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Abstract

The buckling of laminated composite spherical shell cap with and without a cutout subjected
to transverseload isinvestigated. The geometrical non-linear analysisiscarried out using the
finite element method based on the first-order shear deformation theory. An eight noded
degenerated isoparametric shell element with five degrees of freedom at each node is
considered. Thegeometric non-linear behaviour and the coll apse pressureswith theassociated
mode shapes are presented for simply supported and clamped symmetrically and anti-symmet-
rically laminated cross-ply spherical shell cap without a cutout subjected to uniform normal
pressure. The dependence of collapse pressure on the size of a central circular cutout is also

studied.

Nomenclature

a = radius of the circular base of the spherical
shell cap

E = Young's modulus of isotropic material

E,E,  =Young'smoduli dong 1 and 2 axes of alamina

FEM = Finite Element Method

G4y Gy3, = shear moduli in 1-2, 1-3 and 2-3 planes of a

Go lamina, respectively

H = depth of spherical shell cap

Ky KK,y = curvatures of ashell

l;, m;, ~=direction cosinesbetweenx & X, x & Y,

ny X & Z axes, respectively

l4;, my;  =direction cosinesbetweenx & X, x & Y,

Ny X & Z axes, respectively at anodei

l,,my,n, =direction cosinesbetweeny & X,y & Y,
y & Z axes, respectively

I, my  =direction cosinesbetweeny & X,y & Y,
Ny y & Z axes, respectively at anodei
MX,My, = moment resultants per unit length
Myy I .
I3, My, =direction cosinesbetweenz & X,z& Y,
ng z.& Z_axes, rgepectively
I3, my  =direction cosinesbetweenz & X,z& Y,
Ny Z & Z axes, respectively at anodei
n = number of layers
N, = shape function of the finite element at anodei
Ny Niy = derivatives of Ni with respect to x and
y axes, respectively

N,, Ny, = membrane forces per unit length

Xy

Py = intensth of normal pressure
pn = po (a/t) /E2
e = normalised collapse pressure
Qu Qy = transverse shear forces per unit length
=radius of curvature

R, Ry = Radii of curvaturein XZ and YZ planes,
respectively

t = thickness of ashell

u,v,w = displacement components along X, y and
Z axes, respectively

Uy Vo = displacements of the mid-surface along

W, X, y and z axes, respectively

Ugi» Vyi» = displacements of the mid-surface along

W, X, Y and Z axes, respectively at anodei

Uox Voxr = derivatives of avariable with respect to

Wox EtC.  a subscript

W = centra deflection of apand aong Z-axis

W, = Wit

XY,z = |ocal Cartesian co-ordinate axes at any point

on the mid-surface of ashell, x and y axes
being tangential to the mid-surface whereas
z-axisisnormal the mid-surface

X,Y,Z  =dgloba Cartesian co-ordinate axes
X, Y;,  =globa co-ordinates of anodei
Z
|
2.7,  =topand bottom distances of alaminafrom
the mid-surface
a = shear correction factor
Yoy = shear strain in xy plane at a distance z from

the mid-surface
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Yyyo = shear strain of the mid-surface in xy plane

YezYy, = transverse shear strains at a distance z from
the mid-surface

€08y =gtrainsalong x and y axes, respectively at a
distance z from the mid-surface

&ofyo = strains of the mid-surface along x and
y axes, respectively

n =local natura co-ordinate of an element

0 = fibre orientation in alaminawith reference
to x-axis

ex,ey = rotations of ashell about x and y axes,
respectively

B, ew. = rotations of a shell about x and y axes,
respectively at anodei

\Y = Poisson’ sratio of isotropic material

Vi Vo = Poisson’sratios with respect 1 and 2 axes of
alamina

¢ = local natural coordinate of an element

0,0, = normal stresses along x and y axes, respectively

Ty T = shear stressesin xy, Xz and yz planes,

Ty, respectively

®.q = shear rotationsin xz and yz planes, respectively

Introduction

Fibre reinforced plastic laminated composite shells
find wide applications in aerospace and other industries
due to their advantages like high specific strength, high
specific stiffness and light weight properties over conven-
tional meta shells. Sincethese arevery thin, they undergo
buckling for axial and transverse loading. Spherical shells
are used for many structures such as aerospace vehicles,
roof domes, pressure vessels and submarines. Thus, the
buckling of laminated composite spherical shell capisan
important engineering problem to be investigated. The
presence of a central circular cutout affects the buckling
strength of laminated composite spherical shell cap.

