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SUBJECTED TO THERMAL ENVIRONMENT

N. Sundararajan’, T. Prakash”", Maloy K. Singha"* and M. Ganapathi”

Abstract

Here, the free vibration behavior of functionally graded skew plates is investigated using
finite element procedure. Temperature field is assumed to be a uniform distribution over
the plate surface and varied in thickness direction only. Material properties are assumed
to be temperature dependent and graded in the thickness direction according to simple
power law distribution. For the numerical illustrations, silicon nitride/stainless steel is

considered as functionally graded material.

The variation in frequencies is highlighted

considering gradient index, temperature, thickness and aspect ratios, and skew angle of the

plate.
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Introduction

Functionally graded materials (FGMs) are the new
generation of composite materials in which the micro-
structural details are spatially varied through non-
uniform distribution of the reinforcement phase. This
can be achieved by using reinforcements with different
properties, sizes and shapes, as well as by interchanging
the role of reinforcement and matrix phases in a
continuous manner. The result is a microstructure that
produces continuously varying thermal and mechanical
properties at the macroscopic or continuum level. Due
to recent advances in material processing capabilities,
that aid in manufacturing wide variety of functionally
graded materials, their use in application involving
severe thermal environments is gaining acceptance in
composite community, the aerospace and aircraft
industry [1-4]. For instance, in a thermal protection
system, FGMs take advantage of heat and corrosion
resistance typical of ceramics, and mechanical strength
and toughness typical of metals. In view of these, there
is an increased interest among researchers to study the
dynamic and stability behaviors of the structural
components made of these materials.

It is seen from the literature that the amount of work
carried out on the vibration characteristics of isotropic
plates and composite laminates are exhaustive.
However, the investigations of linear free behaviors of
FGM plates under thermo-mechanical environment are
limited in number and are discussed briefly here.
Tanigawa et al. [S] have examined transient thermal
stress distribution of FGM plates induced by unsteady
heat conduction with temperature dependent material
properties. Reddy and Chin [6] have dealt with many
problems, including transient response of plate due to
heat flux. In Ref. [7], three-dimensional analysis of
transient thermal stress in functionally graded plates has
been carried out adopting Laplace transformation
technique and power series method. He et al. [8]
presented finite element formulation based on thin plate
theory for the shape and vibration control of FGM plate
with integrated piezoelectric sensors and actuators under
mechanical load whereas Liew et al. [9] have analyzed
the active vibration control of plate subjected to a
thermal gradient using shear deformation theory. Yang
and Shen [10] have analyzed dynamic response of thin
FGM plates subjected to impulsive loads using Galerkin
procedure coupled with modal superposition method
whereas, by neglecting the heat conduction effect, such
plates and panels in thermal environments have been

Department of Mechanical Engineering, The University of Akron, Akron — Ohio
* Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi — 110016, India
“No. 925, Scientist Hostel III, DRDO Township, C.V. Raman Nagar, Bangalore-560 093, India
Manuscript received on 24 Sep 2004; Paper reviewed and accepted on 07 Nov 2004



MAY 2005

examined based on shear deformation with temperature
dependent material properties in Ref. [11]. Cheng and
Batra [12] studied the steady state vibration of a simply
supported functionally graded polygonal plate with
temperature independent material properties. Sills et al.
[13] have presented different modeling aspects and also
simulated the dynamic response under a step load. It
may be concluded from the existing literature that all
the studies have been mainly dealt with rectangular
plates, and the knowledge pertaining to such
investigations of FGM skew plate structure is meager.
Due to the increasing utilization of skewed-type of
FGM structural components in the design of flight
vehicle structures, understanding their vibration
characteristics are important for the structural designers.

Here, an eight-noded shear flexible quadrilateral
plate element developed based on consistency approach
[14] is used to analyze the free vibration of FGM plate.
The temperature field is assumed to be constant in the
plane and varied only in the thickness direction of the
plate. The material is assumed to be temperature
dependent and graded in the thickness direction
according to the power-law distribution in terms of
volume fractions of the constituents. The influences of
thickness and aspect ratios, thermal load and skew-angle
of the plate on the vibration of functionally graded skew
plates are brought out.

