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Abstract

In this paper data partitioning nrethod is applied to concatentlted Large antplitucLe

nxanoeuvres (LAM) of a fighter aircraft to estimate its stabiLity and control derivatives.
Stepwise ruultiple linear regression (SMLR) is utilized to determine the model strLLcture

within each partitioned data set. It is shown that the procedure with data generatedfrom a
research simulator, yields a useful nrcthod for estimating the pitch up tendency exhibited
b), the aircraft during certain an,gle of attack (AOA) range. The SMLR is also applied to
estinmte non-linear aerodl,nanic derivatives of the aircraft from LAM data. The method is
applied to reaL LAM data of the aircraft and gives reasonably consistent estimates of the

oerodl,nsmis derivatives. Results using nrodel error ntethod for the longitudinaL derivatives

from LAMs are also presented.

Introduction

The estimation of aerodynamic stability and control
derivatives frorn flight data of an aircraft fortns a very

important part of flight data analysis. In addition to

providing validation of the theoretical and wind tunnel

pledictions of aerodynamic derivatives, the estimated

derivatives fi-om flight data are lequired fot improving
the stability augmentation and flight contt'ol system

design and fbr development of high fidelity simulators.

Parametel estimation techniques have evolved to a stage

where, by conducting planned flight tests and using the

rneasured input and output responses. it is possible to

estimate the aerodynarnic derivatives lrom a few

dynamic rnanoeuvles on an ailcraft.

In general, parameter estimation methods are applied

to small lnanoeuvres about trim flight conditions. Linear

aefodynamic rnodels are assumed for analysis of these

small perturbation manoeuvres. However, when the tt'im

condition is in a region of rapidly changing

aerodynamic charactetistics, non-linear aerodynamic

rnodels may be required for the analysis of the small
perturbation manoeuvres. When analysing LAMs that

involve lalge variations in angle of attack, angle of
sideslip or contlol positions, bilinear/non-linear'
aerodynamic models would be mostly required [].
Large manoeuvres could occur during certain regimes
perhaps due to loss of stability, damping or control
effectiveness. In order to estimate the aerodynamic
derivatives under such conditions, it would be necessary
to use an appropriate methodology for the analysis of
LAMs.

Output error / maximum likelihood method is the

most popular method used for estirnating stability and

control derivatives from flight data [2,3]. The method
requiles accurate apriori knowledge of the model
structure. In cases where the rnodel structure is not
known, which might often be the case, it would be

lequired to try several alternative models. A two step

method known as Estimation Befole Modelling [4] has

been quite extensively used in flight data analysis. Here,
the state estimation is done using the E,KF and model
stl'ucture is detennined using a Stepwise Multiple
Linear Regression (SMLR) rnethod [5]. Since the time
does not appear explicitly, the measuled data points can

be arranged in arbitrary order leading to a procedule
known as data partitioning I I ].
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The conventional method of parameter identification
fiom flight test consists of first trimming the test

ailplane to some given equilibrium condition and

perturbing the ailcraft slightly flom trim position by

giving a control input to one or more control surfaces- It
may not be possible to trim a given airplane at certain

AOAs. For such situation, using LAMs and data

partitioning, it is possible to generate aerodynamic

derivatives over the AOA lange coveled by the LAM.
The method for analysing these manoeuvres consists of
patitioning i.e. dividing the LAM that covers a large

AOA range to several bins or subsets, each of which

spans a smallel lange of the AOA and SMLR to

determine the structure of the aerodynamic model

within each bin. Usual practice is to include linear
aelodynamic terms of the Taylor's series expansion of
the aerodynamic forces and moments first into the

rnodel. Non-linear aerodynamic models are represented

by extending the lineal terms to include higher-older
telms. The LAM data at'e first corrected for scale factor
and bias ellors using kinematic consistency check on

the data [2] before using the data for computing the

aerodynamic folces and moments.

