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Abstract

A thorough study of the behaviour of shear deformable plate bending finite elements is carried
out to investigate their performance when applied to static and free vibration analyses of
Iaminated composite plates. 4-noded, 8-noded and 9-noded quadrilateral isoparametricfinite
elements based on first-order shear deformation theory and a 4-noded element based on

higher-order shear deformation theory are considered. The numerical results indicating the

effect of order of integration on the accuracy of the results and convergence of transverse

displacements and stresses are presented. The resuLts indicate that a 4-noded element with
seven degrees offreedom per node based on higher-order shear deformation theory is required
to predict the deflection as well as the stresses accurately and a I 6x I 6 mesh division for full
plate is necessary for obtaining converged resuLts. For the case offree vibration analysis, the

element based onfirst-order shear deformation theory is found to be sufficient.

Nomenclature

= Cartesian co-ordinates

= displacements in x, y, z directions

= mid-plane displacements in x, y, z

directions

= total slopes in the x and y directions

= stress components

= length of the plate

= width of the plate

= total thickness ofthe plate
' = Young's moduli along and transverse

direction of the fibre

= in-plane and transverse shear moduli

= in-plane Poisson's ratio

= non-dimensional central deflection

= non-dimensional stresses

TECHNICAL NOTE

Introduction

Analysis of laminated composite plates has been a
subject of keen interest for structural engineers for quite a

long time and continues to be so. Though a large number
of approaches and a significant number of finite element
models have been proposed by various researchers [ 1 ,2,3]
for the analysis of such plates, further efforts seem to be

necessary in order to fully investigate specific aspects of
analysis. Behaviour of angle-ply laminates is different
from that of cross-ply laminates. Symmetrically laminated
plates may behave differently from antisymmetrically
laminated plates. When one browses through literature, he

finds 4-noded, 8-noded or 9-noded elements based on

first-order, second-order or third-order shear d eformation
theories. Different authors recommend different orders of
integration for obtaining stiffness and mass matrices.
Many authors claim that very good results can be obtained
by using a 4x4 mesh of finite elements. Sivakumaran et al.

[1] used a 9-noded isoparametric element, based on three
different displacement models, employing selective re-
duced integration scheme for the evaluation of element
stiffness matrix and the results are reported to be con-
verged with 4x4 mesh for full plate. Ghosh andDey 12,41
reported that accurate results are obtained for both thin and
thick plates with full integration, using a 4-noded element

x'y'z
u'v,w
uo'Vo'wo

o"'oy

o", oy, Ta1,

xxz, xyz

 
b

h

Et'Ez

Gn,Gl:J,G23

't2

1,,o,,r,,
trz,lyz

q - intensity ofload
(,) = non-dimensional fundamental

frequency

p = densitY of the material

* Assistant Professor, Department of Civil Engineering, College of Engineering, Thiruvananthapuram-695 0l 6, India
*x Principal, Younus College of Engineering and Technology, Kollam-691 010, India
- Deputy Director. Liquid Propulsion Systems Centre, ISRO, Valiamala, Thiruvananthapuram-695 547 ,lndia
Manuscript received on 15 Feb 2003;Paper reviewed and accepted on 08 Jul 2003



aaA

based on higher-order shear deformation theory. The re-

sults are reported to be converged with 8x8 mesh division
for full plate. Kant et al. [3,5] conducted a study on

9-noded element based on higher-order shear deformation
theory by employing selectivereduced integration scheme

for numerical integration. The full plate is discretized into
4x4 mesh. Averill and Reddy [6] compared the effect of
full integration and selective reduced integration only on

transverse deflection of plates for various shear defor-

mable plate bending elements and recommended selective

reduced integration scheme for both thick and thin plates.

Rock and Hinton [7] reported 3x3 Gaussian quadrature as

the appropriate rule of integration for both categories of
plates modeled with S-noded element.

The objective of this paper is to present a comparison

of the performance of some simple plate bending finite
elements, when applied to static and free vibration analy-

ses of laminated composites. 4-noded, S-noded and 9-

noded elements based on first-order shear deformation
theory and 4-noded element based on higher-order shear

deformation theory are considered.

