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Abstract

This paper discusses a simple technique to identify global models for nonlinear aerodynamic
force and moment coefficients of aircraft using multivariate orthogonal functions. Classical
Gram-Schmidt procedure and Predicted Squared Error metric are used to generate the
orthogonal functions. Global models for the F-16 aircraft are identified from a simplified
subsonic (Mach < 0.6) wind tunnel database available in open literature. The identified models
are compared with those found in literature for the same wind tunnel database and conclusions
are drawn.

Keywords : Global model, aerodynamic coefficients, orthogonal functions, multivariate
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Nomenclature

a = element of matrix A
A = MxM unit upper triangular matrix
bj = jth ordinary polynomial function parameter
B = ordinary polynomial function parameter vector
Cx, Cy, Cz= aerodynamic force coefficients
Cxq, Czq = force derivatives due to pitch rate
Cl, Cm, Cn= aerodynamic moment coefficients
J = least squares cost function
K = weighting factor used in OFP term
MSE = Mean Squared Error
M = number of retained orthogonal functions
N = number of sample times
OFP = Over Fit Penalty
pj = jth column vector of regression matrix P
P = NxM matrix of ordinary polynomial functions
PSE = predicted squared error, PSE = MSE + OFP
q = pitch rate (rad or deg/sec)
wj = jth column of matrix W
W = NxM matrix with mutually orthogonal columns
yi = ith value of the dependent variable
y = average value of yi
y = dependent variable vector
α, β = angle of attack, sideslip angle (rad or deg)
δj = reduction in J contributed by jth orthogonal 

    function
γj = jth orthogonal function parameter

Γ = orthogonal function parameter vector

σ0
2 = maximum prediction MSE

σmax
2 = a priori upper bound estimate of 

    prediction MSE
ξj = jth element of modeling error vector

Ξ = modelling error vector

Superscripts

^ = estimate
T = transpose
-1 = matrix inverse

Introduction

Control system design, simulation and optimization
require a compact analytical description of the aircraft
dynamics. The analytical models for aerodynamic force
and moment coefficients can either be "local" or "global".
The local models are valid only over a limited portion of
the flight envelope while the global models cover a wider
range of the flight envelope, and as such are more useful
for dynamic analysis. The process of simulation, control
design and aerodynamic analysis can generally be handled
more effectively by replacing multiple local models with
a single global model. For best results, the global nonlinear
aerodynamic model has to be compact, with the minimum
possible number of terms. At the same time, it should have
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the ability to capture the aerodynamic nonlinearities over
an extended portion of the flight envelope.

Global models, generally expressed as polynomials in
independent variables, are easy to update from flight test
data. They provide valuable understanding of the under-
lying physical phenomena, which otherwise can be ob-
scure in the wind tunnel database. Also the analytical
models have smooth gradients, that is useful in generating
local linear models.

In the past, several techniques were developed for
generating global models from wind tunnel database span-
ning a wide range of independent variables like the angle
of attack, sideslip angle and Mach number. These tech-
niques include the least squares linear regression [1, 2],
splines in one or two independent variables [3, 4] and
splines in association with stepwise regression [5]. More
recently, neural networks using radial basis functions have
been used to model the wind tunnel database [6]. How-
ever, none of these techniques addresses the model struc-
ture determination adequately. In the classical least
squares method, the model structure determination and the
parameter estimation are coupled. The spline functions
and neural network techniques offer no clear insight into
the physical relationship between the dependent and inde-
pendent variables. Further, any increase in the number of
independent variables or in the range of independent vari-
ables complicates the model structure determination prob-
lem leading to unsatisfactory results.