Theoretical development and formulation

A functionally graded rectangular plate (length a,
width b, and thickness /) made of a mixture of ceramics
and metals is considered with the coordinates X,y

along the in-pane directions and z along the thickness
direction. The material in top surface (z = //2) of the
plate and in bottom surface (z = —/h/2) of the plate is
ceramic and metal, respectively. The effective material

properties P, such as Young’s modulus FE, and
thermal expansion coefficient Ol , can be written as [15]

P=PV.+PJV, (1)

where P, and P, are the material properties of the
ceramic rich top surface and metal rich bottom surface,
respectively. V. and V, are volume-fractions of

ceramic and metal respectively and are related by

V.+V, =1 ()
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The properties of the plate are assumed to vary
through the thickness. The property variation is assumed
to be in terms of a simple power law. The volume

fraction V, is expressed as

2z + h]k
2h

Ve(2) =( 3)

where k is the volume fraction exponent (k> 0).

The material properties P that are temperature
dependent can be written as

P=P(P,T"+1+PT+PT?+PT>) (4)

where P, P ,FP,P, and P, are the coefficients of

temperature 7'(K') and are unique to each constituent.

From Egs. (1) - (4), the modulus of elasticity £, the
coefficient of thermal expansion O, the density p and

the thermal conductivity K are written as

2z+h

E(Z,T):(E(?(T)—Em(T))[ j +E, (T)

2h

2z + hjk
+ m
2h

oc(z,T>=(occ<T)—am<T)>(2Z+’“j v, (T)

p(2)=(p. —pm)(

2z+h g
K(z)=(K. - K + K
@=k-K ) ] vk,

©)

Here the mass density p and thermal conductivity

K are assumed to be independent of temperature. The
Poisson’s ratio V is assumed to be a constant

v(z) =v,.

The temperature variation is assumed to occur in the
thickness direction only and the temperature field is
considered constant in the xy plane. In this case, the
temperature through thickness is governed by the one-
dimensional Fourier equation of heat conduction:
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d

[K( )}: , T=T atz=h/2
dz

©)
T=T,atz=-h/2

The solution of Eq. (6) is obtained by means of
polynomial series [16] and given by

I(z)=T, +(T.-T,n(2) @)

where

2z+h K, (2z+h\"
n(z)= -
2h ) (k+DK, \ 24

4k+1 5
j _ Kcm

2741\ _
K\ 2h ’

(4k+1) (5k+1)
—1_ Kcm K2 _ Kgm +
(k+1)K, (2k +D)K:  Gk+DK
K! K>
@+ DK' Gk+DK
and K, =K —-K,

Using Mindlin formulation, the displacements
u,v,w at a point (X, y,z) in the plate (Fig. 1a) from
the medium surface are expressed as functions of mid-
plane displacements #,,vV,and W, and independent

rotations 6 and 6 of the normal in xz and yz

planes, respectively, as
u(xayat) = uo(x,y,t) + Zex(x’y’t)

v(x, y,1) = vy (x, y,1) + 20 (X, y,1) 8)
w(x, y,t) = w(x, y,t)

where t is the time. The strains in terms of mid-plane
deformation can be written as

(22 j2k+l ~ ij (22 n h)Sk-H .
2k + 1)K2 2h Gk+DK \ 2h
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Fig. 1 (a) Configuration and coordinate system of a
rectangular FGM plate

(b) Coordinate system of a skew plate

ol

The mid-plane strain {8 » }, bending strains {Sb}

and shear strains {8 s } in Eq. (9) are written as

ELf=1v, (10)

{e,}=140,, (11)

0, +w,
e, )= {9,+wﬂ} (12)
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where the subscript comma denotes the partial
derivative with respect to the spatial coordinate
succeeding it.