Finite Element Formulation

Four types of elements, namely,4-noded, S-noded and

9-noded isoparametric elements based on First-order
Shear Deformation Theory (FSDT) and a 4-noded ele-

ment based on Higher-order Shear Deformation Theory
(HSDT), are used to model the laminated plate. A lami-
nated plate with its geometry and reference axes is shown

in Fig.l.

The displacement field based on first-order shear de-

formation theory is given by

u (x, y, z) = uo(x, y ) - 20"(x,l )

v (x,y, z) = vo@,y) - z1r(x,t )

w (x,y,z) = wo(x,!)

where uo,vr.t,wo,0, and 0, are chosen as the nodal

degrees of freedom.

The constitutive matrix of the laminate is evaluated by

integrating the constitutive matrices of the laminae

through the thickness [8]. Element stiffness matrix and

consistent load vector are evaluated using the standard

procedure [9].

First-order shear deformation theory assumes a con-

stant distribution of shear strain across the thickness of the
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Fig. 1 Geomerry of a laminated pLate

plate. Elements based on this theory require a correction
factor for the transverse shear stiffness terms. A higher-
order shear deformation theory, which assumes a para-

bolic variation of transverse shear strains across the plate
thickness, satisfies the condition of zero transverse shear
stresses at top and bottom surfaces of the plate. Use of
shear correction factor is not necessarv in this case.

A 4-noded non-conforming element with seven de-
grees of freedom per node, namely,

tto,v6,wo,dwo / d x, d x,dwo / dr, 0rand 0ris usedto

model the plate. The same shape functions that are used in
the isoparametric formulation are used to interpolate

uo,vo,0, and 0,, but a non-conforming shape function

based on Hermitian interpolation is used to interpolate the

transverse displacement, w, as given by Ghosh and
DeylZl. The displacement field used in higher-order the-
ory is of the form,

u (x,y,z) = uo(x,y) - zlr(x,l)
-, vx?,v) - z'\r(x,v)

v (x,y, z) = vu@,y ) - z!r(x,l)
-, r{t@,v) - z Ey(*,y)
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The detailed formulation of element stiffness matrix
and consistent load vector is given by Ghosh and Dey [2].

Static Analysis

Effect of Order of Integration

F ir st - orde r S he ar D efo rmation T he o ry

Gauss quadrature has been used to evaluate the inte-
grals in the expressions for stiffness matrix and nodal load
vector.

Numerical results are obtained to study the effect of
order of integration on the accuracy of results in the case

of all the elements under consideration. A square sym-
metric 4-layer cross-ply (0/90190/0) laminate, simply
supported at all edges and subjected to a sinusoidal
loading, is analysed. Two different thicknesses (blh = l0
and b/h = 100) are considered. Results are presented in
non-dimensional form as given below for the assumed

values of E t lEz - 25, G nlE2 = G BlE2 = 0.5, G BtE2 = 0.2

and v12 =0.25.

/ ,3- \
.^^lrnEzl (a b\w= lool--;1. w=w l;,;l

I q0 | \ )\./

4-t
xz xz

The non-dimensional central deflection and stresses

obtained based on full integration (i.e,,2x2 integration for
both bending and shear terms in the case of 4-noded
element and 3x3 integration for both bending and shear

terms in the case of S-noded and 9-noded elements),
selective reduced integration (i.e., 2x2 integration for
bending terms and lxl integration for shear terms in the

case of4-noded element and 3x3 integration for bending
terms and 2x2 integration for shear terms in the case of
8-noded and 9-noded elements) and reduced integration
(i.e., lxl integration for both bending and shear terms in
the case of 4-noded element and 2x2 integration for both

bending and shear terms in the case of 8-noded and 9-
noded elements) are given in Table-1. The results are

presented for a mesh division of 8x8 for the full plate.
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In the case of 4-noded element. it is seen that the full
integration scheme gives reasonable results for thick
plates, but the results predicted for thin plates are errone-
ous. It is also seen that the selective reduced integration
and reduced integration schemes give fairly good results
for both thin and thick plates, with the reduced integration
scheme results being nearer to the elasticity solution.
Hence, further studies on 4-noded elements are carried out
using reduced integration scheme.