The study of buckling of composite cylindrical shell
panels subjected to axial compression, using a geometric
non-linear analysis, has been considered by many re-
searchers [1-12]. The study of buckling of composite
spherical shells using a geometric non-linear analysis has
been considered by a few researchers [13-16]. Xu [13]
investigated the large deformation behaviour of symmet-
rically laminated shallow spherical shells using Bessel-
Fourier series approach. Narasmhan and Alwar [14]
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solved the problem of axisymmetric large deformation
behaviour of clamped anti-symmetrically laminated
spherical shell using Chebyshev-Galerkin spectral method
based on deep shell theory. Estimates of snap pressuresfor
symmetricaly laminated cross-ply spherical shell caps
obtained with deep shell theory were compared with those
obtained by Xu [13]. Estimates of snap pressures for
anti-symmetrically laminated cross-ply spherical shell
caps were also presented. Aleksander Muc [15] investi-
gated the buckling of axisymmetric clamped composite
shells of revolution like spherica caps, torispheres and
hemi-spheres using linear buckling analysis and non-lin-
ear computer program. It was observed that the linear
buckling analysis give completely wrong predictions of
buckling pressures, types of failure and variations of buck-
ling pressures with fibre orientations. Sai Ram and Sreed-
har Babu [16] investigated the buckling response of
laminated composite spherical shell panels subjected to
transverse load using a higher-order shear deformation
theory.

From the above review of literatureit is clear that the
buckling of simply supported laminated composite spheri-
cal shell cap and the buckling of laminated composite
spherical shell cap with a cutout has not been considered.
Therefore, in this paper the buckling of composite spheri-
cal shell cap subjected to external pressureis thoroughly
investigated. Geometric non-linear analysisis carried out
using the finite element method with an eight noded
degenerated i soparametric shell element based onthefirst-
order shear deformation theory. A Lagrangian approachis
used for this purpose. The non-linear behaviour and the
collapse pressures with the associated mode shapes are
presented for simply supported and clamped symmetri-
cally and anti-symmetrically laminated cross-ply spheri-
cal shell caps subjected to uniformly distributed normal
pressure. The dependence of collapse pressure onthe size
of acentral circular cutout is also studied.

Governing Equations

Consider alaminated shell of uniform thickness, con-
sisting of a number thin laminag, each of which may be
arbitrarily oriented at an angle 8 with reference to the
x-axis of the local coordinate system (Fig.1a). The dis-
placements along the local coordinate axes x, y and z at
any point in the shell are assumed as

=u +20 ,
o Ty
v_+2720_,
(o] X
= w, €

s < ¢
I
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a) Geometry and fibre orientation

Y

b) Discretisational details fora quarter
Fig. 1 Spherical shell cap with a central circular cut-out

The strains at any point in the shell along the local
coordinate axes x, y and z are expressed as

€ =u, =g _+ zZK ,
X X X0 X

yx :u’y+v’x:y + K

Ve = Vo, T Wy = @ &)
where

8xo = uo,x * (Wo,x)z/z’ syo = Vo,y * (Wo x)2/2’
yxyo = o,y + V0 X + Wo,xWo,y’
Kx:eyx'Ky:_exy’ Xy:eyy—exx,

©)

BUCKLING OF LAMINATED COMPOSITE SPHERICAL SHELL CAP 261

The incremental strains of the shell along local coor-
dinate axes x, y and z axes are given by

d“:xo: (duo),x+wo,x(dwo),x ’dsyo: (dvo),y+wo,y(dwo),y’
dyxy0: (duo),y+ (dvo),x+wo,x(dwo),y+wo,y(dwo),x’
dK, =(d8) , dK =-(d8) ,dK =(d8) -(db8) .

do, = dB, + (dw) , , dg, = -dg, + (dw) . (@

The stress-strain relations of alamina with respect to
X,y and z axes are given by

[l A A O [l
xt @11 le Q16D %xD
0 o EIZI %
%’yD: @12 Qn Q0 %yl]
0 : 0 ] % 0 %
%xyl] @16 Q26 Q66|:J Elxylj
oo o 0o g
or for = Q] [, (=129 (52)
X 44 Q45 X
yz 45 Q55 yz
o[t = QM. (=49 (5b)