Recently, application of nonlinear multivariate or-
thogonal least squares modeling technique to estimate
global models from wind tunnel data has been demon-
strated [7-10]. The technique generates nonlinear orthogo-
nal modeling functions from the independent variable data
using the algorithm described in [11]. These orthogonal
functions, along with a Predicted Squared Error (PSE)
metric, are used to determine appropriate model structure
of the aerodynamic coefficients [12]. The identified or-
thogonal functions are eventually converted into multi-
variate ordinary polynomials in the independent variables.
The use of orthogonal functions decouples the least
squares problem and the model structure determination
problem becomes easier. This allows for easy upgradation
of the model with the available data.

The technique described in [11] is used to identify
global models for the vertical force coefficient (CZ) of the
F-18 High Angle of Attack Research Vehicle (HARV) and
aerodynamic coefficients of the F-16 aircraft [8, 9]. The

algorithm generates the orthogonal functions in a sequen-
tial manner using a set of unique positive integers to keep
track of the order of the generated orthogonal functions.
This procedure, though well defined, is involved and not
easy to implement. A simpler two-step approach to gen-
erate orthogonal functions using the classical Gram-
Schmidt method is presented in [13], and is used in a wind
tunnel experiment to characterize the aerodynamic and
propulsive forces and moments of a research model air-
plane FASER (Free-flying Airplane for Sub-scale Experi-
mental Research) [13].

The present work uses the technique of [13] to generate
global models from F-16 wind tunnel data [14]. The global
models so obtained are compared with the ones given in
[9], for the same wind tunnel database. It is shown that the
approach used in the present work is adequate for gener-
ating nonlinear aerodynamic global models of F-16 air-
craft.

The PSE metric, which is a sum of the conventional
Mean Squared Error (MSE) metric and the Over-Fit Pen-
alty (OFP), is used along with the Gram-Schmidt method
to arrive at the number of terms to be included in the
multivariate polynomial. The OFP is related to the esti-

mated output variance (σ0
2) from the wind tunnel measure-

ments. Although the PSE concept is very rational and
elegant, there appears to be some ambiguity in the litera-
ture in assigning proper weighting to OFP in the expres-
sion for PSE. The effect of weighting factors on OFP in
determining the global models of the aerodynamic coeffi-
cients of F-16 aircraft is also discussed.

Theoretical Development

Assume that the analytical model of an aerodynamic
force or moment coefficient can be expressed in the form
of a truncated multivariable power series in independent
variables. In case, the aerodynamic coefficients that are
functions of a single variable, say α then :

C
1
 (α) = ∑ 

i=0

k

 b
i
αi

,   k = 0, 1, .... 

= b
0
 + b
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α + b2α2

 + b
3
α
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(1)

The aerodynamic coefficients that are functions of two
independent variables, say α and β can be expressed in
two basic forms [15] :
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The latter form is used in the present work :
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The aerodynamic coefficients that are functions of
more than two variables can also be expressed in a similar
fashion.

Orthogonal Least Squares Estimation

Let y represent an N-dimensional vector of measured
values of an aerodynamic coefficient. Then,

y
j
 = ∑ 

k=1

M

p
kj

bk + ξ
j
     j = 1,2,...,N (4)

Equation (4) can be written in the matrix form as

y = P B + Ξ (5)

where y = [y1, y2,..., yN]T is the output vector,

B = [b1, b2,... bM]T is the parameter vector,

Ξ = [ξ1, ξ2, ..., ξN]T is the residual error, and

P = [p1, p2, ..., pN] is the (NxM) regression matrix with

columns pi = [pi(1), pi(2),..., pi(N)]T,i = 1, 2, ..., M.

