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Abstract

In this paper data partitioning method is applied to concatenated large amplitude
manoeuvres (LAM) of a fighter aircraft to estimate its stability and control derivatives.
Stepwise multiple linear regression (SMLR) is utilized to determine the model structure
within each partitioned data set. It is shown that the procedure with data generated from a
research simulator, yields a useful method for estimating the pitch up tendency exhibited
by the aircraft during certain angle of attack (AOA) range. The SMLR is also applied to
estimate non-linear aerodynamic derivatives of the aircraft from LAM data. The method is
applied to real LAM data of the aircraft and gives reasonably consistent estimates of the
aerodynamic derivatives. Results using model error method for the longitudinal derivatives

from LAMs are also presented.

Introduction

The estimation of aerodynamic stability and control
derivatives from flight data of an aircraft forms a very
important part of flight data analysis. In addition to
providing validation of the theoretical and wind tunnel
predictions of aerodynamic derivatives, the estimated
derivatives from flight data are required for improving
the stability augmentation and flight control system
design and for development of high fidelity simulators.
Parameter estimation techniques have evolved to a stage
where, by conducting planned flight tests and using the
measured input and output responses, it is possible to
estimate the aerodynamic derivatives from a few
dynamic manoeuvres on an aircraft.

In general, parameter estimation methods are applied
to small manoeuvres about trim flight conditions. Linear
aerodynamic models are assumed for analysis of these
small perturbation manoeuvres. However, when the trim
condition is in a region of rapidly changing
aerodynamic characteristics, non-linear aerodynamic
models may be required for the analysis of the small
perturbation manoeuvres. When analysing LAMs that

involve large variations in angle of attack, angle of
sideslip or control positions, bilinear/non-linear
aerodynamic models would be mostly required [1].
Large manoeuvres could occur during certain regimes
perhaps due to loss of stability, damping or control
effectiveness. In order to estimate the aerodynamic
derivatives under such conditions, it would be necessary
to use an appropriate methodology for the analysis of
LAMs. :

Output error / maximum likelihood method is the
most popular method used for estimating stability and
control derivatives from flight data [2,3]. The method
requires accurate apriori knowledge of the model
structure. In cases where the model structure is not
known, which might often be the case, it would be
required to try several alternative models. A two step
method known as Estimation Before Modelling [4] has
been quite extensively used in flight data analysis. Here,
the state estimation is done using the EKF and model
structure is determined using a Stepwise Multiple
Linear Regression (SMLR) method [5]. Since the time
does not appear explicitly, the measured data points can
be arranged in arbitrary order leading to a procedure
known as data partitioning [1].
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Table-1: The Estimation Procedures for LAM Analysis
LAM Analysis LAM Manoeuvre LAM Manoeuvre
( Data Partitioning ) ( Without Partitioning ) ( Without Partitioning )
Data * Concatenated data from * Single LAM data * Single LAM data
handling several LAMs * Entire data handled * Entire data handled
* Divided into subspaces
Analysis SMLR within each subspace SMLR for the entire data Model Error Method for the entire
method data
* Simulated data of * Simulated longitudinal * Simulated longitudinal data
Application longitudinal LAM data (Table-3)
(Fig. 2-5,7,8) (Table-2, Row 1&2 ) * Real data (Table-3 and 4)
* Jateral — Directional LAM * Real data (Fig. 12,13;
(Fig. 6,9,10,11 ) Table-3, Row 3)
* If trim at certain AOA not * If trim at certain AOA not | * Estimation of deficiency in the
Benefits possible then very useful possible then very useful postulated model with single
* Model Selection possible * Model Selection possible data set
* Pitch up tendency can be * Saves Flight Time * Model selection possible
captured * Saves Flight Time

The conventional method of parameter identification
from flight test consists of first trimming the test
airplane to some given equilibrium condition and
perturbing the aircraft slightly from trim position by
giving a control input to one or more control surfaces. It
may not be possible to trim a given airplane at certain
AOAs. For such situation, using LAMs and data
partitioning, it is possible to generate aerodynamic
derivatives over the AOA range covered by the LAM.
The method for analysing these manoeuvres consists of
partitioning i.e. dividing the LAM that covers a large
AOA range to several bins or subsets, each of which
spans a smaller range of the AOA and SMLR to
determine the structure of the aerodynamic model
within each bin. Usual practice is to include linear
aerodynamic terms of the Taylor’s series expansion of
the aerodynamic forces and moments first into the
model. Non-linear aerodynamic models are represented
by extending the linear terms to include higher-order
terms. The LAM data are first corrected for scale factor
and bias errors using kinematic consistency check on
the data [2] before using the data for computing the
aerodynamic forces and moments.

