
search nodes with higher fitness (parents) are selected for
genetic operations such as crossover and mutation. The
new search nodes (offsprings) with higher fitness value
will replace their parents in the next generation. The steps
involved in the standard genetic algorithm are described
below:

1. Randomly create initial population of search nodes.
2. Calculation of fitness for each search node.
3. Selection of the parents for genetic operations.
4. Generate new population of search nodes using ge-

netic operators.
5. If termination criterion is satisfied then stop other-

wise go to step 2.

A good representation scheme for solution is very
important in obtaining best solution using GA for a given
problem. The most commonly used solution repre-

sentation is binary vector [33]. In most of the optimization
problems, the design variables are in continuous domain
(real number). Hence, it is natural to represent the solu-
tions directly as real numbers since the representations of
the solutions are very close to the natural formulation. This
real number representation for solution is commonly re-
ferred as Real Coded Genetic Algorithm (RCGA). A
detail discussion on advantage of representing solution
using real number over binary variables is presented in
[34].

 A real coded genetic algorithm for any particular
optimization problem must have the following compo-
nents:

• String Representation

• Population Initialization

• Selection Function

• Genetic Operators

• Fitness Function

• Termination Function

Now, we describe these components of real coded
genetic algorithm for evolving neural network design

String Representation 

The string representation is the process of encoding a
potential search node (solution) as a string. The string
representation depends on structure of the problem in
genetic algorithm framework and also depends on genetic
operators used in the algorithms. In the earlier work on
genetic algorithms [33], the string was restricted to only
binary digits (0 and 1). It is shown in [34], that a natural
representation of strings are more efficient and produce
better results. Hence, in our studies, the string repre-
sentation for search node, is a string of real numbers. The
real numbers represent the weight connection between the
neurons in the neural network. Each search node also has
an unique integer number representing the number of

hidden neurons (N1) in the string. The search node is of

length N1 (N0 + N2).

 For example, let us consider neural network architec-

ture with single input neuron (N0 = 1), five hidden neurons

(N1 = 5) and one output neuron (N2 = 1). The string rep-
resenting the above network architecture is
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The string representation and the corresponding
weight connections are shown in Fig.2. In this string
representation, we can represent all the combinations of
the neural network architectures and the representation is
unique.

Population Initialization

In genetic algorithm, initial population of N search
nodes are generated using the most common random
generation procedure. The size of population (N) and the
method of initialization affects the convergence of the
problem. Since genetic algorithm can iteratively improve
the search nodes, some of the search nodes in the initial
population can be potentially good solutions, with the
remainder of the population being randomly generated.
The population size (N) is typically problem-dependent
and has to be determined through simulation. The initial
population for evolving neural network is generated using
N different neural networks trained for 50 epoches.

Selection Function

In genetic algorithm, the selection of a search node
from the existing search nodes (population), to produce
new search nodes for the next generations plays an impor-
tant role. A probabilistic selection is performed based
upon the fitness of search nodes, such that the better search
nodes have a better chance of being selected for producing

new search nodes using genetic operators. It is possible
that a search node in the population can be selected more
than once for producing new search nodes. In literature
[33], [34] several schemes such as roulette wheel selection
and its extensions, scaling techniques, tournament and
ranking methods are presented for the selection process.
In our studies, normalized geometric ranking method
given in [44] is used for the selection process.

Normalized Geometric Ranking Method: The search
nodes are arranged in descending order of their fitness
value. Let q be the selection probability for selecting best
search node and rj be the rank of jth search node in the
partially ordered set. The probability of search node j
being selected using normalized geometric ranking
method is

s
j
 = q′ (1 − q)

τ
j
 − 1

(7)

where q′ = 
q

1− (1−q)N
  and N is the population size.

Genetic Operators

Genetic operators provide the basic search mechanism
of the genetic algorithm. The operators are used to create
new search nodes based on existing search nodes in the
population. New search nodes are obtained by combining
or rearranging parts of the old search nodes, and a new
search node obtained may be a better solution to the
optimization problem. These genetic operators are analo-
gous to those which occur in the natural world: reproduc-
tion (crossover, or recombination) and mutation. The
probability of these operators affects the efficacy of the
genetic algorithm. The real-coded genetic operators used
in our study are described below.