The regression matrix P is orthogonalized using the
classical Gram-Schmidt procedure. The orthogonal de-
composition of P is given by

P = W A (6)

where A = 


aij




 is an MxM upper triangular matrix and

W = [w1, w2, ..., wM] is an NxM matrixd with orthogonal

columns that satisfy the relationship

w
i

T
w

j
 = 0   for i !=!j,   i, j, = 1, 2,..., M (7)

Equation (5) can now be expressed as

y = (PA
−1) (AB) + Ξ + W Γ + Ξ (8)

where AB = Γ, and Γ is an auxiliary vector given by

Γ = [γ
1
, γ

2
, ..., γ

M
]
T

(9)

Minimizing the cost function

J = (y − W Γ)
T
 (y − W Γ ) (10)

gives the least-squares estimate for Γ

Γ̂ = (W
T
 W)−1

 W
T
y (11)

The kth element of the estimated vector Γ̂  is   given
by,

γ̂
k
 = 

w
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T
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w
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T
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k

, k = 1, 2, ..., M (12)

Equation (12) shows that when wk are orthogonal,
each γk depends only on the measured values of the de-

pendent variable y, and the corresponding orthogonal
function wj. The model parameter vector

B = [b1, b2,..., bm]T can then be calculated from the equa-

tion A B = Γ through back substitution.

Model Structure Selection

Using Equations (8) and (10), the cost function can be
expressed as

J = y
T
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Using the orthogonality of the functions wj given in
Eq. (7),
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where Ĵ  is used in place of J because the estimates of γj are

used.

Using Eq. (12),

J
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j
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(17)

Eq. (16) shows how each orthogonal term wj reduces
the cost function by an amount δj. This decouples the

least-squares estimation problem, and makes it possible to
rank each orthogonal modeling function in terms of its
ability to reduce the least-squares model fit to the data,
regardless of other orthogonal modeling functions already
included in the model.

The Predicted Squared Error (PSE), is used to select
the minimum number (M) of orthogonal functions to be
included in the global model [12] :

PSE = 
J
N

 + 2 σ
max
2

 
M
N

(18)

The first term on the right-side of Eq. (18) is the
conventional Mean Squared Error  (MSE). The second
term is an Over-Fit Penalty (OFP) that prevents over-fit-
ting of the model with too many terms, which is detrimen-

tal to model prediction accuracy [12]. The σmax
2  in Eq. (18)

is the maximum variance of elements in the error vector
Ξ assuming the correct model structure. The factor of 2 in
the Over-Fit Penalty (OFP) accounts for the fact that the
PSE is being used when the model structure is not correct,
that is, during the model structure determination stage.

The definition of PSE is very logical and elegant, but
there are some differences in the literature in selecting

proper value for σmax
2 . Refs. [8-9] assume

σmax
2  = 

σ0
2

2
   where, σ0

2

is the variance estimated from the output measurements
generated from repeated wind tunnel runs at the same test
condition :
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In Ref. [13], it was assumed that σmax
2  = 25σ0

2. Further,

it was found in Ref. [13] that the model structure deter-

mined using PSE was virtually the same for σmax
2  in the

range 9σ0
2  ≤  σmax

2   ≤  100σ0
2. This implies that for each

wind tunnel database, a suitable value needs to be selected

for σmax
2  by trial and error. In general, PSE can be ex-

pressed as

PSE = 
J
N

 + K σ
0
2
 
M
N

(20)

where proper value for K has to be selected for a given
wind tunnel database. In the current work, it was found
that the value of K = 2 yielded  adequate global models for
F-16 aircraft.

The PSE criterion is evaluated as each orthogonal
function is added to the proposed model with choice of the
functions that cause the maximum reduction in the fit
error. At some point, the PSE reaches a minimum and any
further addition of orthogonal functions to the model
causes the PSE to increase. Thus, the minimum in PSE
defines an adequate model structure with good predictive
capability.

Classical Gram-Schmidt Algorithm

The classical Gram-Schmidt procedure computes ma-
trix W, one column at a time, from Eq. (6) and orthogonal-
izes P (at the kth stage) by making the kth column
orthogonal to each of the (k-1) previously orthogonalized
columns. The operation is repeated for k=2, ..., M. The
computational procedure is represented as:
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1
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i
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k
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Identifying Global Models for F-16 Aircraft

Wind tunnel aerodynamic data for a 16% scale model
of the F-16 aircraft, flying at low Mach numbers (< 0.6),
out of ground effect, with landing gear retracted and no
external stores, is given in Ref. 16. A simplified version
of  the original wind tunnel database is given in Ref. 14.
The  simplified  wind  tunnel  data  is  tabulated  for an-
gle-of attack range from -10 to 45 degrees, the sideslip
angle  range of  ± 30 degrees, the  elevator  deflection
range  of ±  25 degrees, the  ailerons  deflection range of
± 21.5 degrees, and  the  rudder  deflection  range of ± 30
degrees.