This paper presents results of analysis of the LAM
data of an inherently unstable/augmented aircraft using
data partitioning and SMLR to estimate acrodynamic
derivatives. The LAM data is generated using a research
simulator of the fighter aircraft. Since, the fighter
aircraft is relatively highly unstable, a feedback

controller is used to stabilize the aircraft. It is mandatory
to have sufficient number of data points in each
partitioned data set for estimation of the aerodynamic
derivatives using SMLR. Hence several LAMs with
varying input amplitudes are concatenated before
partitioning w.r.t. AOA for analysis. In addition, results
of application of SMLR method to estimate the non-
linear aerodynamic derivatives of the aircraft directly
(without partitioning) from analysis of single LAM
manoeuvre data are also presented. The method is
applied to real LAM data of the fighter aircraft. Since
the real flight data is generated with the feedback
controller, the AOA excursion in the LAM is limited.
Results are presented in terms of estimated derivatives
w.r.t. angle of attack and compared with the reference
values. The models are checked by cross-validation
wherein the estimated aerodynamic model is used to
predict the responses for a flight data set that is not used
in the identification analysis, see Fig.1. Table-1 brings
out the features of the estimation procedure followed in
this paper for LAM analysis.

LAM Data Generation and Data Partitioning

Longitudinal LAM Data

An aircraft is trimmed at a chosen flight condition.
LAM data in the longitudinal axis are generated
by giving doublets and multi-step 3211 inputs with
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Fig.2 Large amplitude maneuver - Longitudinal axis (simulated daia)

different large amplitudes to the pitch stick. 13 LAMs
were generated and concatenated to form a single data
set consisting of 5213 points. Sampling interval was 25
msec.  Fig.2 shows the time history of the elevator
deflection and angle of attack. The LAM shows an
angle of attack variation from -6 to 16 deg.

Data partitioning procedure involves dividing a
manoeuvre that covers a large range of some variable
into several portions, each of which spans a smaller
range of that variable [I]. The principle behind
partitioning is that in the range of AOA defined by each
subspace, the variation in the aerodynamic force and
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moment coefficients due to AOA can be neglected. In
the longitudinal data analysis, the LAM is divided into
several partitions based on AOA. For example the LAM
data could be parttitioned into several 2 deg. AOA
subspaces as shown in Fig.3. The angle of attack signal
for 3< o <5 subspace is shown in Fig.4. However, for
longitudinal LAM analysis, AOA bins of 1 deg. are
chosen. A histogram showing the number of data points
in each subspace is given in Fig.5 where the width of
each rectangle indicates the AOA range in that subset
and the height the number of data points in that subset.

It is clear that there are a large number of data points
around the trim AOA and fewer points in the other
regions of AOA. Each of the longitudinal aerodynamic
coefficients could be analysed in each of the subspaces.
For instance, the pitching moment coefficient would be
analysed as follows:

Cm(azloo)zcm(qvée)go

<o(<l]0

cm(a=120)=cm(q,ése)”0 (1

<(X<l30

and so on for other values of AOA i.e. in order to
estimate the pitching moment derivatives at a=10",

all data in the subspace corresponding to 90 <a<11°
are combined into one group for analysis. Similarly,
data corresponding to parts of the manoeuvres in which

11° <0< 13" are combined to estimate the pitching

moment derivatives at o = 12 and so forth until all data
have been accounted for.

Lateral Directional LAM Data

The aircraft is trimmed at a chosen flight condition
and LAM data in the lateral directional axis 1is
generated by giving doublets inputs with different large
amplitudes to the roll stick and rudder pedals. 10 LAMs
were generated and concatenated to form a single data
set consisting of 8010 data points. Sampling was 25
msecs. In this case, it was found that despite large
excursions of the roll stick and rudder pedals, the
feedback controller limits the AOA excursions. Hence,
in order to generate the data for LAM analysis covering
large excursions in angle of attack and angle of sideslip,
the simulator is flown without the feedback controller in
the loop. This resulted in an AOA variation from -3 to
20 deg at this flight condition.

