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Abstract

Effect ofthermal gradient on the naturalfrequency, buckling load and dynamic stability ofa
simply supported tapered beam under a pulsating axial load is investigaled by Jinite element

method. A linear variation of the Young's modulus of the beam material, due to a sleady

one-dimensional thermal gradient is assumed. It is observed that the naturalfrequency and

the buckling load ofthe beam decrease with increase in thermal gradient and thermal gradient
has a destabilizing effect on the beam.

Notation

A(x) : area ofcross-section ofthe taperedbeam at

any section
E | : modulus of elasticity at section x:0
E(x) : modulus of elasticity at any section x
I(x) : moment of inertia at any section x

: moment of inertia of the section at x:0
lK") : assemblage stiffness matrix

[K"]" : element elastic stiffness matrix
I : length of the beam element

IM : assemblage mass matrix

lM" : element mass matrix
P : axial periodic load
P* : fundamental buckling load
Po P, : time independent amplitudes of loads

{q) : assemblage nodal displacement vector

Iql=

l+1" : element nodal displacement vector

tSl : assemblage stabilitY matrix

[S], : element stability matrix
t : variable time
T : kinetic energy

U :potential energy
: transverse displacement of the node
: coordinate along the length of the beam
: static load factor
: dynamic load factor
: thermal gradient factor
: mass density of the material of the beam
: disturbing frequency
: fundamental natural frequency without

thermal gradient

7,"b :buckling loadparamet 
"rf =+#)

\ ",
l,o) : nahrral frequency parameter

(.'')
l=-l
| ^ta,','A;^,;;n )

2ro : disturbing axial frequency parameter f = 
ql

I t'/

Introduction

The parametric instability of structural elements is of
major concern to mechanical and structural engineers.

Structural members with a thermal gradient along its
length and subjected to axial periodic forces varying with
time are frequently encountered. These forces may result
in parametric vibrations which can damage the structural

element because of large amplitude of oscillations.

The stability of lateral motion of a uniform bar sub-
jected to pulsating periodic axial loads was first studied by
Baliaev [] and latter by Mettler [2] and others [3,4,5] and

is well documented in the bookby Bolotin [6]. Brown et.al

[7] studied the dynamic stability of uniform bars with
various boundary conditions using finite element method.

Ahuja and Duffreld [8] investigated the same problem

using a slightly modified Galarkin method. A discrete

element type of numerical approach was employed by
Burney and Jaeger [9] to study the parametric instability
of a uniform column. Iwatsubo et.al [0,] l] investigated

the existence ofdifferent types ofresonances for clamped

and clamped - simply supported columns under periodic

axial loads by finite difference method and the existence
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of different t5rpes of resonancies in columns for four dif-
ferent boundary conditions analytically. Datta and Chak-
rabarty [2] investigated the stability of a tapered beam by
finite element method. Abbas [3,14] studied free vibra-
tion of Timoshenko beam with elasticity supported ends
using finite element model. He also studied the effects of
rotational speed and root flexibility on the static buckling
loads and on the regions of dynamic instability of a Ti-
moshenko beam by the same method. Yokoyama [5] in
a recent work investigated the effect of an elastic founda-
tion support on the staticbuckling load, natural frequency
and stability of a uniform Timoshenko beam by finite
element method. Lien and Der [6] studied the stability
behaviour of a Timoshenko beam subjected to a unifonnly
distributed follower force by finite element method. Datta
and lal [7] studied the static buckling characteristics of
a non-prismatic bar with localized zones of damage and
subjected to an interrnediate axial load by finite element
analysis.

The modulus of elasticity of the material is greatly
affected by the tempprature. In high-speed atmospheric
flights and nuclear engineering application the mechenical
and structural parts are subjected to high temperature and
also experience fluctuating loads. For most of the engi-
neering materials the Young's modulus varies linearly
with temperaturre. Tomar and Jain studied the effect of
themral gradient on the frequencies ofrotating beams with
and without thermal gradient [8,19].

Effect ofchange in mechanical properties of the mate-
rial, nanelytheYoung's modulus dueto thermal gradient,
on the dynamic stability of the beam is to be studied for
effective design ofthese structural components. The pre-
sent work deals with the simple resonance of a parametri-
cally excircd simply supported tapered beam subjected to
thennal gradient along its length. Finite element method
is employed to carry out the analysis. Thc regions of
instabitity were determined by Floquet theory.

- Fomulation of the Problem

kt the simply srpported tapered beam shown in Fig.l
is rqlresentedby an assembly of finite elements connected
together at the nodes. A typical finite element is shown in
Fig.2 with v;,O;,ui and 0; as nodal displacements. The

matrix equation for free vibration of axially loaded dis-
cretised system is

WllAl+ Ix)lq l- p Ist {q }: o (r)
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wherc {4} : Assemblage nodal displacement vector

lvr,Or, vrt Oi)T -

The dynamic loadP(r) is periodic and can be expressed

in the formP: P6 + Ppos Q r, where O is the disflubing
frequency, Po the static and P1 the amplitude of time
dependent component ofthe load, can be represented as

the fraction of the fundamental static buckling load P*.