In the case of 8-noded element, it is observed that the
order ofintegration has no significant effect in the case of
thick plates (b/h = l0). But in the case of thin plates,

selective reduced integration and reduced integration
schemes give better results than full integration. Results
obtained by using selective reduced integration and re-
duced integration are practically the same. Hence, further
studies on 8-noded elements are carried out using reduced
integration, i.e.,2x2integration for both bending and shear
terms.

The behaviour of 9-noded element follows the same
trend as that of 8-noded element. It is also seen that
8-noded and 9-noded elements give practically the same
results. Hence, in the case of 9-noded element also, re-
duced integration scheme is sufficient so as to minimize
the computational effort. It is reported in literature [1,3,6]
that a selective reduced integration scheme is used for the
analysis. The present study indicates that this unnecessar-

ily increases the cost ofevaluation for the same accuracy.

Higher-order S hear Deformation Theory

The same example used in first-order shear deforma-
tion theory is considered to study the effect of order of
integration on the accuracy ofthe results. Three different
possible schemes of integration , viz.,3x3 Gauss integra-
tion for both bending and shear terms (full), 3x3 integra-
tion for bending terms and 2x2integration for shear terms
(selective reduced) and 2x2 integration for both bending
and shear terms (reduced) have been tried and the non-di-
mensionalised results are presented in Table-2.

The results indicate that a reduced integration of order
2x2 gives reasonably good results both for thin and thick
plates. But the results reported by Ghosh and Dey [2] are

based on 3x3 integration both for thin and thick plates,

which has been found unnecessary from the present study.

PLATE BENDING FINITE ELEMENTS FOR COMPOSITES
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Convergence StudY

To study the convergence characteristics of the finite

elements considered, the same example used to study the

effect of order of integration has been considered for two

different thicknesses (b/h = 10 and b/h = 100). The results

presented in Tables-3 and 4 arc based on the respective

order of integration decided as a result of the above study.

Tables-3 and 4 reveal that 16x16 mesh gives reason-

ably good results for all the four types of elements and

hence subsequent results are obtained using this mesh

division. It is also seen that S-noded and 9-noded elements

give practically the same results. A finer mesh is required

in the case of 4-noded element based on FSDT to get the

same degree of accuracy. But, the results have been re-

VOL.55, No.3

ported to be converged even with 4x4 mesh for full plate

[,3,5]. The present study indicates that even though the

deflection values converge for 8x8 mesh, the stresses

converge only with 16x16 mesh.

It is seen from Table-4 that the stresses and deflections

predicted by the formulation based on HSDT are very near

to the elasticity solution. Transverse shear stresses are also

predicted by HSDT with reasonable accuracy and satisfy

the condition of zero values at top and bottom surfaces of

the plate following a parabolic distribution across the

thickness of the plate. This is not possible with elements

based on first-order theory.

Transverse shear stresses play a major role in the

studies related to delamination, strength characteristics
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Table-l : Non-dimensional Central Deflection and Stresses of a Square Simply Supported 4-Layer Cross-ply
(0/90/90/0) Laminate (FSD

b/h Order of
Integration

Type of
Element

6x Oy iry ;txz.