Crossover Operator: Crossover operator is a primary op-
erator in genetic algorithm. The role of crossover operator
is to recombine information from the two selected search
nodes to produce two new search nodes. The crossover
operator improves the diversity of the solution. In this
paper, we present weight connection and network archi-
tecture based crossover operators. The operators which act
on individual weight connections of the search nodes are
called weight based crossover operators and operators
which act on network architecture are called network
based crossover operators. Now, we describe three weight
connection based crossover operators and a network based
crossover operator.

Fig.2  String representation for neural network architecture
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Two Point Weight Crossover: Let C1 and C2 are the two

search nodes selected for crossover operations as shown
in Fig.3. This operator first selects two crossover points i
and j randomly. Let i < j. The weights in between the
crossover  points  are  represented in bold faces. 
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The two new search nodes H1 and H2 are generated by

exchanging the selected weights.
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Uniform Weight Crossover: In this operator, the cross-
over sites are selected randomly. Let C1 and C2 are the two

search nodes selected for crossover operations and the
crossover points are represented in bold faces.
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The two new search nodes H1 and H2 are generated by

exchanging the selection weights.
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Averaging Weight Crossover: It is a commonly used
operator in real coded genetic algorithm and it generates
new solutions by averaging the two parents. Two new
solutions H1 and H2 are:

H1 = C1 + β (C1 − C2)

H2 = C2 + β (C2 − C1)

where β is a scalar value in the range of (0 ≤ β≤ 1). In
our simulation studies, β is set to 0.3.

Heuristic Network Crossover: The operator randomly
select hidden neurons as crossover points. The input and
output weight connection between the selected hidden
neurons are modified to generate the new search nodes.
Let the second hidden neuron be selected as crossover
point. The new weights generated are

H
1
 = C

1
 ± γw

m
 

C
1
 − C

2

||C
1
 − C2||

(16)

H
2
 = C

2
 ± γw

m
 

C
2
 − C

1

||C
2
 − C1||

(17)

where wm range of the weight vectors and γ is positive

constant. In our experiment, range and γ are set to 100 and
0.1 respectively.

Hybrid Crossover: We have presented four types of
crossover operators. The performance of these operators
in terms of convergence to optimal solution depends on
the problem. One type of crossover operator which per-
forms well for one problem may not perform well for
another problem. Hence, many research works are carried
out to study the effect of combining crossover operators
in a genetic algorithm for a given problem [45]. Hybrid

Fig.3  Selected string for crossover operation
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crossovers are a simple way of combining different cross-
over operators. The hybrid crossover operator use differ-
ent kinds of crossover operators to produce diverse
offsprings from the same parents. The hybrid crossover
operator presented in this study generates eight offsprings
for each pair of parents by the four crossover operators.
The most promising offsprings of the eight substitute their
parents in the population.

Mutation Operators: The mutation operator alters one
solution to produce a new solution. The mutation operator
is needed to ensure diversity in the population, and to
overcome the premature convergence and local minima
problems. Similar to crossover operator, here also we have
weight and network based mutation operators. Now, we
describe different mutation operators used in this study.

Let us assume that C1 is the parent selected for the muta-

tion operation and w12
1  is the mutation weight.

Random Weight Mutation: Let wm be the range of

weight. The new weight h12
1  is a random number in the

range wm.

Non-uniform Weight Mutation : If this operator is ap-
plied in a generation t and G is the maximum number of
generations, then
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where r is the random number between the interval [0,
1] and b is the parameter that determines the degree of
dependency. This function gives a value in the range [0,
y] such that the probability of returning a number close to
zero increases as the algorithm advances [34].

Add/Delete Network Mutation: This operator adds or
deletes hidden neuron in the selected parent. In case of
adding a hidden neuron, random numbers in the range
wm are assigned to the weights connecting the hidden

neuron with input and output neurons. In case of deleting

a hidden neuron, zero values are assigned to the weights
connecting the hidden neuron with the input and output
neurons.