The membrane stress resultants {N } and the
bending stress resultants {M } can be related to the
membrane strains {8 p}and bending strains {8 b}

through the constitutive relations by

NXX

Ny =N, =141, |+ B, e, ) - N} 03)
N,
MXX

My={m, t=[B,1e, }+[D,le, - M7 }aa)

<

where the matrices

[4;1.[B;] and [D;]

(i, j =1,2,6) are the extensional, bending-extensional
coupling and bending stiffness coefficients and are

hi2

defined as [4;,B;,D,]1= j [0, 1(1,2,2%)dz .
—h/2

The thermal stress resultant { } and moment

resultant {M T} are

NxT o a(z,T)

W= {N = | 10D AT dz 5)
N’T —h/2 0
2y
M, [eeD

M7} ={M] L= [ [0, Koz T)[AT() zdz (16)
r| o h2 0
M,

where the thermal coefficient of expansion a.(z,7) is
given by Eq. (5), and AT(z)=T(z)-T1, is
temperature rise from the reference temperature 7, at

which there are no thermal strains.
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Similarly the transverse shear force
{Q}representing the quantities {sz 0., } is related to
the transverse shear strains {SS} through the

constitutive relations as

0 }=1E,1e,} (17)

hi/2

where Eij = J- [Qj]KindZ

~h/2

Here [E,] (i,j =4.,5) are the transverse shear

stiffness coefficients, K, is the transverse shear
coefficient for non-uniform shear strain distribution

through the plate thickness.

O, are the stiffness

coefficients and are defined as

Qn sz E(Z T) Q12 \L(ZT)y
1-v?
Qlé = Q26 =0; Q44 = st Q66 E(Z D (18)
2(1+v)

where the modulus of elasticity E(z,7") is given by
Eq. (5).

The strain energy functional U is given as

U®) =2 fe,} 1A, e, 1814e )+

{Sb}T [Bl.j]{ap} + {gb}T [D,1{e,} +
. 1B - fop) (N7} -{ou) (7)) aa

(19)
where O is the vector of the degree of freedom
associated to the displacement filed in a finite element

discretisation.

The kinetic energy of the plate is given by



274 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES

TG)= (1/2)j[p(u'g+v'g+ " )+ 1(ef+e'deA

(20)
h/2 h/2

where  p= [p(2)dz, 1= [z’p(2)dz  and
—h/2 —h/2

p(z) is mass density which varies through the

thickness of the plate and is given by Eq. (5). A dot over
the variable denotes derivative with respect to time.

The plate is subjected to temperature filed and this,

in  turn, results in-plane  stress  resultants

(N z’c , N ;’l , N ;ﬁ ) Thus, the potential energy
. th Arth Arth

due to pre-buckling stresses (NH,N yy,ny)

developed under thermal load can be written as

oty 57 5] 2¢ GI(E)

ﬁ]\/‘h 69)‘) & +N! [69)‘}+69y

74 a) \a)[ > o) \o

2 {2) GHE) G«

Substituting Egs. (19-21) in Lagrange’s equation of
motion, one obtains the governing equations as

(IM16}+(K]+[K,1") 8} =0 (22)

where [M] is the consistent mass matrix and { O } is the

acceleration vector. [K 1" is the geometric stiffness

matrices due to thermal load. [M ] is the consistent
mass matrix.

For the harmonic vibration {5} =—0’{5}, Eq.
(22) leads to

(K]+[K 1" )6 o [M]5 )= o} @
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where, ®is the natural frequency. The natural
frequencies are extracted using standard eigenvalue
algorithm.

Element Description

The plate element employed here is a C° continuous
shear flexible element and needs five nodal degrees of
freedom ug,vy,w,0,,0  at eight nodes in QUAD-8

element. If the interpolation functions for QUAD-8 are
used directly to interpolate the five variables u,to 0 ,in

deriving the shear strains and membrane strains, the
element will lock and show oscillations in the shear and
membrane stresses. Field consistency requires that the
transverse shear strains and membrane strains must be

interpolated in a consistent manner. Thus O and
0 , terms in the expressions for {€, } given by Eq. (12)

have to be consistent with field functions W  and w )

This is achieved by using field redistributed substitute
shape functions to interpolate those specific terms,
which must be consistent, as described in Ref. [14]. This
element is free from locking syndrome and has good
convergence properties. For the sake of brevity, these
are not presented here, as they are available in the
literature [14]. Since the element is based on field
consistency approach, exact integration is applied for
calculating various strain energy terms.