10

Full

4-noded

8-noded

9-noded

0.6421

0.6626

0.6627

0.4691

0.5052

0.5050

0.3410

0.3658

0.3651

0.0221

0.0244

0.0244

0.1296

0.1423

0.1423

0.1078

0. I 104

0.1 104

Sele. reduced

4-noded

8-noded

9-noded

0.6632

0.6626

0.6621

0.4852

0.5060

0.5058

0.3554

0.3662

0.3661

0.0236

0.0244

0.0244

0.1333

0.1424

0.1423

0.1 043

0.1 l 04

0.1104

Reduced

4-noded

8-noded

9-noded

0.6686

0.6626

0.6627

0.4917

0.5053

0.5052

0.3588

0.3661

0.3661

0.0239

0.0244

0.0244

0.t331

o.1424

0.r424

0.1041

0.1 104

0.1 104

Reddv tl0l 0.6628 0.4989 0.3615 0.0241 0.1667 0.1292

Elasticitv soln. [11 0.7435 0.5590 0.4010 0.0275 0.3010 0.1960

100

Full

4-noded

8-noded

9-noded

0.1034

0.4311

0.4318

0.1250

0.5387

0.5387

0.0628

0.2680

0.2680

0.495r

0.0216

0.02t6

0.0992

0.1521

0.15 l9

0.1 838

0.0868

0.0864

Sele. reduced

4-noded

8-noded

9-noded

0.4284

o.4336

0.4337

0.5248

0.5455

0.5453

o.2637

0.2'740

0.2739

0.0208

0.02t6

0.0216

0.1421

0.1519

0.15 17

0.0808

0.0864

0.0860

Reduced

4-noded

8-noded

9-noded

0.4338

0.4336

0.4331

0.53 13

0.5452

0.5450

0.2670

0.2740

0.2139

0.0210

0.0216

0.0216

0.1427

0.1522

0.1520

0.0808

0.0866

0.0862

Reddv [l0l 0.4337 0.5382 0.2705 0.0213 0.1780 0.1009

Elasticity soln.[11 0.4385 0.5390 0.2110 0.0214 0.3390 0.1390
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and fracture mechanics. Under such circumstances, it is
necessary to use the formulation based on HSDT to predict
the response of the plate.

Free Vibnation Analysis

The same elements used for static analysis are consid-

ered to study the response of laminated composite plates

to free vibration. Once the displacement field and the

stress-strain relations are established, the equation govern-

ing free vibration may be expressed as

'),
(tKl - a- lM l)jql= 0 (+)

where [K] and lMl are the global stiffness and mass
matrices respectively, obtained by the assembly of corre-

sponding element matrices, co the frequency of vibration
of the system in rad/sec and lg | , the mode shape vector.
Element mass matrix is developed based on HRZ lumping
scheme [5,9] including both normal and rotary inertia.
Subspace iteration technique [12] is used for the extrac-
tion ofeigen values and eigen vectors.

Effect of Order of Integration

First- order S hear D efo rmat ion Theo ry

The stiffness matrices for various elements consid-
ered are evaluated based on the respective order of inte-
gration decided from the study conducted for static
analysis. The effect of order of integration for mass matrix
on the accuracy ofresults has been studied by considering
the same example used in the static analysis with the
following properties. EtlEz= 40, Gn/F,= Grc[Ez= 0.6,

221

GztBz- 0.5,vp- 0.25,.p = 1. The results presented for
a mesh division of 8x8 for full plate are non-dimensional-
ised as r------r/ o h'(D= [Uo y F.-2

The non-dimensional fundamental frequency of vibra-
tion based on different orders of integration for mass terms
and using FSDT have been obtained and the results are
presented in Table-5. For 4-noded element, 2x2 integra-
tion and lxl integration for mass terms have been tried,
whereas, 3x3 integration and 2x2 integration have been
tried for 8-noded and 9-noded elements.

Table-5 reveals that both reduced and exact integration
for mass terms give exactly the same results in the case of
4-noded element. Hence, reduced integration is adopted
for further studies. In the case of S-noded and 9-noded
elements also reduced integration is found to be sufficient.

H ig her-order S hear D eformation The ory

The evaluation of elementmass matrix is done as given
by Ghosh and Dey [4]. The results obtained for rhe same
example are presented in Table-6.

From this table, it is seen that 3x3 integration for mass
terms gives results nearer to elasticity solution. Hence, 3x3
integration is adopted for further analysis. Tables-5 and 6
indicate that there is no significant difference between the
predictions of first-order theory and higher-order theory.
However, higher-order theory does not require shear cor-
rection factors.