Fitness Function 

Fitness is the driving force in genetic algorithms. In
the evolving neural network problem, fitness function
assigns a fitness (value) to each of the search node in a
generation. Fitness function must be capable of evaluating
every search node in the search space. Genetic algorithm
does not know anything about the problem domain or
fitness function. The only information used in the execu-
tion of genetic algorithm is the observed values of the
fitness function (i.e., fitness) of the individual search
nodes actually present in the population. Genetic algo-
rithm is guided by the fitness value to search for the most
efficient search node to solve the given problem.

The fitness function in the land cover mapping prob-
lem is based on the overall classification efficiency. The
objective of the evolving network is to maximize the
classification accuracy (CA). Hence, the fitness function
is

CA = 
Np
P

 × 100 (21)

where Np is the number of correctly classified patterns

and P is the total number of training patterns.

Termination Function

In a genetic algorithm, in each generation, search
nodes are selected on the basis of their fitness and subject
to genetic operations such as crossover and mutation. The
evolution process of successive generations continues un-
til a termination criterion is satisfied. The most frequently
used stopping criterion are population convergence and a
specified maximum number of generations. Population
convergence criteria for our problem is that, all the search
nodes in the population are the same in four successive
generations. This search node is the optimal or best search
node obtained using the genetic algorithm. On the other
hand, if the maximum number of generations is reached,
then we have a population of search nodes with different
fitness. The best search node is the one in the population
with a maximum fitness.
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We can see that the above evolving neural network use
the survival of fittest strategy by passing the ‘good’ search
nodes to the next generation of search nodes, and combin-
ing different search nodes to explore new search nodes.
So we call the search node obtained upon termination from
genetic algorithm as the ‘best’ search node. We know that
the ‘best’ search node, is the best neural network architec-
ture for a given land cover mapping problem. Best implies
that for this remote sensing training data, the classification
efficiency obtained is maximum.

Experimental Results and Discussion 

In this section, we present the experimental results
obtained for multi-spectral satellite image classification
problem. First, we describe characteristic of the satellite
data, method of obtaining the ground truth and training
and testing data selection. Next, we present several experi-
mental results obtained from different classifier models.
Finally, we present the comparison among different clas-
sifier models by analyzing their performances.

Satellite Image Acquisition

In our experimental study, a portion of high resolution,
multi-spectral Landsat 7 Thematic Mapper images ac-
quired form southern region of India is used. The wave-
length range for the thematic mapper sensor is from the
visible, through the mid-IR, into the thermal-IR portion of
the electromagnetic spectrum. The characteristic of the

seven bands and their spectral resolution are given in
Table-1 In our experimental study, the band 6 which has
spatial resolution of 120 m is not used. The portion of
Landsat image is 15 x  15.75 sq.km (500 x  526 pixels) and
has 30 m spatial resolution, which corresponds to pixel
spacing of 30 m. The satellite image is radiometrically and
geometrically corrected using the satellite model and plat-
form/ephemeris information. The image is further rotated
and aligned to a user-defined map projection, using
ground control points to improve the satellite model. The
color composite image of the study area and correspond-
ing ground truth are given in Fig.4. The satellite image
was taken when there is no cloud. Even though the image
was taken during no cloud day, small and minor cloud may

Table-1 : Thematic Mapper band resolution

Band
No.

Resolution Spectral Range Type

1 30 m 0.45-0.52 µm visible blue-green

2 30 m 0.45-0.52 µm visible green

3 30 m 0.45-0.52 µm visible red

4 30 m 0.45-0.52 µm near infrared

5 30 m 0.45-0.52 µm mid infrared

6 120 m 0.45-0.52 µm far infrared

7 30 m 0.45-0.52 µm mid infrared

Fig.4  Landsat image : a) Colour composite image, b) Ground truth and c) Legend
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present but not visible in the image. The presence of small
and minor cloud may affect the performance of the clas-
sifier models. The presence of cloud is considered as a
process noise in the spectral data. Also, in order to simu-
late  the real situation such as spatial variability of the
spectral signature, uncertainty on the ground truth, noise
at the sensor, and observation noise, we introduce differ-
ent amounts and sources of noise (Gaussian and uniform)
in the test set (not training set). This study clearly indicates
the robustness of trained classifier when subjected to
change in environment.