Skew Boundary Transformation

For skew plates supported on two adjacent edges,
the edges of the boundary elements may not be parallel

to the global axes (X, ), Z) . In such a situation, it is not
possible to specify the boundary conditions in terms of

the global displacements u_,V_ ,W,, etc. In order to

0°

specify the boundary conditions at skew edges, it is

. 1ol .
necessary to use edge displacements #_,V , W, , etc. in

local coordinates (x',y',z")as shown in Fig. 1(b). It

is thus required to transform the element matrices
corresponding to global axes to local edge axes with
respect to which the boundary conditions can be
conveniently specified. The relation between the global
and local degrees of freedom of a node can be obtained
through the simple transformation rules [17] and the
same can be expressed as

d,=L,d] (25.2)
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in which d,,d are generalized displacement vectors in

the global and local coordinate system, respectively of
node 1 and they are defined as

d =[u, v, w, 0, Oy]T (25.b)
d;:[ui vi Wi ei GI]T (25.¢)

v

The nodal transformation matrix for a node i, on the
skew boundary is

c

%)

-
(26)

oS O = O O
o o o O
QO « O O O

S O O 0

-8

in which ¢ = cos(y ) and s = sin(y ), where \ is the

angle of the plate. It may be noted that for the nodes,
which are not lying on the skew edges, the node
transformation matrix has only nonzero values for the
principal diagonal elements, which are equal to 1. Thus,
for the complete element, the element transformation
matrix is written as

1) =diag (L, L, I, I, L, I, I, L)
en

For those elements whose nodes are on the skew
edges, the element matrices are transformed to the local
axes using the element transformation matrix 7, and
then the global matrices/vectors are obtained using
standard assembly procedures.

Results and Discussion

In this section, we use the above formulation to
investigate the effect of parameters like gradient index,
aspect and thickness ratios, skew angle, and thermal
gradient on the vibration characteristics of functionally
graded skew plates. Based on progressive mesh
refinement, 8 x 8 mesh idealization is found to be
adequate to model the full plate for the present analysis,
as shown in Table-1 for isotropic skew case [18]. The
non-dimensional frequency used for the validation study
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2
is given by: @ = [maj \F . Fig. 2 shows the variation
n*h )NVE
of the volume fractions of ceramic and metal
respectively, in the thickness direction z for the FGM
plate. The top surface is ceramic rich and the bottom
surface is metal rich. The FGM plate considered here
consists of Silicon nitride (SizN,;) and stainless steel
(SUS304). The temperature coefficients corresponding
to Si3Ny / SUS304 are listed in Table-2 [19]. The mass
density and thermal conductivity are:

p,=2370kg/m’, K, =9.19 W /mK for SiN,;
and p, =8166 kg/m*, K, =12.04 W /mK for

SUS304. Poisson’s ratio V is assumed to be a constant
and equals to 0.28. Transverse shear coefficient is taken
as 0.91. The plate is of uniform thickness and boundary
conditions considered here for the simply supported
case are:

L _ L _nL _ L _
u, =w, =0, = on x" =0,a and

| 26 e =

k values -
08}

0 —+ t + t t + + t +
€5 04 -03 -02 -0.1th0 0.1 02 03 04 05

Fig. 2 Variation of volume fractions through thickness:
a) Ceramic,; b) Metal
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Table 1. Validation of Free Vibration of Isotropic Skew Plates

:l:;:l; Mesh size Frequencies, @, *
1 2 3 4 5 6
4x4 20066 5.0988 5.0988 8.4122 10.7563 10.7563
0° 6x6 20013 5.0197 5.0197 80817 10.1504 10.1504
8x8 1.9999 4.9996 4.9996 7.9986 9.9964  9.9964
Wang[18] 2.0000 5.0000 50000 8.0000 10.0000 10.0000
4x4 25856 5.4616  7.5844  9.1233 13.4879 13.8567
30° 6x6 25583 53601 7.3875 86366 12.6864 12.8799
8x8 25310 5.3327 7.2850 8.4950 12.4360 12.4384
Wang [18] 2.5293 53333 7.2815 8.4967 12.4445 12.4446
4x4 3.7986  6.9615 11.3642 11.7695 17.1202 19.1882
45° 6x6 3.7094  6.7667 10.4442 11.3419 149844 17.5681
8x8 3.5903 6.7141  10.1740 10.9937 14.2508 17.0383