PLATE BENDING FINITE ELEMENTS FOR COMPOSITES

Table-2 : Non-dimensional Central Deflection and Stresses of a Square Simply Supported 4-Layer Cross-ply
rc19019010) Laminate (4-noded Element. HSDT)

b/h Order of Intesration o, Ov 1,

10

Full

Sele. reduced

Reduced

0.7166

0.1174.(
0.7174

0.5607

0.562r

0.562r

0.3910

0,3937

0.3937

0.0264

0.0260

0.0260

0.2522

0.2708

0.2108

0.1093

0.1560

0.1560

Reddv Il0l 0.7 t47 0 5456 0.3888 0.0268 0.2640 0.1 53 1

Elasticitv soln.l-11 0.1435 0.5590 0.40r0 0.0275 0.3010 0.1960

r00

Full

Sele. reduced

Reduced

0.4294

0.4340

0.4340

0.5341

0.5502

0.5502

0.26'75

0.2702

0.2702

0.0212

0.0212

0.0212

Unstable

0.25r1

0.2511

Unstable

0.0962

0.0962

Reddv l'l0l 0.4343 0.5387 0.2108 0.0213 0.2891 0.r111

Elasticitv soln. [1 1 0.4385 0.5390 0.2710 0.0214 0.3390 0. l 390
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Conclusions

The study indicates that the element stiffness matrix

evaluated based on reduced integration scheme gives suf-

ficiently accurate results both for thin and thick plates,

irrespective of the finite element used. It has also been

concluded that a 8x8 uniform mesh for quarter plate is
required to predict the response accurately. The element

based on higher-order theory predicts transverse shear
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stresses accurately which is not possible in the first-order

shear deformation theory. It has also been observed that

the values of transverse displacements and normal stresses

are improved in higher-order shear deformation theory.

But, in the case of free vibration analysis, the order of
integration for mass terms does not have much influence

on the frequency of vibration. Moreover, both first-order

shear deformation theory and higher-order shear deforma-
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Table-3 : Convergence Study of Central Deflection and Stresses of a Square Simply Supported 4-Layer
Cross-ply rcl90l90lD Laminate (FSDT)