a (deg.)
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Figure 6 shows the time history of angle of sideslip
and angle of attack. The resulting ensemble of 8010 data
points was then partitioned into subsets according to the
values of AOA. The modelling of lateral parameters is
carried out at 2 deg. AOA sub spacing as shown below:

C (@ =10deg.) =C(B.,p,r,8coniro1 )9 deg <O <{]deg
Cj(a=12deg.) = C(B,p,1,dcontrol )1 ldeg < O <|3deg
C,(a=10deg.)=C,(B.p, 1-’80011t1'ol)9deg << 1 deg

C, (o =12deg.) =C, (B,p.7,Scontrol 1 ldeg < % <13deg
(2)

Analysis Procedure

The methodology adopted for analysing the LAMs
to estimate the aerodynamic parameters consists of the
following three steps:

(1) The data are corrected for scale factor and bias errors
using kinematic consistency check on the data [2]

(11) The aerodynamic forces and moments are computed
using the corrected data

(iii) The aerodynamic derivatives are estimated using
SMLR. Details of steps (i) and (ii) can be found in Ref.
2. The step (iii) is described next. For all the data
analysis results presented in this paper, the three steps
are used.
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SMLR Method

The form of the aerodynamic model is given by

Y1) =0g +01x; () +..4+0,_1x,_ (H+E{),
r=12,..,N (3)

Here y is the dependent variable which could be one
of the aerodynamic force or moment coefficients,
Xj,Xy,...,X,_1 are the regressors formed by the aircraft
input and output response variables or their
combinations, E€(¥) is the equation error with zero

mean and variance ¢Z. 0¢,0,.....,0,_, the stability
and control derivatives, 8, is the value of any
particular coefficient corresponding to the initial steady-
flight conditions. The equation error is considered to be
in the equation between y(t) and the right hand side
terms collectively. So it is gross error and not the error
in particular one parameter. If N observations for y()
and x(t) are available, then the least square estimates

of O is given by:

N

B=(x"x)"'xTy 4
A
Here 6 is the estimate of 6 , 'y is the (Nxl)

vector of measured values of y(¢), and X is the

(N x ') matrix of measured independent variables.

For selecting an appropriate model structure for a
given data set, stepwise regression has been adopted in
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this paper. In this technique, partial F statistics is used to
build up the parameter vector by selecting significant
parameters in the model one at a time until the
regression equation is satisfied. To begin the procedure,
it is assumed that only the mean of the data is in the
model and the estimates are determined by regression.
Subsequently correlation coefficients are computed for
each of the independent model variables using:

&)

The x; with the largest Txjy is chosen to enter the

J
regression first. The fitted model is then given by:

A A A A

y=01+0jx;+¢ (6)

In the next step, the correlation coefficient for each
remaining x;(i =2,3,..., j—1, j+1,...,nl) is computed on

A
xjand y . The correlation coefficient is given by:
A

N A A
Z(Xik - 'x,j 61'_ 61)()’,‘ = y,’)
i=1

r\i\'k X N N

S (e = x, 0= 002 (5, -
i=1 i=]

)

Here Fyxgex is the partial correlation of y on x;

given that Xj is in the regression. The X, yielding the
largest value of r,,, .. is selected to enter the model so
WX

that the regression model becomes

A A A
y=01+06x; + 0k x (8)

Again partial correlation coefficients Tyxpx jxi is

computed and the x; giving the largest value enters the

model. This process of computation is continued until
the remaining variables entering the regression do not
offer any statistical improvement in the model at
significance level of F statistics selected apriori. These
F values depend upon the number of data points, the
number of parameters in the model and the selected risk
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level of F. The selection of an adequate model for a
given set of data is made based on the examination of
the following information at each step in the regression:

i) The partial F value for each parameter in the model is
given by:

G b DTy, X
(nl=D(=y X ;)

€))

This gives the relative statistical significance of each
variable in each model when the other variables are
present. Since F, is the inverse of the relative

parameter variance, for an adequate model, it should
have maximum value.

ii) The total F wvalue Fy, =(Regression mean

square)/(Residual mean square). The model with the
maximum F value is the best one for a given set of data.

iii) The value of the squared multiple correlation
coefficient given by:
2

N A
2[Y1‘ﬂ2
R2=-=_ i=l

TN
Zym b

(10)

measures the proportion of variation explained by the
terms other than 6 in the model. The value of R*
varies from O to 1 for a perfect set. It is generally

expressed as a percentage and the improvement in R’
due to the addition of a new parameter should be
significant and should not reflect only the effect of
increased number of parameters. y is mean of y signal.

iv) The residual sum of the squares (RSS) for the /th
model is given by:

K D)
RSSp = ) [y()-y(i1] ()
This value is the measure of goodness of fit and any
new parameter entering the model should contribute

significantly to reduce its value.

v) The value of the residual variance estimated from:
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52 (€) = (residual sum of squares)/( N —nl) (12)

This value should be small. Examining the accuracy
of the estimated parameters is also considered for
verification of the model.

