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Abstract 
Here, the free vibration behavior of functionally graded skew plates is investigated using 
finite element procedure. Temperature field is assumed to be a uniform distribution over 
the plate surface and varied in thickness direction only.  Material properties are assumed 
to be temperature dependent and graded in the thickness direction according to simple 
power law distribution.  For the numerical illustrations, silicon nitride/stainless steel is 
considered as functionally graded material.  The variation in frequencies is highlighted 
considering gradient index, temperature, thickness and aspect ratios, and skew angle of the 
plate.   
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Introduction 

Functionally graded materials (FGMs) are the new 
generation of composite materials in which the micro-
structural details are spatially varied through non-
uniform distribution of the reinforcement phase.  This 
can be achieved by using reinforcements with different 
properties, sizes and shapes, as well as by interchanging 
the role of reinforcement and matrix phases in a 
continuous manner.  The result is a microstructure that 
produces continuously varying thermal and mechanical 
properties at the macroscopic or continuum level.  Due 
to recent advances in material processing capabilities, 
that aid in manufacturing wide variety of functionally 
graded materials, their use in application involving 
severe thermal environments is gaining acceptance in 
composite community, the aerospace and aircraft 
industry [1-4].  For instance, in a thermal protection 
system, FGMs take advantage of heat and corrosion 
resistance typical of ceramics, and mechanical strength 
and toughness typical of metals.  In view of these, there 
is an increased interest among researchers to study the 
dynamic and stability behaviors of the structural 
components made of these materials. 

 

It is seen from the literature that the amount of work 
carried out on the vibration characteristics of isotropic 
plates and composite laminates are exhaustive. 
However, the investigations of linear free behaviors of 
FGM plates under thermo-mechanical environment are 
limited in number and are discussed briefly here.  
Tanigawa et al. [5] have examined transient thermal 
stress distribution of FGM plates induced by unsteady 
heat conduction with temperature dependent material 
properties.  Reddy and Chin [6] have dealt with many 
problems, including transient response of plate due to 
heat flux.  In Ref. [7], three-dimensional analysis of 
transient thermal stress in functionally graded plates has 
been carried out adopting Laplace transformation 
technique and power series method. He et al. [8] 
presented finite element formulation based on thin plate 
theory for the shape and vibration control of FGM plate 
with integrated piezoelectric sensors and actuators under 
mechanical load whereas Liew et al. [9] have analyzed 
the active vibration control of plate subjected to a 
thermal gradient using shear deformation theory. Yang 
and Shen [10] have analyzed dynamic response of thin 
FGM plates subjected to impulsive loads using Galerkin 
procedure coupled with modal superposition method 
whereas, by neglecting the heat conduction effect, such 
plates and panels in thermal environments have been 
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examined based on shear deformation with temperature 
dependent material properties in Ref. [11]. Cheng and 
Batra [12] studied the steady state vibration of a simply 
supported functionally graded polygonal plate with 
temperature independent material properties. Sills et al. 
[13] have presented different modeling aspects and also 
simulated the dynamic response under a step load.  It 
may be concluded from the existing literature that all 
the studies have been mainly dealt with rectangular 
plates, and the knowledge pertaining to such 
investigations of FGM skew plate structure is meager.   
Due to the increasing utilization of skewed-type of 
FGM structural components in the design of flight 
vehicle structures, understanding their vibration 
characteristics are important for the structural designers.  

 
Here, an eight-noded shear flexible quadrilateral 

plate element developed based on consistency approach 
[14] is used to analyze the free vibration of FGM plate. 
The temperature field is assumed to be constant in the 
plane and varied only in the thickness direction of the 
plate. The material is assumed to be temperature 
dependent and graded in the thickness direction 
according to the power-law distribution in terms of 
volume fractions of the constituents. The influences of 
thickness and aspect ratios, thermal load and skew-angle 
of the plate on the vibration of functionally graded skew 
plates are brought out.  