[Qy]in equations (5) is defined as

_ -1 -T —
@ij - Erlg mij% ETlE , (,j=126) (69

-1 _—
inwhich
%:0326 sinZG 2sinB cosH E
O 2 2 O
[T] = %ine cos 6 —ZSinGCOSGE ,

O
O

E— sinB co sinb cosH 00526 - sinzeg
O O
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[T)] = % 0 @ U E E
2 in co '
- - o) = fol B G
O O
0[Q] [0] [qu]D
Qy Qp O E E E
[Qly = %312 % O E (=126 in which
%) 0 QeeD
O (A, I,D)—ZJ’ @Ijﬁ(lzzz)dz (i,i=12 6)
R 0 4 . ",
[Q”]k ) %) Qssy’ () =49 (Ayg) = @ > Ik @'J@ “. (.9249
O k=1 Zk—l

inwhich Qq; = Eq/(1-V45 Vaq), Q15 = Vqp Eo/(1-V45 V),
Qg = EY(1-Vy5 V,y), Qg = Gy Qug = Gy3: Qo5 = Goa-

The various stress resultants are given by

n
Zk
(Nx’Ny’ny) = Z IZ (ox,cy,rxy) dz,
k=l %

M, , M, My) ZI(GOT)ZdZ
k=l

Q=Y [, ™
k=1 k-1

From equations (2), (5) and (7), the incremental con-
stitutive equations of the shell are obtained as
dF. = [D] dx:, )

where

ngg:%:JNX,dNy,dNXy,dMX,dMy,dM ,dQ, . d yD'

= g
dxg = de ,dsyo,dyxyo,dKX,de,dKXy,d(p ,d(py :

The elasticity matrix in equation (8) may be expressed
as

Finite Element For mulation

An eight noded degenerated isoparametric shell ele-
ment [17,18] is considered in the present analysis. Five
degrees of freedom are considered at each node. The
tangent stiffness matrix and incremental nodal 1oad vector
of the element are derived using the principle minimum
potentia energy. The geometry of the element is defined
by the global coordinates X, Y and Z. That is

8 8 8
X:z NiXi,Y:Z NiYi,andZ:Z Nizi
i=1 i=1 i=1

The displacements at any point in the element are
expressed as

Z N| (ll 0|+mlV * r11\Noi)’

i=1
8
Vo:Z N 2 0|+m2 +nZ\NOi)’
i=1
8
Wo = Z 3 0|+mBVO| * r13Woi) !
i=1
8
ex = z N (Elll Xi E12i eyi) ’
i=1
8
ey Z | (E 21 XI E22i eyi) ! ©
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where

By = gl +mymy +npn;

.= + .+ .
E12| I1|2| ml m2| n1 r]2| !

Eyy = ol +mymy +n,ny,

E.:I2

.+ .+
22i I2| m2m2| n,n

Elements Stiffness M atrix

Substituting equations (9) in equations (4), the incre-
mental strain vector of the element is represented in the
form

dx: = HB7 + 8 15 e, (10)
where

& _
o7 = [dU ), dV ) AW, ,d8 B,

T

du og' WVog AW ¢, dB o, d9y8 }

and the non-zero elements of linear and non-linear incre-
mental strain-displacement matrices [B"] and [BN"] are
given in Appendix.

Thelinear stiffness matrix (dueto small displacement)
of the element isgiven by

1 1 T
KH=f, [ o B m. ay

where | J| is the determinant of the Jacobian matrix [J]
and is expressed as

Bl yED
] = %
n
inwhich
X’E:| X, +mY,E+nZ,E,
X’E:| X’§+mzY +nZ,E,
X = I1X,n + le’ﬂ + ﬂlz,n ,

= + +
X IZX’n mzY'n nzz’n'
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Theinitial displacement stiffness matrix ( dueto large
displacement) is given by

1 1 T
K= HEHm B
+%NLD[D] Ny %NLD[D] B D) ldEd. (12)

Element Initial Stress Stiffness M atrix

The non-linear strains of the shell are expressed as

2 2 T
% w, )72, Wy )/2, W W ]

xnl* an yxanD ox ' oyd

=[Ulfrz, (13)

where3ft = Ew,x,w,wﬁT and [U] is obvious from equa-
tions (13).