Ground Truth Description and Training Pixels
Selection

The aim of the study to develop neural network clas-
sifier to distinguish forest, vegetation, water and built-up
land. The primary analysis on the satellite data indicated
that these four classes are not sufficient. Therefore, the
four classes are further divided into 9 sub-classes. The
forest class is sub-divided into deciduous, deciduous-pine
and pine. Vegetation is further divided into agriculture,
bare ground (agriculture land without water) and grass.
The built-up land is sub-divided into urban and shadow.
The classes and sub-classes are defined based on the
Level-II standards and the map obtained using this ap-
proach can be directly used for practical applications.

The ground truth is prepared for the Landsat image by
visual inspection, auxiliary data (maps and aerial photog-
raphy) and field work. The 9 classes are used to represent
the ground truth and image with ground truth is shown in
Fig.4(b). The legends for each classes are shown in
Fig,4(c). For development of supervised neural classifiers,
it is necessary to define the classes and select some of the
region in the image for training of each classes. The
training data for each class are selected from the region
where the field work has been carried-out. The details
description of the class, number of pixels obtained from
field work and number of validation pixels are given in
Table-2. The ground truth obtained for 10,000 pixels from
field work are used to develop neural classifier models.
The evolved classifier model is validated using the re-
maining pixels. The ground truth for these pixels are
obtained from visual inspection and aerial photography.

Experimental Results 

In this section, we discuss the experimental results
with evolving multilayer perceptron network (EMLP) for
multi-spectral satellite image classification problem and

compare the results with the maximum likelihood classi-
fier (MLC), fully connected multilayer perceptron classi-
fier (MLP) and growing and pruning radial basis function
network classifier (GAP-RBFN). For multilayer percep-
tron based classifier models, three layer structure with one
hidden layer are selected. The performance of the multi-
layer per- ceptron network depends on the training pat-
terns [5]. Hence, we would like to study results in the
following manner: 

• Case I: Effect of Training Data Selection. In this
case, we develop two fully connected multilayer per-
ceptron classifier using randomly selected training data
and training data selected using the procedure given in
[5].

• Case II: Effect of Optimal Neural Network Archi-
tecture. In this case, we develop two multilayer per-
ceptron classifier models using proposed evolving
neural network technique with randomly selected
training data and training data selected using the pro-
cedure given in [5].

• Case III: An optimal neural network classifier is de-
veloped using the growing and pruning radial. basis
function network technique given in [43]. 

Finally, the performance of the classifier models are
compared and also the effect of noise in spectral band is

Table-2 : Description of classes and ground truth
available form field work and validation

Class
No.

Class Pixels
form
Field
Work

Pixels for
ValidationLevel-I Level-II

O1 Deciduous 1200 71228

O2 Forest Deciduous-
Pine

1300 80848

O3 Pine 1100 24911

O4 Water 1075 12518

O5 1100 23070

O6 Vegetation Bare
Ground

1100 26986

O7 Grass 1050 7400

O8 Urban 1075 11636

O9 Built-up Shadow 1000 3547
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analyzed. The following performance parameters are used
to study the behavior of the classifier.

Performance Measures: The classification/confusion
matrix (Q) is used to obtain the statistical measures for
both the class-level and global performances of the clas-
sifier. Class-level performance is indicated by the percent-
age classification which tells us how many samples
belonging to a particular class have been correctly classi-
fied. The percentage classification ηifor class ci is

η
i
 = 

q
ii

Ni
T (22)

where qii  is the number of correctly classified samples and

Ni
T is the number of samples for the class ci in the testing

data set.

The global performance measures are the average
(ηa) and overall (ηo) efficiency, which are defined as

η
a
 = 

1
C

 ∑ 
i=1

C
η

i
(23)

η
o
 = 

1

N
T ∑ 

i=1

C
q

ii
(24)

where C the total number of classes and NTis the number
of samples in the testing set.