 

Theoretical development and formulation  

A functionally graded rectangular plate (length a, 
width b, and thickness h) made of a mixture of ceramics 
and metals is considered with the coordinates  
along the in-pane directions and  along the thickness 
direction. The material in top surface  of the 
plate and in bottom surface of the plate is 
ceramic and metal, respectively. The effective material 
properties , such as Young’s modulus , and 
thermal expansion coefficient α , can be written as [15] 
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where  and are the material properties of the 
ceramic rich top surface and metal rich bottom surface, 
respectively.  V  and V  are volume-fractions of 
ceramic and metal respectively and are related by 
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The properties of the plate are assumed to vary 
through the thickness. The property variation is assumed 
to be in terms of a simple power law. The volume 
fraction V  is expressed as c
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where  is the volume fraction exponent ( .  
The material properties P that are temperature 
dependent can be written as 
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where , , ,  and  are the coefficients of 

temperature T  and are unique to each constituent. 
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From Eqs. (1) - (4), the modulus of elasticity , the 

coefficient of thermal expansion α , the density  and 
the thermal conductivity  are written as 
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Here the mass density  and thermal conductivity 
 are assumed to be independent of temperature. The 

Poisson’s ratio ν  is assumed to be a constant 
. 

ρ
K

(ν 0) ν=z
 
The temperature variation is assumed to occur in the 

thickness direction only and the temperature field is 
considered constant in the xy plane. In this case, the 
temperature through thickness is governed by the one-
dimensional Fourier equation of heat conduction: 
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The solution of Eq. (6) is obtained by means of 

polynomial series [16] and given by 
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Using Mindlin formulation, the displacements 
 at a point ( in the plate (Fig. 1a) from 

the medium surface are expressed as functions of mid-
plane displacements and , and independent 

rotations and of the normal in  and  
planes, respectively, as 
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where t is the time. The strains in terms of mid-plane 
deformation can be written as 

 
Fig. 1  (a)  Configuration and coordinate system of a 

rectangular FGM plate 
(b)  Coordinate system of a skew plate 
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The mid-plane strain { }pε , bending strains { } 

and shear strains {  in Eq. (9) are written as  
bε

}sε
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where the subscript comma denotes the partial 
derivative with respect to the spatial coordinate 
succeeding it.  
 

The membrane stress resultants {  and the 

bending stress resultants  can be related to the 

membrane strains 

}N
{ }M

{ }pε and bending strains { } 
through the constitutive relations by 
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where the matrices [ ,[  and [  

 are the extensional, bending-extensional 
coupling and bending stiffness coefficients and are 

defined as 
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where the thermal coefficient of expansion α  is 

given by Eq. (5), and  is 

temperature rise from the reference temperature T  at 
which there are no thermal strains. 
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the transverse shear strains {  through the 
constitutive relations as 
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Here  are the transverse shear 

stiffness coefficients, κ  is the transverse shear 
coefficient for non-uniform shear strain distribution 
through the plate thickness.  
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where the modulus of elasticity  is given by 
Eq. (5).  
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The strain energy functional U  is given as 
 

{ } { } { } { }( ) (1/ 2) [ ] [ ]
T T

p ij p p ij b
A

U Aδ ε ε ε= +∫ B ε +

dA

 

{ } { } { } { }[ ] [ ]T T
b ij p b ij bB Dε ε ε ε+ +  

 

{ } { } { } { } { } { }0[ ]
T TT T T

s ij s p bE N Mε ε ε ε − − 
 

                        (19) 
 

where is the vector of the degree of freedom 
associated to the displacement filed in a finite element 
discretisation.  

δ

 
The kinetic energy of the plate is given by 
 



274 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL. 57, No.2 

dAIwvupT yx
A













++












++= ∫

.
2

.
2

.
2
0

.
2
0

.
2
0)2/1()( θθδ

                                (20) 
 

where  and 

 is mass density which varies through the 
thickness of the plate and is given by Eq. (5). A dot over 
the variable denotes derivative with respect to time. 
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The plate is subjected to temperature filed and this, 

in turn, results in-plane stress resultants 
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Substituting Eqs. (19-21) in Lagrange’s equation of 

motion, one obtains the governing equations as 
 

0}){][]([}]{([
..