Using eguations (9), {f} isexpressed as

; nee
f =[G®BE,
where
8 N, mN, . nN, 0 0O
Gl =3 g N N N 0O OE’
S ANy MmNy Ny 0
U U
O e%_
1= Wy Vg Woy 8.8, o UggVos Wog 8,60, -

The initial stress stiffness matrix of the element is
given by

@<@ jj[G] [S1[GT19]d&an, (14)

-1-1

where

P of
9 = %q
Xy
O

The tangent stiffness matrix of the element is obtained
by adding [K &, [K®™and [K, ie.

K7 = KT+ KT+ 1K (15)
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Element Incremental Load Vector

The incremental element load vector due to incre-
mental uniform normal pressure dpg, assuming that the
load acts on the mid-surface of the shell, is given by

.
P = TP P (16)
1 1
whereEdPig = I J' N, o | J| d& dn,
-1-1

inwhich idef = 2.dp,, mydp,, ndp,, 0, 07 .
m} m}

Solution Process

Equations (11), (12), and (16) are evaluated by per-
forming numerical integration using the 2x2 Gauss quad-
rature whereas equation (14) isevauated using 3x3 Gauss

quadrature. The element tangent stiffness matrices [KTe]

and element incremental |oad vectors{ dp®} areassembled
to obtain their respective global matrices [K] and {dP}.
The incrementa unknown displacements at the nodes of
the shell are obtained from the incremental equilibrium
condition

(K] dd. = dP . (17)

These incremental equations are solved using the
Newton-Raphsoniteration method [19] with thehelp of
Gauss elimination technique [19]. Knowing theincre-
mental displacements{dd}, thetotal displacementsat any
load level areobtained by adding theincremental displace-
ments to displacements at the earlier load level. From the
known displacements at any load level, the strains of the
shell {x} areevaluated from the equations (3) and (9) and
then the stress resultants are obtained from

Fi=10] X1, (18)
where
T
o _ ]
%(H_;kxoaeyoyyxyoanyKnyxyy(pxy(pyE1
T
Fi= o
HFH g\lX’N ’ny’Mx’My’Mxy’QX’QyE .

Resultsand Discussion

The anaysis described in the previous sections is
applicable for geometric non-linear analysis of various
types of laminated composite shells subjected to axial and
transverseload. Inthe present investigation, thenon-linear
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behaviour and the collapse pressures with the associated
mode shapes are presented for symmetrically and anti-
symmetricaly laminated cross-ply spherical shell cap
with and without a centra circular cutout subjected to
uniform normal pressure. Thelocal coordinate axes x and
y are dways oriented along the circumferentia and
meridional directions, respectively. Fibre orientation an-
gle® ismeasured with referenceto circumferential direc-
tion, i.e. x-axis. Hence, fibre orientation angle 0° means
that the fibres are aong the circumferential direction,
wheresas fibre orientation 90° means that the fibres are
aong the meridian. It is assumed that the fibre volume in
lamina is constant along the meridian. Results are pre-
sented for laminated composite spherica shell cap with
and without acentral circular cutout for simply supported
and clamped boundary conditions. In the case of simply
supported boundary condition, Ug; and V; arerestrained
aong the supported edge. The following lamina material
properties are used throughout the investigation.
E1/E2:25, G12/E2:O.5, G13/E2:O.5, G23/E2:0.2 and
v1,=0.25. For finite element analysis, the spherical shell
cap without a cutout is considered as the spherical shell
cap with acircular cutout with ¢ = 0.001¢. The value of
shear correction factor is assumed as 5/6.

Asit is difficult to get convergence of displacements
while approaching the limit point, very small increments
(in decimals) of pressure (load) are considered. In this
way, the collapse pressure (load) is determined success-
fully and very accurately.