Case I. Effect of Training Data Selection: The six band
Landsat data and a bias input are used to develop a 9 class
classifier models. The general architecture of the multi-
layer perceptron network considered in this study is shown
in Fig.1. In the hidden layer tangential sigmoid function
is used as activation function while in the output layer
linear function is used as activation function. To study the
effect of training data selection, the learning rate, number
of epochs, and number of hidden neurons are kept at 0.2,
200, and 14 respectively.

Random Selection Process: To develop a classifier
model, 1000 patterns from each class are randomly se-
lected. The neural network classifier is trained for  200
epochs with 0.2 learning rate. After training process is
completed, the neural network classifier model is tested
with the complete imagery. Table-3 shows the classifica-
tion matrix for random selection process. The average
accuracy and overall accuracy are 75.57% and 71.86%
respectively. From the classification matrix, we can see
that the following classes has high classification accuracy
O3, O4 and O7, and the most troublesome classes are O2,
O5 and O8. From Table-3, we can see that the deciduous-
pine class (O2) has strong overlap with pine (O3) and
vegetation classes  (O5-O7). Similarly, the urban class
(O8) has strong overlap with the vegetation classes. The
above facts influence the performance of the MLP classi-
fier model developed using random training data selection
process.

Table-3 : The classification matrix for multilayer perceptron classifier with random selection process

Classification Results Actual
No.

Patterns
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 54769 12490 1772 0 2029 2 165 0 1 71228

O2 1081 46539 14303 4331 2875 1617 8934 104 1064 80848

Ground O3 589 1820 22489 2 0 0 0 0 11 24911

O4 0 38 117 21864 1 22 63 4 961 23070

O5 5475 799 13 1 17776 42 2880 0 0 26986

Truth O6 0 130 4 75 172 5466 741 796 1 7400

O7 131 471 0 54 536 1036 10211 77 2 12518

O8 0 127 16 3 1339 1308 2602 6227 14 11636

O8 0 7 1 463 0 2 0 30 3044 3547
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Yoshida’s Selection Process: The training patterns to
develop the classifier are selected using the procedure
presented in [5]. In this procedure, first the high resolution
imagery is clustered using Kohonen’s self-organizing
map [5]. Then, using the ground truth and cluster informa-
tion, 9000 training patterns are selected. The structure of
the multilayer perceptron is the same as in the case of
random selection process. The neural network is trained
for 200 epochs with learning rate 0.2. After training proc-
ess is completed, the neural network classifier model is
tested with the complete imagery. Table-4 shows the
classification matrix for Yoshida’s selection process. The
average and overall accuracy are 85.53% and 81.78%
respectively. From the above results, it can be easily seen
that the Yoshida’s selection process has better perform-
ance than the random selection process. This is due to the
fact that Yoshida’s selection process, select the training
patterns in the boundary between the classes. Hence, the
MLP classifier model is able to capture the decision
boundary between the classes accurately. From the clas-
sification matrix, we can see that the troublesome classes
O5 and O8 in random selection process is improved con-
siderably in Yoshida’s selection. Even though there is an
increase in the performance, the overall accuracy is not
improving considerably. This is due to poor performance
in the deciduous pine class (O2). The deciduous-pine has
strong overlap between the pine and vegetation.

The performance of the multilayer perceptron classi-
fier models not only depends on the training data but also
depends on the stopping criteria, learning rate, weight
initialization, selection of activation function, network
size, error function and scaling of input/output data set.

Hence, in the next case, we present the results based on
evolving multilayer perceptron network technique pre-
sented in this paper.