=++δ th
GKKM                 (22) 

 

where [M] is the consistent mass matrix and { δ } is the 
acceleration vector. [  is the geometric stiffness 

matrices due to thermal load.  is the consistent 
mass matrix.  

..

th
GK ]

[M

 

For the harmonic vibration { , Eq. 
(22) leads to 
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where, is the natural frequency. The natural 
frequencies are extracted using standard eigenvalue 
algorithm.  

ω

Element Description 

The plate element employed here is a C0 continuous 
shear flexible element and needs five nodal degrees of 
freedom at eight nodes in QUAD-8 
element. If the interpolation functions for QUAD-8 are 
used directly to interpolate the five variables to θ in 
deriving the shear strains and membrane strains, the 
element will lock and show oscillations in the shear and 
membrane stresses. Field consistency requires that the 
transverse shear strains and membrane strains must be 
interpolated in a consistent manner. Thus θ and 

terms in the expressions for { given by Eq. (12) 

have to be consistent with field functions and . 
This is achieved by using field redistributed substitute 
shape functions to interpolate those specific terms, 
which must be consistent, as described in Ref. [14]. This 
element is free from locking syndrome and has good 
convergence properties.  For the sake of brevity, these 
are not presented here, as they are available in the 
literature [14]. Since the element is based on field 
consistency approach, exact integration is applied for 
calculating various strain energy terms. 
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Skew Boundary Transformation 

For skew plates supported on two adjacent edges, 
the edges of the boundary elements may not be parallel 
to the global axes ( . In such a situation, it is not 
possible to specify the boundary conditions in terms of 
the global displacements u , etc. In order to 
specify the boundary conditions at skew edges, it is 
necessary to use edge displacements , etc. in 

local coordinates ( as shown in Fig. 1(b). It 
is thus required to transform the element matrices 
corresponding to global axes to local edge axes with 
respect to which the boundary conditions can be 
conveniently specified. The relation between the global 
and local degrees of freedom of a node can be obtained 
through the simple transformation rules [17] and the 
same can be expressed as 
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in which are generalized displacement vectors in 
the global and local coordinate system, respectively of 
node and they are defined as 

l
ii dd ,
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The nodal transformation matrix for a node i, on the 

skew boundary is 
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in which c and , where ψ is the 
angle of the plate. It may be noted that for the nodes, 
which are not lying on the skew edges, the node 
transformation matrix has only nonzero values for the 
principal diagonal elements, which are equal to 1. Thus, 
for the complete element, the element transformation 
matrix is written as 

)cos(ψ= )sin(ψ=s
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For those elements whose nodes are on the skew 

edges, the element matrices are transformed to the local 
axes using the element transformation matrix Te and 
then the global matrices/vectors are obtained using 
standard assembly procedures. 

 

Results and Discussion 

In this section, we use the above formulation to 
investigate the effect of parameters like gradient index, 
aspect and thickness ratios, skew angle, and thermal 
gradient on the vibration characteristics of functionally 
graded skew plates.  Based on progressive mesh 
refinement, 8 x 8 mesh idealization is found to be 
adequate to model the full plate for the present analysis, 
as shown in Table-1 for isotropic skew case [18].  The 
non-dimensional frequency used for the validation study 

is given by: 
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ϖ . Fig. 2 shows the variation 

of the volume fractions of ceramic and metal 
respectively, in the thickness direction z for the FGM 
plate. The top surface is ceramic rich and the bottom 
surface is metal rich. The FGM plate considered here 
consists of Silicon nitride (Si3N4) and stainless steel 
(SUS304). The temperature coefficients corresponding 
to Si3N4 / SUS304 are listed in Table-2 [19]. The mass 
density and thermal conductivity are: 

 for SimKWc /19.92370=ρ

m =ρ WK m 04.12=
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and  for 
SUS304. Poisson’s ratio ν  is assumed to be a constant 
and equals to 0.28. Transverse shear coefficient is taken 
as 0.91. The plate is of uniform thickness and boundary 
conditions considered here for the simply supported 
case are: 
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Fig. 2  Variation of volume fractions through thickness: 
a) Ceramic; b) Metal 
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Table 1.  Validation of Free Vibration of Isotropic Skew Plates 