This paper presents results of analysis of the LAM
data of an inherently unstable/augmented aircraft using

clata partitioning and SMLR to estimate aerodynamic

derivatives. The LAM data is generated using a research

simulator- of the fighter ailcraft. Since, the fighter
airclaft is relatively highly unstable, a feedback
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controller is used to stabilize the ailcraft. It is mandatory
to have sufficient number of data points in eaoh

partitioned data set for estimation of the aerodynamic
derivatives using SMLR. Hence several LAMs with
varying input amplitudes are concatenated before
partitioning w.r.t. AOA fol analysis. In addition, results
of application of SMLR method to estimate the non-
linear aerodynamic derivatives of the aircraft directly
(without partitioning) from analysis of single LAM
manoeuvre data are also presented. The method is

applied to real LAM data of the fightel aircraft. Since

the real flight data is generated with the feedback
controller, the AOA excursion in tlre LAM is limited.
Results are presented in terms of estimated derivatives
w.r'.t. angle of attack and cornpared with the reference
values. The models are checked by cross-validation
wherein the estimated aerodynamic rnodel is used to
predict the responses fbr a flight data set that is not used

in the identification analysis, see Fig. l. Table-l brings
out the features of the estimation plocedure fbllowed in
this paper for LAM analysis.

LAM Data Generation and Data Partitioning

Longitudinal LAM Data

An aircraft is trimmed at a chosen flight condition.
LAM data in the longitudinal axis ale generated

by giving doublets and multi-step 32Il inputs with
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Table-1: The Estimation Procedures for LAM Analysis

LAM Analysis
( Data Partitioning )

LAM Manoeuvre
( Without Partitioning )

LAM Manoeuvre
( Without Partitioning )

Data
handling

* Concatenated data from
several LAMs

* Divided into subspaces

* Single LAM data
* Entire data handled

* Single LAM data
* Entire data handled

Analysis
method

SMLR within each subspace SMLR for the entire data Model Error Method for the entire
data

Application

* Simulated data of
longitudinal LAM
(Fig. 2-s,7,8)

* lateral - Directional LAM
(Fis. 6,9, 10, 1 I )

x Simulated longitudinal
data
(Table-2, Row 1&2 )

* Realdata (Fig. 12,13;
Table-3, Row 3)

* Simulated longitudinal data
(Table-3)

* Real data (Table-3 and 4)

Benefits

* If trim at certain AOA not
possible tl.ren vet'y useful

* Model Selection possible
* Pitch up tendency can be

caDtured

* If trim at certain AOA not
possible then very useful

x Model Selection possible
* Saves Flisht Time

* Estimation of deficiency in the
postulated model with single
data set

* Model selection possible
x Saves Fli.sht Time
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Number of Points

diff'elent large amplitudes to the pitch stick. 13 LAMs
wele generated and concatenated to form a single data
set consisting of 5213 points. Sampling intelval was 25

msec. Fig.2 shows the time history of the elevator
deflection and angle of attack. The LAM shows an

angle of attack variation from -6 to 16 deg.

ReaUSimulated Data set 2

2000 3000 4000

Number of Poinls

Data partitioning procedure involves dividing a

manoeuvre that covers a large range of some variable
into several portions, each of which spans a smaller.
range of that variable t I l. The principle behind
partitioning is that in the range of AOA defined by each
subspace, the variation in the aerodynamic force and

Fig.1 ModeL estirnatiott and validatiott for LAM anall,sis- A schemalic
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Fig.2 Large anrylitucle nraneuver - Longitudinal axis (sinulated tlata)

Real/Simulated Data set I

Kinematic Consistency CheckK inematic Consistency Check
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momen[ coefficients due to AOA can be neglected. In
the longitudinal data analysis, the LAM is divided into
several partitions based on AOA. For example the LAM
data could be pattitioned into several 2 deg. AOA
subspaces as shown in Fig.3. The angle of attack signal

for' 3< o, <5 subspace is shown in Fig.4. However, for
longitudinal LAM analysis, AOA bins of 1 deg. are

chosen. A histogtam showing the number of data points

in each subspace is given in Fig.5 where the width of
each lectangle indicates the AOA range in that subset

and the height the number of data points in that subset.