To study the convergence of collapse pressurewith the
increase in number of finite elements, the entire spherical
shell cap is discretised with 64, 80, 96 and 112 elements.
For this purpose, both symmetricaly as well as anti-
symmetricaly laminated cross-ply spherical shell caps
with simply supported and clamped boundary conditions
are considered and the collapse pressures are shown in
Table-1. A mesh consisting of 112 elements (Fig.1b) is
employed in the present investigation. To validate the
results of the present finite element anaysis, two prob-
lems are considered. The first one is the geometric non-
linear behaviour of isotropic clamped spherical shell caf
(R=4.758in, H=0.08598in, t=0.01576in, E=10x10° Ib/in?,
v = 0.3) subjected to a central concentrated load (Fig.2).
In the second problem, the collapse pressure of
[0°/90°/0°/90°/0°] clamped spherical shell cap is com-
pared with that availablein reference[14]. From Fig.2 and
Table-2, it isclear that the present finite element analysis
isreliablein studying the collapse of composite spherical
shell cap.
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Table-1: Convergence of normalised collapse pressure pnc = po(R/t)4/E2 of laminated composite spherical shell
caps (qo = 0.001¢1, @1 = 10°, R/t = 200)
Number of elements |  [0%90%0%90%0% 10%90%0%90%0% | [0%20%0%90%0%90% | [0%90%0%90%0%90%
Simply supported Clamped Simply supported Clamped
64 166944 213664 183792 293920
80 167216 213328 184352 293280
96 167216 213328 184416 293280
112 167264 213248 184448 293120
80 250000
70 P,,=202176
200000 1
60 F &
g
3
50 é 150000 1
. a
a 40 [ 3 Py.=101856
k] £ 100000
3 30 £
o
20 z —o— Simply
— Analytical (Ref.18) 50000 supported
10 - Present FEM O— Clamped
i r i i i 5 0 L J '
0 0.05 0.1 0.15

0 02 04 06 08 10 .12 .14 18
Deflection (in)
Fig. 2 Load-deflection curve for a clamped isotropic
shperical shell cap under a central point load

(== 0.001¢y, = @1 = 10.9035°)

The normalised central deflection W, = W/t and the
normalised uniform normal pressure pn:po(R/t)4/E2 are
plotted for symmetrically and anti-symmetrically lami-
nated spherical shell caps subjected to uniform normal
pressure with ssmply supported and clamped boundary
conditionfor R/t ratio 200. A typical plotisshowninFig.3.
The effect of number of plies (n) on the collapse pressure
isshown in Tables-3 and 4. The typica deformed shapes
(mode shapes) of the spherical shell caps at the collapse
pressure (i.e. at the limit point) are givenin Figs. 4-5. The
effect of sizeof thecircular cutout on the collapse pressure
of simply supported and clamped cross-ply laminated
spherical shell capsis shown in Fig.6.

The collapse pressures are more for clamped spherical
shell caps (Tables-3 and 4). The collapse pressures of
simply supported symmetric and anti-symmetric spherical
shell caps increase with the increase in number of layers.
The collapse pressure of clamped symmetric spherical

Normalised deflection, W,
Fig. 3 Buckling response of [0°/90°] spherical shell cap with-
out a cutout ¢n = 0.001 @1, @1 = 10°, R/t = 200) under uni-
formnormal pressure

Table-2: Verification of results: Collapse pressure
po aYE2t°H? of [0%90%0%90%0)
clamped spherical shell cap

Present FEM From reference [14]

10.543 10.800

shell cap aso increases with the increase in number of
layersbut the collapse pressure of clamped anti-symmetric
spherical shell cap decreases with the increase in number
of layersfrom 4 to 12. In general, as the number of layers
increases, the stiffness of the spherical cap increases and
hence collapse pressure increases. But, in the case of
clamped [0°/90°] spherical shell cap, the stiffness of the
spherical shell cap is affected by the coupling between
bending and extension and the restraint provided by the
clamped supported edge. The deformed shapes of simply
supported and clamped symmetric cross-ply laminated
spherical shell caps remain spherical at the limit point as
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shown in Fig.4. The deformed shapes of simply supported
and clamped anti-symmetric cross-ply laminated spherical
shell caps are not spherical at the limit point as shown in

VOL.57, No.2

to (y/(p;=0.1) and then increaseswith theincreasein cutout
size (Fig. 6). Thisisdueto variation in the stiffness of the
spherical shell cap with theincrease in cutout size. There

is a greater increase in the collapse pressure of clamped
[0°/90°] spherical shell cap beyond @y@;=0.5 compared
totheincreaseinthecollapse pressure of simply supported
[0°/90°] spherical shell cap beyond @y/@,=0.5. Thisisdue

Fig. 5.