Wang {18] 3.5800 6.7154 10.1759 10.9724 14.2675 17.0530
wa
7°h )NE

Table 2 Temperature dependent coefficients for material Si;N,/SUS304, Ref. [19]

Materials Properties Py P, Py P, P, P (T=300K)

Si.N E (Pa) 348.43e+9 0.0 -3.070e-4 2.160e-7 -8.946e-11 322.2715e+9
e o (1/K) 5.8723e-6 0.0 9.095e-4 0.0 0.0 7.4746e-6

SUS304 E (Pa) 201.04e+9 0.0 3.079e-4 -6.534e-7 0.0 207.7877e+9
o (1/K) 12.330e-6 0.0 8.086e-4 0.0 0.0 15.321e-6

Table 3 Comparison of non-dimensional frequencies of simply supported FGM plate (a/b=1, a/h=8)

Frequencies
Temperature k Qq Q. Q,

Ref [20] Present Ref [20] Present Ref [20] Present

0.0 12.397 12.311 29.083 29.016 43.835 44.094

Tc=400 0.5 8615 8.483 20.215 19.979 30.530 30.391
Tm=300 1.0 7474 7.444 17.607 17.511 26.590 26.648
2.0 6.693 6.679 15.762 15.706 23.786 23.894

10.0 5.742 --- 13.560 20.609

0.0 11.984 11.888 28.504 28.421 43.107 43.343

Tc=600 0.5 8.269 8.150 19.784 19.534 29.998 . 29.836
Tm=300 1.0 74714 7.131 17.213 17.101 26.109 26.139

2.0 6.398 6.376 15.384 15.314 23.327 23.410
10.0 - 5.423 - 13.146 --- 20.100
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Table-4 : Natural Frequencies (5, ) of Simply Supported Thin FGM Skew Plates under Uniform
Temperature against Aspect Ratio and Gradient Index, K for a/h=100, T..,=300, T,,.~=300

Skew Mode gradient index, k
angle  No. 0 0.5 1 2 5 10
1 456450 31.5100 27.6770 24.8770 22.5760 21.4680
0° 2 114.4200 78.8110 69.1050 62.0810 56.4450 53.7540
3 114.4200 78.8110 69.1050 62.0810 56.4450 53.7540

-

48.3280 33.3640 29.3070 26.3420 23.9050 22.7310
15° 2 111.8000 77.0130 67.5310 60.6690 55.1580 52.5260
3 130.3200 89.7610 78.7060 70.7070 64.2870 61.2220

1 58.3410 40.2800 35.3840 31.8050 28.8600 27.4410
1 30° 2 122.1700 84.1670 73.8130 66.3140 60.2830 57.4010
3 168.3200 115.9400 101.6600 91.3320 83.0370 79.0750

84.5690 58.3880 51.2920 46.1030 41.8350 39.7780
154.2000 106.2500 93.1970 83.7330 76.1040 72.4550
237.8000 163.9100 143.8000 129.2000 117.4000 111.7500

450

WN =

164.4100 113.5000 99.6990 89.6110 81.3190 77.3260
246.6300 170.0200 149.1700 134.0400 121.7800 115.9100
361.5700 249.3100 218.7900 196.5900 178.5700 169.9400

600

wnN =

Py

114.0500 78.7520 69.1870 62.1900 56.4260 53.6480
0° 2 182.8400 126.0400 110.5800 99.3600 90.2780 85.9290
3 299.4400 206.3300 180.9800 162.5900 147.7800 140.6900

1 121.2500 83.7290 73.5610 66.1220 59.9920 57.0380
15° 2 191.5500 132.0500 115.8700 104.1100 94.5890 90.0280
3 309.2400 213.1000 186.9200 167.9300 152.6200 145.3000

1 147.7300 102.0100 89.6290 80.5670 73.0940 69.4910
2 30° 2 223.5100 154.1100 135.2400 121.5200 110.3900 105.0500
3 345.6000 238.1800 208.9400 187.7300 170.5900 162.4000

1 215.2800 148.6700 130.6200 117.4100 106.5200 101.2700
45° 2 304.4300 209.9700 184.3000 165.6100 150.4000 143.1100
3 437.9200 301.8900 264.8800 238.0000 216.2200 205.8000