It is cleal that there are a large number of data points

around the ttim AOA and fewer points in the other

legions of AOA. Each of the longitudinal aerodynamic

coefficients oould be analysed in each of the subspaces.

For instance, the pitching moment coefficient would be

analysed as follows:

c n., 
(cr = l oo ) = c,.,., (g, 6" )no.o., 

,o

c,n(cr = 1201=cn (g,6.),10<cr<130 (1)

and so on for other values of AOA i.e. in order to

estimate the pitching moment derivatives at a = 100,

all data in the subspace colresponding to 90 < a < 1 10

are combined into one gloup fol analysis. Similally,
data corresponding to parts o1:the manoeuvr-es in which

110 < cx < 130 are combined to estimate the pitching

rnoment delivatives at cx = 120 and so tbrth until all data

have been accounted fot'.

Lateral Directional LAM Data

The aircraft is ttimmed at a chosen flight condition
and LAM data in the lateral directional axis is

genelated by giving doublets inputs with different large

amplitudes to the loll stick and ludder pedals. 10 LAMs
wefe genel'ated and concatenated to fortn a single data

set consisting of 8010 data points. Sampling was 25

msecs. In this case, it was found that despite large

exculsions of the roll stick and rudder pedals, the

feedback contlollet limits the AOA exculsions. Hence,

in order to generate the data for LAM analysis covering

Iar-9e excursions in angle of attack and angle of sideslip,

the sirnulator is flown without the feedback controller in

the loop. This tesulted in an AOA variation flom -3 to
20 deg at this flight condition.
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Figure 6 shows the time history of angle of sideslip
and angle of attack. The lesulting ensemble of 8010 data
points was then partitioned into subsets accolding to the

values of AOA. The modelling of lateral parameters is
carlied out at 2 deg. AOA sub spacing as shown below:

C1(u = 10deg.) = Cr(F,p,r,6conrr.ot)9deg ( cr <lldeg

C1 (u = l2deg.) = C1(B,p,r,6.ontrol)r ldeg < o <l:oeg

Cn (cr = l0deg.) = Cn (F,p,f,6.ont1ot)9d"g ( o <r rdeg

Cn (o( = l2deg.) = C,-' (B,p,r,8control)l ldeg < o <l-3deg

(2)

Analysis Procedure

The methodology adopted for analysing the LAMs
to estilnate the aelodynamic palametels consists of the

fbllowing three steps:

(i) The data are corrected fbr scale factor and bias errors
using kinematic consistency check on the data [2]

(ii) The aelodynamic forces and moments are computed
using the corrected data

(iii) The aerodynamic derivatives are estimated using
SMLR. Details of steps (i) and (ii) can be found in Ref.
2. The step (iii) is described next. For all the data

analysis results presented in this paper, the three steps

are used.
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Fig.6 Large antpLitude iltaneuver - lateral axis (sintulated data)

SMLR Method

The form of the aerodynamic model is given by

y(t) = 0 o+ 01x1 (r) +... *0,r_1x u1 (r) + e(r),
t =1,2,...,N (3)

Here y is the dependent variable which could be one
of the aetodynamic force or moment coefficients,
x1 ,x2,...tx,rq are the regressols fot'med by the ailcraft
input and output respollse valiables or their
combinations, e(t) is the equation error with zelo

mean and variance o2. e0,e,1 ,...,er-1 , the stability

and control derivatives, eo is the value of any

particular coefficient colresponcling' to the initial steacly-
flight conditions. The equation enor is consideled to be
in the equation between y(t) and the right hand side
terms collectively. So it is gloss error and not the error.
in particular one parameter. If N observations for t'(r)
and x(t) are available, then the least square estimates

of 0 is given by:

A-rr
0 = (x 'x)-'x 'y

n

Here 0 is the estimate of 0 , y is the (Nxl)

vector of measured values of y(/), and X is the

(N x n ) matrix of measured independent variables.

Fol selecting an applopriate model structure l'or- a
given data set, stepwise regression has been adopted in

(4)
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this paper. In this technique, partial F statistics is used to

build up the parameter vector by selecting significant

pararreters in tl.re model one at a time until the

regression equation is satisfied. To begin the procedure,

it is assumed that only the mean of the data is in the

model and the estimates are determined by regression.