b/h Type of Element Mesh Size Ol Ov T, 'Evz

l0

4-noded

4x4 0.6880 0.4705 0.3515 0.0232 0.1 l 80 0.0940

8x8 0.6686 0.4911 0.3588 0.0239 0.1334 0.1041

16x16 0.6641 0.4971 0.3608 0.0241 0.t374 0.1067

32 x32 0.6631 0.4984 0.3613 0.0241 0.1 385 0.1074

8-noded

4x4 0.6615 0.52s4 0.3807 0.02s4 0.1525 0.1185

8x8 0.6626 0.5053 0.3661 0.0244 0.1424 0.1104

16x16 0.6621 0.5005 0.3626 0.0242 0.1391 0.1083

32 x32 0.6635 0.4991 0.3619 0.0242 0.1 39 I 0.1078

9-noded

4x4 0.6633 0.5227 0.3788 0.0252 0.1523 0.1181

8x8 0.6627 0.5051 0.3660 0.0244 0.1424 0.1104

16x 16 0.6627 0.5005 0.3626 0.0242 0.1397 0. I 083

32 x32 0.6635 0.4997 0.3619 0.0242 0.1 39 1 0. l 078

Reddv I10l 0.6628 0.4989 0.3615 0.0241 0.1661 0.1292

Elasticity soln. [l 1 0.7435 0.5590 0.4010 0.0275 0.3010 0.1960

r00

4-noded

4x4 0.4342 0.5113 0.2511 0 0203 0.1268 0.0119

8x8 0.4338 0.5313 0.2670 0.0210 0.r421 0.0808

16x 16 0.4337 0.5365 0.2696 0.0212 0.\469 0.0832

32x32 0.4337 0.5378 0.2702 0.0212 0.1479 0.0838

8-noded

4x4 0.43t9 0.5658 0.2845 0.0224 0.1136 0.1201

8x8 0.4336 0.5452 0.2740 0.0216 0.L522 0 0866

16x16 0.4331 0.5400 o.27t3 0.0214 0.1492'' 0.0846

32 x32 0.4343 0.5391 0.2709 0.0213 0.1486 0.0842

9-noded

4X+ 0.4339 0.5640 0.2834 0.0223 0.1627 o.o92l

8x8 0.4337 0.5450 0.2739 0.0216 0.1520 0.0862

16x16 0.4331 0.5399 0.2713 0.0214 o.1492 0.0846

32 x32 0.4343 0.5391 0.2709 0.0213 0.1486 0.0842

Reddv Il0l 0.4337 0.s382 0.2105 0.0213 0.1780 0.1009

Elasticitv soln.f l I 0.4385 0.5390 0.27r0 0.0214 0.3390 0.1 390
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tion theory give very good results for free vibration analy-
sis and the diff'erence between them is not sisnificant.

In short, 4-noded element based on higher-order shear'

deformation theory is recommended for static analysis.
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16x I 6 mesh division for- full plate is necessary for getting
acceptable convergence. Element based on first-order
shear deformation theory is sufficient for free vibration
analysis only.

PLATE BENDING FINITE ELEMENTS FOR COMPOSITES

Table-4 : Convergence Study of Central Deflection and Stresses of a Square Simpty Supported 4-Layer Cross-
plv Ql90/90/0) Laminate (4-noded Element. HSDT)

b/h Mesh Size Ox Ov txz i,,

10

4x4 0.7255 o.6094 0.3940 0.0255 0.2837 0.1148

8x8 0.1r14 0.5621 0.3931 0.0260 0.2108 0.1 s60

16x16 0.1153 0.549'l 0.3902 0.0266 0.2658 0.r542
32 x32 0.1149 0.5466 0.3892 0.0267 0.2644 0.1534

64x64 0.1148 0.5458 0.3 889 0.0267 0.2641 0.1531

FSDT* 0.664r 0.4911 0.3608 0.0241 0.1314 0.1067

Reddv [101 0.1r41 0.5456 0.3 888 0.0268 0.2640 0.1 53 l
Elasticitv soln. [1 I 0.1435 0.5590 0.4010 0.0275 0.3010 0.1960

r00

4x4 0.4016 0.5053 0.2515 0.0206 Unstable Unstable

8x8 0.4340 0.5s02 0.2102 0.0212 0.2511 0.0962

r6 16 0.4346 0.5431 0.2114 0.0212 0.2890 0. l 066

32 x32 0.4344 0.5398 0.27 t1 0.0213 0.2900 0.1113

64x64 0.4343 0.s390 0.2709 0.0213 0.2898 0.1 I l7
FSDT* 0.4331 0.5365 0.2696 0.0212 0.1469 0.0832

Reddv tl0l 0.4343 0.5387 0.2108 0.0213 0.2891 0.1 1 17

Elasticitv soln. [11 0.4385 0.5390 0.21r0 0.0214 0.3390 0. l 390
* Resu [s from the present study. (4-noded e :ment, FSDT)

Table-S : Non-dimensional Fundamental Frequency of a Square Simply Supported 4-Layer Cross-ply
0/0) Laminate (FSDT)

Type of Element
Order of Intesration 0)

S tiffness Mass b/h=5 b/h = 100

4-noded
lxl

1x1

zxz
4.2523

4.2523

0.0186

0.0186

8-noded
1x,1.

2x2
3x3

4.3369

4.3349

0.0188

0.0r88

9-noded
zxz

2x2
3x3

4.3441

4.3447

0.0188

0.0188

Khdeir t13l 4.3416

Elasticity soln. [l4l 4.3006



Table-6 : Non-dimensional Fundamental Fre-
quency of a Square Simply Supported 4'Layet

Cross-ply (0190190/0) Laminate (4-noded Element,
HSDT)

Order of Intesration (r)

Stiffness Mass b/h=5 b/h = 100

2x2
zxz
3x3

4.3135

4.3061

0.0188

0.0188

FSDT* 4.2523 0.0186

Khdeir [tr31 4.3148

Elasticity soln. f 14l 4.3006

* Results from the present study, (4-noded element,

FSDT)
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