Hence substituting P : u P* + pP* cost O I with cr, and
p as static and dynamic load factors respectively.

The equation (l) becomes

lsJ - pP.

where the mahices [SJ and [Sf reflect the influence ofPo
and P, respectively. If the static and time dependent
component of loads are applied in the same manner, then

tsJ: tsJ: t^vl.

Equation (2) represents a system ofsecond order dif-
ferential equafions with periodic coefficients of the
Mathieu-Hill type. The development of region ofinstabil-
ity arises from Floquet's theory which establishes the

existence of the periodic solutions of period T and2T,

where T =*. The boundaries of the primary instabilify
O

region with period 2T are of practical importance
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length / of a

@olotin - 5) and the solution can be achieved in the form

of trigonometric series.

sa)=;[1"-],'" ry.{ao}sin ry) (3)

Putting this in equation (2) and if only first term of the

series is considered, equating coefficients of sin I and

Ot .
cos t the equaUon Decomes

f*^2 I
lr""r - @ tF/Df ta -+ talbl=o (4)
L-e + )

Equation (4) represents an eigenvalue problem for

unknown values of ct, p and P'. This equation gives two

sets of eigenvalues (O) bounding the regions of instability
due to presence of plus and minus sign.

Also this equation (4) represents the solution to a
number of related problems.

i) For free vibration :cr = 0, p = O und I = *

Equation (4) becomes (l*"1-1" pzl){q }= o (5)
\- )

ii) For vibration with static axial load:
o

F = o, cr *0,7r=7

Equation (4) becomes

(tx.l -o P* [q - x' ta)lq l = o

iii) For static stability: cr= l, P = O, L=*

Equation (3.4) become'(tO, - I ttl){o l= o

iv) For dynamic stability, when all terms are present

Let c)=[9]r,
[''J

where ol, is the fundamental natural frequency as obtained

from the solution ofequation (5). Equation (4) then be-

comes 
2

( ( R\* \ (Il,

Itrc-t-l"t* lp't.tt l{q}=e italql (8)

l. " \ ') ) -
a/oY

where,0=l:1.
l''J

The fundamental natural frequency ol1 and critical

static buckling load P* can be solved using the equations

(5) and (7) respectively. The regions of dynamic instabil-

ity can be determined from equation (8).

Element Matrices

The increase in potential energy of an element length

'/' ofa tapered beam subjected to an axial force 'P' is given

by

t rz* - ,,-,,
ry=lfn61r@)l+l *-Irf P-l * (e)2J-' 'lar"l ,'o\*)-\)

Assuming polynomial expansion for v and substituting
in equation (9) this equation becomes.

1 .'r
u= 

"lal)ltllql"
where ffi =lK"f"-P [,YJ"

The kinetic energy T for an elemental

tapered beam is given by

(10)

(6)

(7)

lr )
r=;JpA(x)lv'-

0

lax (11)

(r2)

where p is the mass density of the material of the beam.
Using the polynomial expansion for v and substituting in
equation (l l) we get

r=+la[u4]"lal"

Element mass matrix, element elastic stiffness matrix
and element siability matrix which is a function of the

axial load P are given by the expressions
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IK.l,= I IN "l' lD]lN"l dx
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lSl,=J IN'l' IN'ldx
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where [N"] =--Y ^ [N], tNl =; [N] and [N] is the ele-

dx"
ment shape function matrix

[D]= E (x) I(x).

The Young's modulus E is assumed to vary linearly
along the length of beam due to thermal gradient.

E (x) = g, [1 - 6 (x/l)

The overall matrices [&], tSl and[;1'4\are obtainedby
assembling the corresponding element matrices. The dis-
placement vector consists of any active nodal displace-
ments.

Results and Discussion

The following properties of the beam are taken for
numerical computations :

Length of the beam: lm; Cross-sectional dimension
at the tip :2 x2 cm; Cross - sectional dimension at the
root: l2 x l2 cm; Material mass density of the aluminum
beam:2800 kg/m3 El : 70xl0e N/m2

Natural Frequency and Buckling Load

Five-element discretisation of the beam is used to
evaluate the buckling load and natural frequency. In order
to check the accuracy ofdiscretisation, buckling load for
fixed free end conditions and without thermal gradient is
calculated from the present formulation and compared
with the theoretical result of Timoshenko [20], which
shows good agreement.