 

 

Table 2  Temperature dependent coefficients for material Si3N4/SUS304, Ref. [19] 

 

 

Table 3  Comparison of non-dimensional frequencies of simply supported FGM plate (a/b=1, a/h=8) 
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Table-4 : Natural Frequencies ( )iΩ of Simply Supported Thin FGM Skew Plates under Uniform  

Temperature against Aspect Ratio and Gradient Index, K for a/h=100, Tcer=300, Tmet=300 

 
 
 
Before proceeding for the detailed study for the free 

flexural vibration of functionally graded skew plates, 
the formulation developed herein is validated against 
the available results [20] pertaining to the free 
vibrations square FGM plates in Table-3.   Here, the 
calculated non-dimensional linear frequency is defined 

as 
( ) 2/122 1








 −








=Ω

m

m

Eh
a νρ

ω

m

, where  and 

 are the mass density and Young’s modulus of 
metal, respectively. The results are found to be in good 
agreement with the existing solutions.   
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Table-5 :  Natural Frequencies ( of Simply Supported Thin FGM Skew Plates under Uniform  

Temperature against Aspect Ratio and Gradient Index, K for a/h=20, T
)iΩ

cer=300, Tmet=300 

 
 
Next, the free vibration behavior of FGM thin skew 

plate (a/h=100) subjected uniform temperature is 
investigated considering two values of aspect ratio and 
the results are presented in Table-4.  Here, the 
calculated non-dimensional linear frequency is defined 

as ( ) 2/122 112
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ω , where  and  are 

the mass density and Young’s modulus of metal, 
respectively. It can be noticed that the frequency 
increases with increasing in skew angle, as expected.  It 
is also observed that, with the increase in power law 
index k up to certain value, the rate of decrease in the 
frequency value is high, and further increase in k leads 
to  less  reduction  in the  frequency,  i.e.  monotonically  mρ mE
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Table-6 :  Natural Frequencies ( of Simply Supported Thin FGM Skew Plates under Uniform  

Temperature against Aspect Ratio and Gradient Index, K for a/h=20, T
)iΩ

cer=700, Tmet=300 

 
 

decreasing trend.  This is attributed due to the stiffness 
degradation occurs because of the increase in the 
metallic volumetric fraction. It is further seen that the 
rate of decrease in frequency value is almost same even 
for the higher modes.  The rate of change in frequencies 
obtained here with respect to gradient index k is 
somewhat similar for all skew angles considered for the 

analysis.  Tables-5 and 6 exhibit qualitatively similar 
variation in frequency for fairly thick FGM skew plates 
(a/h=20) for both uniform and non-uniform surface 
temperature cases.   It can be viewed from Tables-4 and 
5 that the non-dimensional frequency decreases with the 
increase in thickness of the FGM plate.   Furthermore, it 
is revealed from Tables 5 and 6 that the increase in 
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surface temperature difference results in reduction of 
the natural frequency values, as expected, and its effect 
is significant with the increase in gradient index due to 
change in the stiffness of FGM plate.  Similar trend is 
highlighted while varying the aspect ratio.  It is opt to 
mention here that the critical temperature difference 
�Tcr (= Tc-Tm) of FGM plate decreases with the 
increase in the value of k, and increases with the aspect 
ratio and skew angle of the plate.   

 

Conclusion 

Vibration behavior of functionally graded skew 
plates subjected to thermal environment is examined 
using eight-noded plate element based on shear flexible 
theory.  Numerical experiment conducted here 
highlights that the parameters such as gradient index, 
aspect and thickness ratios, and skew angle can 
significantly influence the vibration characteristics of 
the FGM plate. 
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