The collapse pressures of simply supported and
clamped [0°/90°] spherical shell cap decreaseinitially (up

Table-3: Theeffect of number of plies (n) on the normalised collapse pressure pnc = po (R/t)4/E2 of
symmetrically laminated [00/900/0O ..... ] cross-ply spherical shell cap without a cutout (go = 0.001¢1, @1 = 10°, R/t

= 200)
Boundary condition n=3 n=5 n=7 n=9 n=11 n=13
Simply supported 148560 167264 173664 176928 178944 180320
Clamped 165360 213248 231440 240640 246352 250272

Table-4 : Theeffect of number of plies (n) on the normalised collapse pressure pnc = po (R/t)4/E2 of anti-
symmetrically laminated [00/90O ..... ] cross-ply spherical shell cap without a cutout (¢go = 0.001¢1, @1 = 10°, R/t =

200)
Boundary condition n=2 n=4 n=6 n=8 n=10 n=12
Simply supported 101856 177024 184448 186592 187424 187776
Clamped 202176 294560 293120 289632 286736 284416
Original geometry
------- Simply supported
— — — — Clamped

Fig. 4 Original and deformed shapes of [0°/90°/0°] spherical shell cap
without a cutout (o = 0.001 @1, @1 = 10°, R/t = 200) at the limit point

Crigind geometry
------- Simply supported
= = Clamped

Fig. 5 Original and deformed shapes of [0°/90°] spherical shell cap
without a cutout (qo = 0.001 @1, ¢ = 10°, R/t = 200) at the limit point
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—o— [0/90] , Simply supported
—0O— [0/90], Clamped

—a— [0/90/0], Simply supported

0.4

—Xx — [0/90/0}, Clamped

0.2

0

0 01 02 03 04 05 06 07
o/0y
Fig. 6 Collapse pressures of laminted spherical shell caps

with a central circular cutout (@1 = 10°)

to increased stiffness provided by the clamped supported
edge. The collapse pressure of simply supported
[0°/90°/0°] laminated spherical shell cap also decreases
initially (up to @y/@=0.2) and then increases with the
increase in cutout size. The collapse pressure of clamped
[0°/90°/0°] spherical shell cap increases with the increase
in cutout size. Thisisdueto increasein the stiffness of the
spherical shell cap withtheincreasein cutout size, i.e. due
to stiffening effect.

Conclusion

The buckling of laminated composite spherical shell
cap with and without a cutout is investigated using a
geometric non-linear finite element analysis based on the
first-order shear deformation theory. The non-linear be-
haviour and the collapse pressures with the associated
mode shapes are presented for symmetrically and anti-
symmetrically laminated simply supported and clamped
spherical shell caps subjected to uniform normal pressure.

The collapse pressures are more for clamped spherical
shell capswith out acutout compared to simply supported
spherical shell caps with out a cutout for both symmetric
and anti-symmetric laminations considered. The collapse
pressures of simply supported symmetric and anti-sym-
metric spherical shell caps increase with the increase in
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number of layers. The collapse pressures of clamped sym-
metric shell capsal so increase with theincreasein number
of layers but the collapse pressures of clamped anti-sym-
metric spherical shell caps generally decrease with the
increase in number of layers.

The collapse pressures of simply supported and
clamped two layered anti-symmetrically laminated com-
posite spherical shell caps decrease initially and then
increase with the increase in cutout size. The collapse
pressure of simply supported three layered symmetrically
laminated spherical shell cap also decreases initially and
then increases with the increase in cutout size whereasthe
collapse pressure of clamped three layered symmetrically
laminated spherical shell cap increases with the increase
in cutout size.
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Appendix

1L,X?

B7si-a = 1aNi 5 s B7 5.3 = MgN; By gio = NN o, B g = EogiNi» By g = ExgiN;

Bgsi-a = 13Njy » Bgsi.a=M3N;y , Bgsio=MaN; v, Bggig = -Eq3iN; . Bggi = Bg i = -EqaN; -

(i=1t08)
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Non zero elements of [B™ -] matrix :

B15i-a = Wox1aNi x s B15i.g =Wox Mg Ny, By g o =Wy Ny N;

By si-a = WoylaNiy » Bo,Si-3=wo, Mg N; o, By g =Woy Ny N;.

y 1
Bssi-a =13 (Wox Njy +Woy Ny,
B3 si.3= Mg (W Njy +Woy N

Bssio = N3 (Wox Niy +Woy Ny

8 8 8
where wo, =13%  NUg+mgy  NiVg+ngy N, W,
E i=1 =
8 8 8
Woy =13y  NiyUg+mgy  NjyVg+ngy N Wy,
i=1 =1 i=1

(i=1,8)
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