Case. II. Effect of Optimal Neural Network Architecture:
The evolving neural network technique to obtain the best
multilayer perceptron network classifier models for the
training patterns selected using random and Yoshida’s
approach was implemented and tested in on a Pentium
clusters. In parallel evolving neural network approach, the
selected population (intermediate population) for genetic
operation is divided into 4 sub-populations of equal sizes
(4 is the processors in the cluster). After receiving the
respective sub-populations, each processor in the cluster
performs crossover, mutation operations. At the end of
every generation, the processors in the cluster broadcast
the new population to other processors using message
passing interface sub-routine. The above steps are re-
peated, until the termination criterion is satisfied. The
evolving neural network technique use the following pa-
rameters given in Table-5 in all our simulations. The
convergence of the evolving neural network to the best

Table-4 : The classification matrix for multilayer perceptron classifier with Yoshida’s selection process

Classification Results Actual
No.

Patterns
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 63805 2452 1898 0 2841 0 149 79 4 71228

O2 5265 53674 9146 169 1782 2523 5303 2630 356 80848

Ground O3 458 612 23831 0 0 0 0 10 0 24911

O4 4 973 76 20860 3 226 73 9 846 23070

O5 1139 244 31 0 22740 24 2017 576 215 26986

Truth O6 0 4 4 0 87 5917 422 954 12 7400

O7 0 15 0 0 504 1583 9940 475 1 12518

O8 0 12 2 0 255 983 170 10202 12 11636

O8 0 34 0 72 0 13 3 4 3421 3547

Table-5 : Parameters used in simulation studies

Paramete
rs

Description Value

N Polulation size 20

Sm Mutation probability 0.05

Sc Crossover probability 0.6

M Maximum number of generations 500

q Selection probability 0.08
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netWork is depends on these parameters and are usually
determined by trail-and-error. The advantage with evolv-
ing neural network technique is that it starts with a random
search nodes and modify the search nodes in successive
generations, and the best search node is obtained. Search
node is the best multilayer perceptron classifier model, for
a given training patterns.

Random Selection Process: First, we have trained 20
different neural network architectures for 10 epochs using
randomly selected training patterns. These networks
forms the initial population for the evolving neural net-
work. The best multilayer perceptron classifier model
obtained in this evolution process is having 18 hidden
neurons with partially connected network. The evolved
classifier model is tested with the complete imagery. The
classification matrix for random selection process is given
in Table-6. The average and overall accuracy are 85.28%
and 89.28% respectively. From the above results, it can be
easily seen that the evolving multilayer perceptron net-
work for random selection process has better performance
than the fixed fully connected multilayer perceptron clas-
sifier models presented in the previous case. Even though
there is a substantial increase in the overall accuracy, the
average accuracy is not improving considerably. From
classification matrix, it can be observed that the patterns
in the urban and shadow classes are misclassified as
deciduous-pine and water. These classes reduces the av-
erage classification accuracy. 

Yoshida’s Selection Process: As mentioned in the ran-
dom selection process, here also 20 different neural net-
work architectures are trained for 10 epochs. These

networks forms the initial population for the evolving
neural network. The best multilayer perceptron classifier
model obtained in this evolution process is having ___hid-
den neurons with partially connected network. The
evolved classifier model is tested with the complete im-
agery. The classification matrix is given in Table-7. The
average and overall accuracy are 87.38% and 87.34%
respectively. From Table-4 and 7, we can observed that
the overlap between the deciduous, deciduous-pine, and
pine classes are captured considerably in evolving multi-
layer perceptron network classifier model than the fixed
fully connected MLP classifier model. Hence, the average
and overall accuracy of the evolving network classifier
model is better than the fixed fully connected classifier
model. In the process of evolution, the patterns belongs to
urban are misclassified as vegetation. This affect the over-
all accuracy of the classifier model. 

Case III. Growing and Pruning Radial Basis Function
Network: In this section, we develop a classifier model
using growing and pruning radial basis function network
(GAP-RBFN) [43]. In this approach, sequential learning
algorithm is used to approximate the nonlinear relation-
ship between the band data and the corresponding classes.
In sequential learning algorithm, series of training data
samples are presented one by one to the network. Initially,
the network begin with no hidden neurons. Based on the
training data, new hidden neurons are added/deleted based
on growing and pruning criterion explained in [43]. After
the learning process is completed, the network evolves
with H hidden neurons and the output of the network is
obtained as

Table-6 : The classification matrix for evolving neural network with random selection process

Pattern Recognition Results Actual
No.