Present FEM Timoshenko (20'l

2.3988 x l0'KN a
2,3973 x 10" KN
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Figure 3 and 4 shows the variation ofnatural frequency
parameter and buckling load parameter respectively of the
first three modes with thermal gradient parameter 6. The
values of both the frequency parameter and buckling load
parameter decrease with increase in the value of 6 . This
decrease is negligible for fundamental natural frequency
and buckling load. The rate of decrease is more for higher
modes.

Stability Analysis

Five-element discretisation of the beam is used for
dynamic stability study. This gives rapid convergence of
the boundary frequency for the first five instabilities
zones.

In order to study the stability of the beam, instability
regions are obtained for different values ofthermal gra-
dient factor 6 and static factor cr. These are shown in Figs.
5-14.

Fig. 3 Variation ofnaturalfrequency with thermal gradient
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Fig. 4 Variation of buckling load with thermal gradient
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Figures 5-7 shows the instability regions for a : 0.4

and 6:0.3 and 0.6 respectively. It is seen that with thermal

gradient present, the lower boundary of the first instability

region curls towards the dynamic load factor axis, thereby

making the first instability region wider. For higher values

ofthermal gradient factor the lowerboundary truncates on
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Fig. 5 Stability regionsfor a: 0.4 6: 0.0
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Fig. 6 Stability regionsfor a: 0.4 6:0'3
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-Fig. 7 Stability regionsfor a - 0.4 6: 0.6

the p - axis at values of p less than one. For example, for

a : 0.4 and 6 : 0.6 the lower boundary of the fint
instability region truncates on the p - axis at p : 6.3.

Truncation of lower boundary on the p - axis at values of
p less than one indicates instability for amplitude of time

dependent component of the load less than the fundamen-
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Fig. 8 Stability regionsfor a: 0.5 6 =0.0
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Fig. 9 Stability regions for a: 0.5, 6: 0.3
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tal static buckling load. There is also increase in areas of
the other two instabilities regions. Moreover increase in
thermal gradient factor p shifts the instability regions
towards the dynamic load factor axis, that is the instability
occurs at lower frequency of excitation. This shift is less
for the instability region but for other two regions it is
relatively large.

Figures 8-10 shows the instability regions for a:0.5
and 5 : 0, 0.3 and 0.6 respectively. Increase of thermal
gradient factor has the same effect on the instability re-
gions as discussed above. Comparing Fig.6 and Fig.4, it
is seen that the nature of the instability regions are same,

but the instability regions for the case cr:0.5 and 6:0.0
occurs at excitation frequencies higher than those for the

condition cr: 0.4 and 5 : 0.3. So increase in both static
load and thermal gradient shift the instability regions
towards lower frequencies of excitation but the shift due
to increase in the thermal gradient factor is more compared
to that due to increase in static load factor for the same

51015
Di.torbiDg Fr.qu.n.y R.lio O /ol

Fig. I I Stability regions for u: 0.8, 6 : 0.0

Dirtorbing Frcqucnqr RetioO/or 

-Fig. I2 Stability regions for a : 0.8, 6 : 0.3
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point of truncation of the lower boundary of the first
instability region.

Figures I I - I 3 shows the instability regions for a : 0.8

and 5:0, 0.3 and 0.6 respectively. The instability regions

show the same behaviour with increase in 6 as discussed
earlier. Comparing Fig.8 with Fig.9 and Fig.l l it is seen

that for an increase of0.3 in the value ofa the increase in
the areas of the instability regions is more than the increase
in areas of the instability regions for the same increase in
6 . But the shift in instability regions towards the lower
frequencies of excitation is more due to increase in 6 than
those due to increase in a . For d : 0.8 and 5 : 0.6 the
lower boundary of the first instability region vanishes.

Figure 14 shows the instability regions for c : 1.0 and

6 : 0.0. In this case the nature of the instability regions is
same as those for the condition c[ : 0.8 and 6 :0.6. But
the areas of the instability zones are more for the latter
case.

Dkbrblng Fr.qo.r.y Rrfo O/o, +

Fig. 13 Stability regions for a : 0.8, 6 : 0.6

5t01520
DixlufrirB PBqocncl, klb O /m! -+

Fig. 14 Stabilily regions for u = I .0, 6 : 0.0
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Conclusions

A finite element method is presented for the stability
analysis of a tapered beam with thermal gradient subjected
to axial periodic load. Increase in thermal gradient de-
creases the natural frequency and the static buckling load.
There is an increase in the areas ofinstability regions and

the instability region shift to lower frequencies of excita-
tion with increase in thermal gradient. Increase in static
load or thermal gradient, increases the areas of the insta-

bility regions, and shift the regions towards lower frequen-

cies ofexcitations. Static load has agreater influence on
increasing the areas whereas increase in thermal gradient

has a greater influence in shifting the regions towards

lower frequencies of excitations.
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