Subsequently correlation coefTicients ate colnputed for

each of the independent model variables using:

N

) xr;ri
i=l

t* j,

VOL. 56, No. 3

level of F. The selection of an adequate rnodel fbr a

given set of data is made based on the examination of
the following infolmation at each step in the regressiott:

i) The partial F value for each parameter in the model is
given by:

(N-nl)r,,.., xi
. 

- 
J^K J . (9)t' (nl-lXl-Yyxpxl)

This gives the relative statistical significance of each

variable in each model when the othel variables ale

present. Since Fp is the inverse of the lelative

parametel' variance, for an adequate model, it should
have maximutn value.

ii) The total F value Ftotal = (Regression lrean

square)/(Residual mean squale). The model with the

maximum F value is the best one fbl a given set of data.

iii) The value of the squaled multiple oorrelation

coetflcient given by:
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The xi with the largest ,"rt, it chosen to enter the

legression first. The fitted model is then given by:

n^nn
y=0r+01 xr+s (6)

In the next step, the correlation coefficient for each

remaining xiG =2,3,..., j-1, j +1,...,nl) is computed on

xi and 1, . The correlation coefflcient is given by:

Nnn 
f (", - x,,0 ,- 0,)(y, - vi)LJ\"ik --ii "r "'t\JI -

;-l
t-

NrnNA

f (t,* - ,,,0 i- o,)'I(r', - ),)'
l=l

(1)

Here /-,1vry is the partial correlation of y on x1

given that x; is in the regression. The x* yielding the

largest vzrlue of r.ro7,r; is selected to enter the model so

that the t'egression model becomes
n  

y=0r+01x1+otxp

Again paltial correlation coefficients ry*1*.1*L is

computed and the x1 giving the largest value enters the

rnodel. This process of cornputation is continued until

the lemaining variables enterin-9 the regression do not

otfel any statistical improvement in the model at

signil'icance level of F statistics selected apriori. These

F values depend upon the number o1' data points, the

number of parameters in the model and the selected risk

i,ri,-rr,
i=l ( l0)
N

) lvrit - vtt
i=l

measures the proportion of variation explained by the

terms other than 06 in the rnodel. The value oi Rl
varies frorn 0 to I fol a perfect set. lt is genetally

expressed as a percentage and the improvement in Rl
due to the addition of a new parametel' should be

significant and should not reflect only the eff'ect ol
increased nurnber of paratnetels. y is rnean of y signal.

iv) The residual sum of the squares (RSS) for the 1th

model is given by:

sn
RSSr - )trtit-y(ittlt (l l)

This value is the measure of goodness of fit and any

new parameter entering the model should contribute
significantly to reduce its value.

v) The value of the residual variance estirnated fi'orn:

R2 =

(8)
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st le; = (r'esidual sum of squares)/( N - nl)

This value should be small. Examining the accuracy

of the estimated parameters is also considered for
verification of the model.

Since the subsets are selected based on the value of
AOA, the data in a given subset may not be contiguous

in time. The subsets rnay include sevetal sections of the

lnanoeuvre as well as data from several large

manoeuvres. The model str-ucture detertnination and

pararneters estimation are carried out by applying

modified stepwise regression to each bin or subset of
partitioned data. The detelmination of an adequate

model for the aerodynamic coefficients includes three

steps: the postulation of terms that might enter the

rnodel, the selection of an adequate model, and the

velification of the model selected.

Several cliteria have been used to judge the

goodness of the estirnated aelodynamic model using

SMLR:

i) relatively low standard deviations of estirnates

ii) Good time history match between computed and

estirnated aerodynatnic coefficients
iii) plausibility of the estimates fi'om physical

interpretation of the estimates and compalison with

reference values where Possible
iv) rnodel predictive capability.