In the present work, the simplified wind tunnel data-
base of F-16 was used to obtain global models of the
aerodynamic force and moment coefficients. The effect of
different weighting factors K in the OFP term was also
investigated. Compared to the global models generated in
Ref. 9 using a complex orthogonalisation scheme with

σmax
2  = 

σ0
2

2
, the global models identified in the present

investigations using a simpler approach with σmax
2  = σ0

2

provided satisfactory match with the wind tunnel data.

Typical results of the aerodynamic global modeling for
the F-16 wind tunnel database are provided in Tables 1-3
and Figs. 1-9. The PSE for Cxq(α) in Fig.1 indicates that

the global model for the coefficient should have five terms.

A similar observation is made in Ref. [9]. While the global
model of Cxq(α) in Ref. [9] has an MSE of 0.072668, the

present model expressed in Table-1 and plotted in Fig.2
has an MSE of 0.05863873, and hence provides a better
fit to the wind tunnel data. Fig. 3 shows that a global model
with seven terms will fit the wind tunnel data better, but
sucha a model may not have good predictive capability.

Fig. 1  Predicted squared error components for the
coefficient Cxq(α)

Fig. 2  Comparative plots for the coefficient Cxq(α)
with five terms

Fig. 3 Comparative plots for the coefficient Cxq(α)
with seven terms
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The PSE for Czq(α) in Fig.4 indicates that the global

model for the coefficient should include at least 5 terms.
The model structure for Czq(α)  is given in Table-2. Fig.5

shows that the present solution and the model from Ref.
[9] are comparable, and both fit the wind tunnel data
equally well.

The error components for the function C1(α, β) in

Fig.6 show  that it is not always possible to rely entirely
on PSE metric to decide upon the number of terms to be
included in the model. Going by the plots of PSE in Fig.6,
including 4 terms in the global model should give a
reasonable match with the wind tunnel data. However,
past experience in modeling coefficients that are functions
of two or more variables shows that more than four terms
will be required to get a good fit for C1(α, β) with the wind

tunnel data. For the present case, it was found that at least
8 terms are required to model C1(α, β) adequately. The

global model for C1(α, β) in Ref. [9] and the present model

structure defined in Table-3 have eight terms each. How-

Fig. 5 Comparative plots for the coefficient Czq(α)

Fig. 4  Predicted squared error components
 for the coefficient Czq(α)

Table: 2  Model Structure and Parameter Values 
for the Function Czq(α)

Czq(α) = g0 + g1α + g2α2 + g3α3 + g4α4

Sl.
No.

Parameter Ref. 9 Present
Solution

1 g0 -30.54956 -29.8579836

2 g1 -41.32305 -43.6810596

3 g2 329.27880 306.1325795

4 g3 -684.80380 -596.2637308

5 g4 408.02440 332.7543198

Mean Squared Error 1.293684 1.12690974

Over-fit penalty 2.532696 5.06532924

Predicted squared error 3.826380 6.19223898

Table: 1  Model Structure and Parameter Values 
for the Function Cxq(α)

Cxq(α) = b0 + b1α + b2α2 + b3α3 + b4α4

Sl.
No.