Since the subsets are selected based on the value of
AOA, the data in a given subset may not be contiguous
in time. The subsets may include several sections of the
manoeuvre as well as data from several large
manoeuvies. The model structure determination and
parameters estimation are catried out by applying
modified stepwise regression to each bin or subset of
partitioned data. The determination of an adequate
model for the acrodynamic coefficients includes three
steps: the postulation of terms that might enter the
model, the selection of an adequate model, and the
verification of the model selected.

Several criteria have been used to judge the
goodness of the estimated aerodynamic model using
SMLR:

i) relatively low standard deviations of estimates

ii) Good time history match between computed and
estimated aerodynamic coefficients

iit)y plausibility of the estimates from physical
interpretation of the estimates and comparison with
reference values where possible

iv) model predictive capability.

Results and Discussions

Longitudinal Data Analysis using Data Partitioning
and SMLR

Figure 1 shows the schematic of the model
estimation and validation for LAM analysis. Reference
values arc liberalised values based on wind tunnel
predictions. The method of data partitioning and SMLR
for analysis of longitudinal LAM is illustrated for
estimation of pitching moment derivatives from the data
generated from the simulator and partitioned into
subspaces as shown in Fig. 3.

In each of the subsets, a linear model is postulated

+C,, a+C

qc
mg my mq Wq"'c 0 (13)

mg, e

Cmi=C
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moment derivatives
are to be estimated.

Here pitching
ChnsC C mq and C

mg o - mg mg,

It was observed that there were considerable
variations in some of the lateral response variables
during longitudinal LAMs. These cross coupling effects
could arise due the kinematics or due to aerodynamics.
In order to arrive at the appropriate model structure, the
following model was adopted for accounting for the
cross-coupling terms (subscript augmented by k) [5]

2 2
Crnk = CmgB” +Cry B oc+Cm6a|6a|+Cm5r6r2+

mﬁ(x

2 b
Cm 2p —+C

P 2V ]Tlp p

b
—+Ch 1‘L
2V "2V

(14)

Finally the model Cp, =Cy, +Cy, that includes

both linear as well as bi-linear/coupling aerodynamic
effects with a total of 10 regressors is used for
estimation. The plot of %R> and F statistics for the
coefficient C,, at a=12deg. is shown in Fig. 7 as
each of the 10 regressors enter the model for Cm. From
Fig. 7, it is clear that the F statistics reaches the

. 2 5
maximum value at step number 5 and the %R“ remains
more or less constant after step number 5. Hence

variables (X,q,5e,5rzand p entered the model

resulting in the estimation of
C CIINE Chng, - C derivatives. It s

Mg * Mg 7~ Mge 2 m
2

p
emphasized here that lincar terms due to «,q,0, got

automatically entered. The estimate of the derivatives

Cing ,Cmq ; Cmg, are plotted in Fig. 8a, 8b and 8c.
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Fig. 7 F statistics and %R’ for C,,
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The estimated derivatives fall within the tolerance
bound and are reasonably well determined. The
estimates are found to have low standard deviations.
The bands plotted are the wind tunnel tolerances on the
derivatives. Since the concatenated data of LAMs
covered the alpha range of -6 to 16 deg, the estimated
derivatives are available up to 15 deg. AOA. The piich
up tendency exhibited by the unstable aircraft seems
estimated quite accurately using this procedure.

Lateral-Directional LAM Analysis with Data
Partitioning and SMLR

In this section, the method of data partitioning and
SMLR for analysis of lateral- directional LAM is
illustrated for estimation of rolling moment and yawing
moment derivatives from the data generated from the
simulator. The rolling moment and the yawing moment
coefficients using only the linear regressors are
modelled as:

b b :
C“ :Clo +CIBB+CIP 2—Vp+C]r 2—VT+C|B B+

C]Sa 82[+C|61_ or

C

b b :
nl :Cn() +CnBB+Cnp WP+Cnr Wr"'cnﬁ B+

C.. 6a+C  or

n 621 n§
(15)

The linear model for C); & C,, are augmented by
aerodynamic coupling terms given by:

C = g+C, 0 (16)

"q oy

nk:C

Additional candidate combinations involving

B, B%,|B|B.IB|p.|Blr. B*r.82,6],82.8] and
|5, (17)

are considered for accounting for any possible bi-
linear/coupling terms in the aerodynamic coefficients
within each subset [2]. Initially this model with 19
regressors (Egs. 15,16 and 17) was used to estimate the
aerodynamic derivatives for C; and C,, .