Results and Discussions

Longitudinal Data Analysis using Data Partitioning
and SMLR

Figure 1 shows the schematic of the model

estimation and validation for LAM analysis. Reference

values are liberalised values based on wind tunnel

predictions. The rnethod of data partitioning and SMLR

fbr analysis of longitudinal LAM is illustlated for
estimation of pitching lnoment derivatives from the data

generated florn the simulator and partitioned into

subspaces as shown in Fig. 3.

In ezrch of the subsets, a linear model is postulated

ESTIMATION OF PARAMETERS OF AN AIRCRAFT

(12) Here pitching moment
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derivatives

C n,g , C -o , C n'o and 6 ,r,6" u. to be estimated.

It was observed that there were considerable

variations in some of the lateral response variables
during longitudinal LAMs. These cross coupling effects

could arise due the kinematics ot' due to aerodynamics.
In order to arrive at the appropriate rnodel structule, the

fbllowing model was adopted for accounting fbl the

closs-coupling telms (subscript augmented by k) [5]

Cmk = Cn,B 0' *C*Bo p2o+C.uo 
16o l+C^u, 612 +

c,n 
rzp2**.,"0 lr*l.., l. #l

(14\

Finally the model Cn-. =Cnl +Cmk that includes

both linear as well as bi-linear/coupling aerodynamic
eft'ects with a total of l0 regressor-s is used for

estimation. The plot of VoR2 and F statistics fbr the

coefficient C,n at u=12deg. is shown in Fig. 7 as

each of the 10 reglessors enter the model for Cm. From

Fig. 7, it is clear that the F statistics reaches the

maximum value at step nuntbet'5 and the TrRl lemains

mole or less constant afiet step number 5. Hence

valiables d, Q ,6 
" 
,5 ,? 

and p entered the model

resulting in the estimation o1'

C C- C--^ C--.C derivatives. It is-nro' t-to' -m6e' -tur' -mol

emphasized here that lineat' terms due to a, q,6" got

automatically entered. The estimate of the derivatives

C nro , C rno , C ** ale plotted in Fig. 8a, 8b and 8c.
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I
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The estimated derivatives fall within the tolerance

bound and ale reasonably well determined. The

estimates ar..e found to have low standard deviations.

The bands plotted are the wind tunnel tolerances on the

derivatives. Since the concatenated data of LAMs
covered the alpha range of -6 to 16 deg, the estimated

derivatives are available up to 15 deg. AOA. The pitch

up tendency exhibited by the unstable aircraft seems

estimated quite accurately using this procedute.

Lateral-Directional LAM Analysis with Data
Partitioning and SMLR

In this section, the method of data partitioning and

SMLR for ar.ralysis of lateral- directional LAM is

illustrated lbr estimation of rolling moment and yawing

moment derivatives fi'om the data generated from the

simulator. The rolling moment and the yawing moment

coefficients using only the linear regressol-s are

rnodelled as:

Crr =Cr^ +Cr"0+Cr.. 
tr 

p+C1- 9r*Cro 0+-l r0 ,p' 'p 2Y, 't 2v ,p

C 1u^ 6a + C 1u,. 6r

C-r =C,". +C,,^B+C,. b o*C" b r'+C a',,' "r., ,,p' "p 2v' ", 2Y nB P-

C,.,uo 5a + C,.,u,. 6r

( l5)

The linear model for C11 &Cn1 are augmented by

aerodynamic coupling terms given by:

c^
Cnk=Cn,t *O+Croa 

(16)

Additional candidate combinations involving

P', B',lPlB,lBlp,lBlr, F' r, 5,?,, 6:, 6:, 5: and

lpl6,.

are considered for accounting fbr any possible bi-
linear/coupling terms in the aerodynamic coetllcients
within each subset [2]. Initially this model with l9
regressors (Eqs. 15,16 and 17) was used to estimate the

aerodynamic derivatives for C1 and Cn .