Patterns
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 66668 2771 319 0 1469 0 1 0 0 71228

O2 2024 74338 1629 188 837 256 1300 44 232 80848

Ground O3 1016 2197 21697 0 0 0 0 1 0 24911

O4 10 1297 5 21068 2 42 17 2 627 23070

O5 2384 1067 1 0 22930 2 578 24 0 26986

Truth O6 1 253 0 0 142 6004 669 330 1 7400

O7 0 448 0 0 1022 631 10301 116 0 12518

O8 12 693 0 0 1287 888 790 7963 3 11636

O8 11 122 0 157 0 116 29 32 3080 3547
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In this case also, we develop networks based on ran-
domly selected training data and training data selected
based on Yoshida’s selection process. The selected train-
ing patterns are rearranged such that window of 100
samples have patterns from all classes. The following are
the values of the parameters selected in our study are:
∈min = 0.004, ∈max = 0.5, κ = 0.75 and η = 0.9. The ex-

pected accuracy in the simulation study is 0.0001. The
number of hidden neurons required to capture the relation-
ship for random and Yoshida’s selection process are 270
and 220. The performance of theGAP-RBFN classifier
models are given in Table-8. From Table-8, we can see
that the  GAP-RBFN evolved using Yoshida’s selection

Table-7 : The classification matrix for evolving neural network with Yoshida’s selection process

Pattern Recognition Results Actual
No.

Patterns
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 62358 2645 1800 0 4424 0 0 0 1 71228

O2 1451 68370 3629 180 2825 1171 2742 118 362 80848

Ground O3 71 856 23982 0 0 0 0 1 1 24911

O4 16 1076 10 20943 8 135 45 1 836 23070

O5 519 269 1 0 25003 12 1156 26 0 26986

Truth O6 0 23 0 0 100 6791 291 190 5 7400

O7 0 42 0 0 535 1214 10617 110 0 12518

O8 2 198 0 0 1236 1854 724 7616 6 11636

O8 5 22 0 77 0 108 22 27 3286 3547

Table-8 : Performance of different classifier models

CA in % MLC MLP EMLP GAP-RBFN

Random
Selection

Yoshida’s
Selection

Random
Selection

Yoshida’s
Selection

Random
Selection

Yoshida’s
Selection

Random
Selection

Yoshida’s
Selection

O1 87.83 86.73 76.83 89.50 93.52 87.47 77.23 90.12

O2 26.05 27.57 57.56 66.39 91.95 84.57 60.11 70.12

O3 92.22 91.65 90.28 95.66 87.10 96.27 89.91 94.23

O4 93.88 93.37 94.77 90.42 91.32 90.78 94.51 89.99

O5 76.75 80.15 65.87 84.27 84.97 92.65 67.12 80.12

O6 50.69 59.46 73.86 79.96 81.14 91.77 79.01 81.45

O7 74.92 67.69 81.57 79.41 82.29 84.81 82.23 82.27

O8 58.34 56.82 53.94 87.68 68.43 65.45 85.45 90.92

O9 10.77 11.64 85.82 96.45 86.83 92.64 88.91 91.23

Average 63.50 63.90 75.61 85.53 85.28 87.38 80.49 85.61

Overall 64.59 64.85 71.88 81.78 89.28 87.34 74.45 82.73
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process has higher classification accuracy than the random
selection process.

Comparative Analysis and Discussion

For comparative study, we also develop classifier
model using maximum likelihood approach [46]. For
maximum likelihood approach, the training data define
the parameters of the probability distribution of the
classes. Similar to other models, maximum likelihood
classifier is also developed using training data obtained
from random and Yoshida’s selection process. The results
obtained using the classifier models are listed in the Ta-
ble-8. From Table, one easily observe that there is slight
improvement in the classification accuracy based on train-
ing data selection for maximum likelihood classifier.
From the result, we can easily see that the performance of
the maximum likelihood classifiers are approximately
10-25% less than the other models. By looking at the
classification accuracy of individual classes, the maxi-
mum likelihood classifier are comparable with other clas-
sifier models for classes O1, O3, O4, O5 and O7, where
as O2, O6, O8, and O9 are troublesome classes.