1 413.4300 285.5000 250.8400 225.4700 204.5500 194.4700
60° 2 539.5100 372.2400 326.8200 293.7000 266.6400 253.6400
3 706.3000 487.1300 427.5600 384.1800 348.8800 331.9700

5 5 \W!/2
Before proceeding for the detailed study for the free as Q= (D(a_j (p m (1 v )J , where p_ and
flexural vibration of functionally graded skew plates, h E,
the formulation developed herein is validated against )
the available results [20] pertaining to the free E, are the mass density and Young’s modulus of
vibrations square FGM plates in Table-3. Here, the metal, respectively. The results are found to be in good

calculated non-dimensional linear frequency is defined agreement with the existing solutions.
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Table-5 : Natural Frequencies (ﬁ,) of Simply Supported Thin FGM Skew Plates under Uniform

Temperature against Aspect Ratio and Gradient Index, K for a/h=20, T,=300, T,,=300

Skew Mode gradient index, k
angle No. 0 0.5 1 2 5 10
1 452580 31.2560 27.4440 246650 22.3810 21.2820
0° 2 112.0100 77.1820 67.6510 60.7630 55.2280 52.5940
3 112.0100 77.1820 67.6510 60.7630 55.2280 52.5940
1 47.8940 33.0780 29.0450 26.1050 23.6860 22.5220
15° 2 109.5000 75.4550 66.1400 59.4070 53.9940 51.4170
3 127.2000 87.6510 76.8270 69.0030 62.7140 59.7230
1 57.6990 39.8380 34.9960 31.4530 28.5360 27.1320
1 30° 2 119.4300 82.2760 72.1530 64.8080 58.8950 56.0800
3 163.1200 112.3700 98.5330 88.4920 80.4140 76.5760
1 83.1370 57.4040 50.4270 45.3180 41.1090 39.0870
45° 2 149.8600 103.2600 90.5690 81.3470 73.9080 70.3670
3 227.4000 156.7600 137.5300 123.5200 112.1600 106.7600
1 158.6500 109.5500 96.2230 86.4450 78.3900 74.5390
60° 2 235.6100 162.3800 142.4600 127.9300 116.1800 110.6000
3 337.4500 232.7200 204.2100 183.3700 166.3900 158.3500
1 111.6900 77.1580 67.7620 60.8980 55.2350 52.5140
0° 2 176.8900 121.9800 106.9800 96.0970 87.2720 83.0680
3 283.5600 195.5000 171.4300 153.9400 139.7900 133.0800
1 118.5900 81.9280 71.9530 64.6630 58.6480 55.7580
15° 2 185.0300 127.6100 111.9200 100.5300 91.2920 86.8910
3 292.3800 201.5900 176.7700 158.7400 144.1400 137.2100
1 143.7800 99.2990 87.2460 78.4040 71.1010 67.5940
2 30° 2 214.6500 148.0000 129.8800 116.6500 105.9100 100.7900
3 324.7900 223.8900 196.4200 176.3700 160.1200 152.4100
1 206.9200 142.9100 125.5600 112.8200 102.2900 97.2440
45° 2 287.9700 198.6200 174.3100 156.5400 142.0600 135.1800
3 405.1500 279.3600 -245.1200 220.0700 199.7000 190.0600
1 383.9800 265.2300 233.0300 209.3000 189.6500 180.3000
60° 2 489.3300 337.4100 295.9400 265.4800 240.8100 229.3100
3+ 537.5700 374.4800 326.7800 289.4800 258.8300 246.4000

Next, the free vibration behavior of FGM thin skew
plate (a/h=100) subjected uniform temperature is
investigated considering two values of aspect ratio and
the results are presented in Table-4. Here, the
calculated non-dimensional linear frequency is defined

— (a\(12p,1—v )" E
as - w(h]( PmE J , where p, and L, are

m

the mass density and Young’s modulus of metal,
respectively. It can be noticed that the frequency
increases with increasing in skew angle, as expected. It
is also observed that, with the increase in power law
index k up to certain value, the rate of decrease in the
frequency value is high, and further increase in & leads
to less reduction in the frequency, i.e. monotonically
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Table-6 : Natural Frequencies (ﬁ,) of Simply Supported Thin FGM Skew Plates under Uniform