The plot of 7oR2 and F statistics for the coefficient

C; at o =12deg. is shown in Fig. 9. Itis clearthatthe

F statistics for C1 reaches the maximum value at step

number I and VoR2 remains lnore ol less constant after
step numbers 7 . At that stage, 7 variables

F , p , , ,6 ,, , 6 ,. ,6: ,lB 16, .nt.. rhe modet for c 
I

(11)
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resulting in the estimation of the derivatives

C,.,Cr ,Cr ,Cr"- ,Cr".-.Cr-.,Ct , Ct,o,., . Fig. l0,p 'p. ,r ,oa ,or ,6ar ,lPlor

shows the plot o[ F and VIRZ for Cn. F statistics

l'eaches the maximum value at step number l2 and these

variables enter the model resulting in derivative
estimates for-

c-^.c- .c- .c." ,c c ' c
-nB. - np. -nr. -nba' "n6,..-nU3 .-"lplp,"nlplr

Cn_ . .Cn^., .Cn^ , and Cn,o,"-."6r'' "B-r' "6a'' "lFlor

Sonre of the estimated lateral-directional derivatives

fi-om large amplitude manoeuvres using partitioning
method are compared with the reference wind tunnel
values in Fig. 11. The estimates seem very reasonable
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Fig. 10 F Statistics and VoR2 for C,,

and are well within the aelodynamic tolelance bounds.
From the results of LAM analysis using data
partitioning and SMLR, it has been possible to estimate
all the longitudinal and lateral directional derivatives
covering a large AOA variation about the trim value at

each flight condition. The method is particularly
advantageous to estimate the aerodynamic derivatives at
those flight regimes where it may not be possible to trim
the aircraft and perform the conventional small
perturbation manoeuvres.

Estimation of Longitudinal Parameters from
LAMs using SMLR

Linear model of the aircraft is sufficient enough for
small perturbations from tlim conditions at low
angles of attack. As mentioned in the introduction, the
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Table 2: The estimates from LAM/SMLR - Longitudinal data w/o partitioning

Tlirn angle
of attack
(deg.)

c*o C,no c.o"
VoR2

,(only linear
terms)

VoR2
(with
additional
terms)

Ref. Estm Ref. Estm. Ref. Estm.

I 1.90 0.0'77 |

(0.018)

0.0714

(0.004)

-1.r133

(0,422)

-1.2945

(0.018)

-0.3905

(0.040)

-0.3'752

(0.002)

98.81 99.88

4.30 -0.0r44

(0.016)

-0.0102

(0.002)

-1.3195

(0.612)

- r.1 884

(0.058)

-0.4151

(0.040)

-0.3915

(0.006)

98.68 99.61

l 1.55 0.0't1r

(0.0r 8)

0.0580

(0.007)

-1.1733

(0.422)

-0.9916

(0.074)

-0.3905

(0.040)

-0.3935

(0.006)

97.84 98.40

x Laree amDlitude manoeuvre results from real flieht data// (.) Standard deviation absolute
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development of estimation methods for non-linear

aerodynamic models would be essential to analyse

unanticipated LAMs in flight. Hence, some studies have

been carried out in this paper to estimate the parameters

in the longitudinal mode from large amplitude

manoeuvres without paltitioning at two typical flight
conditions. The flight conditions are such that (1)

AOA=4.3 deg., U/C up and (2) AOA=11.9 deg., U/C

down. Pitch stick input of large amplitude is given to
elevator to generate the data.

As in the partitioning method, the pitching moment
related parameters are estimated using stepwise
legression method. Apart from linear parametel's,

candidate combinations a2,a q,06 e

signifying the slope of linear parameters w.r.t. AOA and
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Fig. l3 : Model Valiclarion (ReaL Flight Data / w/o Partitiotting)
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clz

a2,a3,s4,cr5 ,a6,a7 signifying higher order terms

(since longitudinal motion is generally dependent on u)
were considered as candidate aerodynamic derivatives
for estimation of parameters. The results of parameter
estimation of Iineal aerodynamic derivatives using
stepwise regression method for the two flight conditions
are given in Table 2. The candidate variables that
enteled the model are: C r,5r,C ,,, ,C,ro,C 

^o3 
and

Cno.6" . The o/oRz values are also given in Table 2. It is

clear fi'om the Table that the estimated derivatives
compare well with the reference values.