The plot of %R* and F statistics for the coefficient
C; at o =12deg. is shown in Fig. 9. Itis clear that the

F statistics for C; reaches the maximum value at step
number 7 and %R? remains more or less constant after
step numbers 7. At that stage, 7 variables

ﬁ,p,r,5“,5r,53 |ﬂ|5r enter the model for C,

a?’
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Table 2: The estimates from LAM/SMLR - Longitudinal data w/o partitioning
i Cma Cmq Cmge
Trim angle %R 2 %R2
of attack (only linear | (with
. . Estm. !
(deg.) Ref. Estm. Ref. Estm Ref. stm ) additional
terms)
11.90 0.0771 0.0714 -1.1733 -1.2945 -0.3905 -0.3752 98.81 99.88
(0.018) (0.004) 0.422) (0.018) (0.040) (0.002)
4.30 -0.0144 -0.0102 -1.3195 -1.1884 -0.4151 -0.3975 98.68 99.67
(0.016) (0.002) (0.612) (0.058) (0.040) (0.006)
97.84 98.40
11.55" 0.0771 0.0580 -1.1733 -0.9916 -0.3905 -0.3935
(0.018) (0.007) (0.422) (0.074) (0.040) (0.006)

*  Large amplitude manoeuvre results from real flight data// (.) Standard deviation absolute

resulting in the estimation of the derivatives
ClB aClp ’Clr ’Cl&l ’Cl&. 7Cll. 7C|5a3 Cllﬁl&. 0 F]g 10

shows the plot of F and %R for C, . F statistics

reaches the maximum value at step number 12 and these
variables enter the model resulting in derivative
estimates for

Cpa-Ca 2 Co»Chs »Crs »C

ng DK e N8 > NG n[33’Cnlﬁm’cnlﬁlr

C, +.Co, ,Cy

S wnd €

n]ﬁ|8r ’

Some of the estimated lateral-directional derivatives
from large amplitude manoeuvres using partitioning
method are compared with the reference wind tunnel
values in Fig. 11. The estimates seem very reasonable

and are well within the aerodynamic tolerance bounds.
From the results of LAM analysis using data
partitioning and SMLR, it has been possible to estimate
all the longitudinal and lateral directional derivatives
covering a large AOA variation about the trim value at
each flight condition. The method is particularly
advantageous to estimate the aerodynamic derivatives at
those flight regimes where it may not be possible to trim
the aircraft and perform the conventional small
perturbation manoeuvres.

Estimation of Longitudinal Parameters from
LAMs using SMLR

Linear model of the aircraft is sufficient enough for
small perturbations from trim conditions at low
angles of attack. As mentioned in the introduction, the
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Fig.11 : Lateral Directional parameter estimates

development of estimation methods for non-linear

aerodynamic models would be essential to analyse
unanticipated LAMs in flight. Hence, some studies have
been carried out in this paper to estimate the parameters
in the longitudinal mode from large amplitude
manocuvres without partitioning at two typical flight
conditions. The flight conditions are such that (1)
AOA=4.3 deg., U/C up and (2) AOA=11.9 deg., U/C

down. Pitch stick input of large amplitude is given to
elevator to generate the data.

As in the partitioning method, the pitching moment
related parameters are estimated using stepwise
regression method. Apart  from linear parameters,

]

o ,oq,0d .
signifying the slope of linear parameters w.r.t. AOA and

candidate combinations
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Fig.12 : Real flight trajectories of Large amplitude (Longitudinal Axis / w/o Partitioning)
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~~-- Predicted
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Fig. 13 : Model Validation (Real Flight Data / w/o Partitioning)

3 4 5 6 7

0(2’0( ot 0,05, o signifying higher order terms The SMLR method is applied to the analysis of real