Temperature against Aspect Ratio and Gradient Index, K for a/h=20, T,=700, T,~=300

Skew Mode gradient index, k
angle No. 0 0.5 1 2 5 10

1 29.4420 17.8590 14.3350 11.3190 7.6342 4.3255

0° 2 96.5150 64.7180 55.8030 49.1390 43.2740 40.1020

3 96.5150 64.7180 55.8030 49.1390 43.2740 40.1020

1 322480 19.9020 16.2070 13.1180 9.5720 6.8399

15° 2 94.0360 63.0020 54.2980 47.7840 42.0350 38.9180
3 1115100 75.0900 64.9150 57.3410 50.7450 47.2320

1 425450 27.2540 22.8490 19.3280 15.7240 13.4180

1 30° 2 103.8300 69.7510 60.2580 53.1500 46.9210 43.5800
3 146.9400 99.5320 86.4080 76.6650 68.3190 63.9800

1 68.5670 454990 39.0470 34.0990 29.5090 26.9260

45° 2 133.7900 90.4450 78.4400 69.5010 61.7830 57.7400
3 209.9800 143.0300 124.6000 110.9600 99.3780 93.4970

1 143.8100 97.6650 84.9740 75.4780 67.2230 62.9620

60° 2 217.9000 148.5000 129.4000 115.2600 103.2700 97.1800
3 317.7300 217.3800 189.8600 169.4900 152.3200 143.7700

1 96.1740 64.6740 559120 49.2770 43.2640 39.9890

0° 2 160.3500 108.8500 94.5790 84.0060 74.9310 70.2380
3 265.0100 181.0000 157.8200 140.7600 126.4100 119.2000

1 102.9900 69.4000 60.0720 53.0240 46.6720 43.2400

15° 2 168.3600 114.3800 99.4430 88.3770 78.8910 74.0020
3 273.6500 186.9700 163.0600 145.4600 130.6600 123.2400

1 127.8700 86.5880 75.2220 66.6580 59.0600 55.0410

2 30° 2 197.5000 134.4700 117.1300 104.2700 93.2940 87.6910
3 305.4300 208.8300 182.3300 162.7500 146.3000 138.0800

1 190.0200 129.5500 112.9800 100.5900 89.8230 84.2920
45° 2 269.5900 184.2600 160.8600 143.5200 128.8400 121.4600
3 384.1900 263.2000 230.0500 205.5500 185.0000 174.8300
1 363.6700 249.4600 218.3000 195.0900 175.2800 165.4200
60° 2 467.1200 320.5700 280.4000 250.6400 225.7500 213.5700
3 527.4300 367.2900 320.3300 283.5000 253.1400 240.7600

decreasing trend. This is attributed due to the stiffness analysis. Tables-5 and 6 exhibit qualitatively similar

degradation occurs because of the increase in the
metallic volumetric fraction. It is further seen that the
rate of decrease in frequency value is almost same even
for the higher modes. The rate of change in frequencies
obtained here with respect to gradient index k is
somewhat similar for all skew angles considered for the

variation in frequency for fairly thick FGM skew plates
(a/h=20) for both uniform and non-uniform surface
temperature cases. It can be viewed from Tables-4 and
5 that the non-dimensional frequency decreases with the
increase in thickness of the FGM plate. Furthermore, it
is revealed from Tables 5 and 6 that the increase in
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surface temperature difference results in reduction of
the natural frequency values, as expected, and its effect
is significant with the increase in gradient index due to
change in the stiffness of FGM plate. Similar trend is
highlighted while varying the aspect ratio. It is opt to
mention here that the critical temperature difference
UTe (= Te-Ty) of FGM plate decreases with the
increase in the value of &, and increases with the aspect
ratio and skew angle of the plate.

Conclusion

Vibration behavior of functionally graded skew
plates subjected to thermal environment is examined
using eight-noded plate element based on shear flexible
theory. Numerical experiment conducted here
highlights that the parameters such as gradient index,
aspect and thickness ratios, and skew angle can
significantly influence the vibration characteristics of
the FGM plate.
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