To analysis the performance of the classifier models,
classification accuracy of individual classes, average and
overall accuracy for maximum likelihood classifier mod-
els (MLC), fixed fully connected multilayer perceptron
classifier models (MLP), evolving network classifier
models (EMLP) and GAP-RBFN classifier models are
given in Table-8. From the table, it can be clearly observed
that the evolving neural network based classifier models
have better performance over other classifiers.

The classifier model based on random selection shows
better performance in classes O1, O2, O4 and O8 where
as the Yoshida’s selection shows better performance in
classes O3, O5, O6, O7 and O9. Since, the number of
patterns in first two classes are high and the evolving
neural network with random selection has better classifi-
cation accuracy in the first two classes. Hence, the overall
accuracy is better than the Yoshida’s selection. The map
generated using the results obtained from the evolving
network classifier based on random selection is shown in
Fig.5. From Fig.s 4(b) and 5, one can easily observe that
the land cover map obtained using evolving neural net-
work maps are more suitable for practical applications.

Effect of Noise: Now, we analyze the robustness of the
classifier models in the presence of additive gaussian
noise to all spectral band. In this experiment, we add
different amount of additive gaussian noises to the test
patterns and study the behavior of the classifier models
trained using clean patterns (with-out noise). These ex-
periments provide real situations where the acquired sat-
ellite data subjected to sensor noise, observation noise,
cloud correction, uncertainty in ground truth, uncertainty
in spectral signature and etc. The overall accuracy of the
different classifiers when subjected to different signal-to-
noise ratios (SNR) are shown in Fig.6. For different sig-
nal-to-noise ratio (between 1-40 db), the experiments are
carried out for several times and the average performance
is shown in the Fig.6. From the figure, we can observe that
theEMLP and GAP-RBFN classifiers have better per-
formance than the MLP and MLC classifier models. This
behavior is observed both for Gaussian and uniform addi-
tive noise, but it is more evident in the former. From the
study,. it should be noted here, that the degradation in
performance appear only at a very low SNR, i.e., when-

Fig.5  Classification results for evolving neural network
classifier model using random selection process

Fig.6 Variation in overall classification accuracy for
different SNR
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ever the amount of noise is extremely high, which does
not represent realistic situations.

Complexity: The complexities of the different classifier
models are analyzed based on number of hidden neurons,
number of parameters and training time. The complexities
of the MLC, MLP, EMLP and GAP-RBFN classifier
models for random and Yoshida’s method of training data
selection process are given in Table-9. From the above
table, we can observe that the training time for MLC
classifier is less when compared to other classifier models.
But, the performance of the MLC is approximately 10-
25% less than the other classifier models. The number of
parameters and training time for MLP based classifier
models are less when compared to EMLP and GAP-
RBFN. However, the overall performance of EMLP is
better than the MLP classifier model. Since, the EMLP
search for optimal/best number of hidden neurons for
partially connected network architecture with classifica-
tion accuracy (CA) as objective function, it’s performance
is better than the other classifier models.

Conclusion

In this paper, we have presented the evolving neural
network based Level II classifier model for Landsat 7
Thematic Mapper high resolution imagery. The six band
data are used as inputs to the neural classifier model and
it is implemented in Pentium cluster environment. The
evolving neural network adopts a hybrid real coded ge-
netic algorithm methodology and the genetic operators are
carefully designed to optimize the neural network struc-
ture and its connection weights. The proposed methodol-
ogy avoids the premature convergence and permutation

problems in multilayer perceptron network with back
propagation learning algorithm. Since, the evolving neu-
ral network approach uses classification accuracy as ob-
jective function, its performance is better than the other
classifier models. The experimental studies clearly indi-
cate that the evolving neural network classifier model out
perform the classifier models based on fixed multilayer
perceptron network and growing and pruning radial basis
function network. The robustness study of the classifier
model shows that the evolving neural network classifier
is not sensitive to additive gaussian noise up to 20db in all
spectral band.
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