LAM data of the unstable/augmented aircraft. Fig. 12
shows the measured flight trajectories of the
longitudinal axis variables. The kinematically consistent
flight data is used for estimation of pitching moment
aerodynamic derivatives which are given in row 3 of
Table 2. The control effectiveness derivative C

(since longitudinal motion is generally dependent on o)
were considered as candidate acrodynamic derivatives
for estimation of parameters. The results of parameter
estimation of linear aerodynamic derivatives using
stepwise regression method for the two flight conditions
are given in Table 2. The candidate variables that mge
entered the model are: Cm&,cmq,cma,cm 3 and compares well with the reference values whereas the

& estimates of Cm,, and Cmq from flight are lower than

5) 3 - . .
Cmaﬁe - The SRS ElRegcieqalsosgivenin Tiables. tis the reference values. In Fig. 13, the estimated model is

clear from the Table that the estimated derivatives used to predict the C, for another LAM from flight

compare well with the reference values. indicative of the adequacy of the estimated aerodynamic
model .
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Table 3: The Estimates from LAMs using Model Error Method Longitudinal w/o Partitioning
Trim angle Cn Cmq C
of attack (deg.) L o&
Ref. Estm. Ref. Estm. Ref. Estm.
11.90 0.0771 0.0810 -1.1733 -1.2522 -0.3905 -0.3787
4.30 -0.0144 -0.0201 -1.3195 -1.1558 -0.4151 -0.4106
11.55" 0.0771 0.0610 -1.1733 -0.9220 -0.3905 -0.3988
35 —T
Table 4: Correlation Results for Model Error :.au-' Dr:;ciant
Method (Table 3, row3) 025
Candidate function Correlation gf‘;:
Coefficient 0.10
C 0.7010 —~ 005
o3 o8 0007
Cm 5, +Cm ; 0.6584 £ 0053 7 <
o~ o -0.10 < \ / "~
0.657 015 Rt
Cm _» +Cm 3+ Cm gy, 7 i
Cm , 0.6555 D28
63 0.30-‘
Cm 5 +Cmgq 0.6505 j:: \y
Cimgq 0.0579 04 , . — x
0 50 100 150 200 250
L Number of Points
Model Error Method
Fig. 14 : Time history of True and Deficient State
The true non-linear system is described as:
} 0.35 — True
X(t) =g(X(t),t) (18) 0,30 ———-- Estmated
Y (1) = HX(t)
g is true representation of the dynamical system. The
observables Y are obtained for interval ty <t <7. Eqn. -
(A1) is recast to explicitly express the deterministic T8

model error as follows:

() = £(x (1), t) + d(©)
y(t) = H(t)x(t) + v(t)

(19)

Here f denotes the nominal model, v is additive
measurement noise and the vector ‘d’ is the model
discrepancy. The vector ‘d’ is to be estimated in the
sense of minimum model error criterion:

50

T T T
100 150

Number of Points

200

250

: Time history of True and Estimated State
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T T _
J:J‘[(y(t)—H(t)X(t) Q(H(y(H) —H(Hx() + 20)
0

dT(1)Q,d()ldt

Tuning of the algorithm is done by selecting
appropriate values of matrices Q and Q, . The model
discrepancy is provided in the form of time histories.
These time histories, when parameterised in the least
squares sense, yield the coefficients of the models by
which the true models were deficient.

Recursive algorithm based on the technique of
invariant embedding is used for estimation of
deterministic model errors in non-linear systems [6].
These algorithms have features similar to the extended
Kalman filter.

The estimates using model error method are given in
Table 3. Table 4 gives the candidate models. Fig. 14
shows the cross plot of pitch rate when the model is
deficient without bilinear/non-linear terms. Fig. 15
shows the cross plot of pitch rate when the deficiency in
the model is estimated (row 3 of Table 3). The
matching is good [7].

Conclusions

In this paper, the procedure to capture the pitch up
tendency occurring in inherently unstable/augmented
aircraft has been described. The pitching moment
related parameters are estimated by concatenating large
amplitude manoeuvres using stepwise regression
technique and compared with predicted values. The
estimated values match reasonably well with the
predicted values for most of the angle of attack region.
Also the estimates of lateral-directional derivatives
from large amplitude manoeuvres using stepwise
regression technique match reasonably with predicted
values. The parameter estimates related to pitching
moment coefficient from large perturbation manoeuvres
without partilioning and using only SMLR and the
model error method are satisfactory for simulated / real
flight data. However, the physical interpretation of other
derivatives estimated using the methods has not been
attempted.
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