The SMLR method is applied ro the analysis of real
LAM data of the unstable/augmented aircr.aft. Fig. 12
shows the measured flight trajectories of the
longitudinal axis variables. The kinematically consrstent
flight data is used for estimation of pitching moment
aerodynamic derivatives which are given in row 3 of
Table 2. The control effectiveness derivative Cn.*
compares well with the reference values whereas the
estimates of C.o and C,no fiom flight are lower than

the reference values. In Fig. 13, the estimated model is
used to predict the C^ fbr anorher LAM from flight
indicative of the adequacy of the estimated aerodynamic
model .

iod rso zb
Number of Points

Computed

Number of Points



Table 3: The Estimates from LAMs using Model Error Method Longitudinal w/o Partitioning

Trim angle
of attack (deg.)

C,.o C,no

Ref. Estm. Ref Estm. Ref. Estm.

I 1.90 0.0111 0.0810 t.1733 1.2522 -0.3905 -0.3181

4.30 -0.0144 -0.0201 1 .3195 r .1558 -0.4151 -0.4106

I 1.55 0.0111 0.0610 t.t733 -0.9220 -0.3905 -0.398 8
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Fig. l4 : Titne history of True and DeJicient State
Model Error Method

The true non-linear system is described as:

X(t) = s(X(t),t)
Y(t) = HX(r)

( l8)

g is true representation of the dynamical system. The

observables Y are obtained fot interval to < t < t. Eqn.

(Al) is reoasI to explicitly express the deterlninistic
rnodel erior as follows:

x(t) = 11^11;, t) + d(t)

y(t)=H(t)x(t)+v(t)
(1e)

Here f denotes the nominal model, v is additive
lneasurement noise and the vectol' 'd' is the model

disclepancy. The vector' 'd' is to be estimated in the

sense of minirnum model erlor critet'ion:

50 1@ 150 200 2fi
Number of Points

Titlte history of True and Estitrtated State

0

Fig.l5

Table 4: Correlation Results for Model Error
Method (Table 3, row3)

Candidate function Correlation
Coefficient

Cnr 10-
0.7010

Cm 2 +Crn .1

cI- 0-
0.6584

Cm,+Cm r*Cm^^a' c'
0.65',t7

Cmr
cI-

0.6555

Crn " +Cm^^
ct-

0.6505

Crnoo 0.0579
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. lttyt,l- H(t)x(t)rQr(rXy(t) - H(r)x(r)) +
L = l-'' ' _-" (20)

/, arltyqraltllat

Tuning of the algorithm is done by selecting

appropriate values of matrices Q1 and Q2 . The model

discrepancy is provided in the fbrm of time histories.
These time histories, when palameterised in the least
squales sense, yield the coefficients of the models by
which the true models were deficient.

Recursive algorithm based on the technique of
invaliant ernbedding is used for estimation of
deterministic model errors in non-linear systems [6].
These algorithms have features similar to the extended
Kahnan filter.

The estimates using model error method are given in
Table 3. Table 4 gives the candidate models. Fig. l4
shows the cross plot of pitch rate when the model is
deficient without bilinear/non-linear terms. Fig. l5
shows the cross plot of pitch late when the deficiency in
the model is estirnated (row 3 of Table 3). The
matclring is good [7].

Conclusions

In this paper, the procedule to capture the pitch up
tendency occulring in inherently unstable/augmented
airclaft has been desclibed. The pitching lnolnent
related parameters are estimated by concatenating large
amplitude nrrnoeuvres using stepwise regression
technique and compared with predicted values. The
estimated values match reasonably well with the

pledicted values for most of the angle of attack region.
Also the estimates of latelal-directional derivatives
frorn large amplitude manoeuvres using stepwise
reglession technique match leasonably with predicted
values. The parameter estimates related to pitching
mornent coeff icient fi'om large perturbation nlanoeuvres
without partitioning and using only SMLR and the
model error method are satisfactory fol simulated i real
f'light data. However, the physical interpretation of other
clerivatives estirnated usinc the rnethods has not been

attempted.
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