Parameter Ref. 9 Present
Solution

1 b0 0.4833383 0.5375464

2 b1 8.644627 9.1225574

3 b2 11.31098 9.7260248

4 b3 -74.22961 -78.6050947

5 b4 60.75776 68.9893810

Mean Squared Error 0.072668 0.05863873

Over-fit penalty 0.077109 0.15421976

Predicted squared error 0.149777 0.21285850
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ever, the model for C1(α, β) in Ref. [9] includes the terms

β2 and α3β which are missing from the model defined in

Table-3. On the other hand, the terms β3 and α3β2 are
included in the current model structure to have a better fit
with the wind tunnel data at higher sideslip angles. This
interplay between the higher order terms of the inde-
pendent variables can have considerable bearing on the
results. Since C1(α, β) = 0 for β = 0 it is assumed that

C1(α, β) = β ∗ f (α, β).

As seen from Figs. 7 to 9, the higher order terms for
β in the present case result in better matching of the present
solution with wind tunnel data. For the plots shown in
Fig.7, the MSE for the model of Ref. [9] is 0.00004717,
while the MSE for the present global model is 0.00003596,
indicating a 24% improvement over the model of Rs. [9].
Likewise, for β=25 deg. In Fig.8, the MSE value for the
model of Ref. [9] is 0.00007234, and the MSE for the
model from present analysis is 0.00002706, a 62% im-
provement over the model of Ref. [9]. For β=30 deg in
Fig.9, the MSE for the model of Ref. [9] is 0.00013567
while that for the present solution is 0.00004525, indicat-

ing about 66% better match of the present solution with
the wind tunnel data for the given range of independent
variables.

Similar exercise of identifying global models was car-
ried out for other aerodynamic force and moment coeffi-
cients, the results for which are not presented here for the
sake of brevity. In all the cases, the identified global
models were either comparable or better than the corre-
sponding models given in Ref. [9].

Table: 3  Model Structure and Parameter Values 
for the Function C1(α, β)

C1(α, β) = β(h00 + h10α + h20α2 + h01β + h11αβ 

+ h30 α3 + h40 α4 + h21 α2β + h31 α3β + h02 β2)

Sl.
No.

Parameter Ref. 9 Present
Solution

1 h00 -0.10558583 -0.10064754

2 h10 -0.5776677 -0.66422883

3 h20 -0.01672435 1.76296703

4 h01 0.1357256 ---

5 h11 0.2172952 0.65765011

6 h30 3.464156 ---

7 h40 -2.835451 -1.17821622

8 h21 -1.098104 -4.19529581

9 h31 --- 3.36483413

10 h02 --- 0.24881440

Mean Squared Error 0.00005755 0.00003398

Over-fit penalty 0.00007178 0.00014356

Predicted squared error 0.00012933 0.00017754

Fig. 6  Predicted squared error components
 for the coefficient C1(α, β)

Fig. 7  Comparative plots for the coefficient C1(α, β)
for β = 20 deg
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Conclusions

A simple technique based on classical Gram Schmidt
method and Predicted Squared Error (PSE) metric is used
to generate orthogonal functions to determine nonlinear
aerodynamic global models of aircraft force and moment
coefficients, from F-16 wind tunnel data. A program code
was written in MATLAB for this purpose. Results show
that the agreement between the global models and the
wind tunnel data is good. Comparison of the identified
models with those given in Ref. [9], obtained by using a
more complex scheme of orthogonal function generation,
shows that the simpler approach used in the present analy-
sis yields equally comparable or better global models.

Based on the current work, the following conclusions
are made :

• The orthogonal function modeling technique offers a
simple method for determining the model structure and
estimating the parameters of a global model.

• The classical Gram-Schmidt orthogonalization proce-
dure is adequate for generating the orthogonal model-
ing functions. Use of complex algorithms, based on
modified Gram-Schmidt method, is not necessary.

• The PSE metric is a useful criterion for determining the
model structure and the number of terms for a compact
model. However, in certain cases, it might become
necessary to include more terms than suggested by PSE
to achieve a better fit to the wind tunnel data.

• To attain a good fit of the global model to a given wind
tunnel database, it is necessary to select a proper value
for the multiplier K, in the relationship :

     PSE = 
J
N

 + K σ0
2 

M
N
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