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Abstract

Box beams bend essentially with top and bottom skins providing bending rigidity and shear
webs giving shear flexibility. When the width of the beam is comparable to the length of the

beam and considerably larger than the depth ofthe shearwebs, there is an added complication
called the shear lag effect. The free bending vibrations of box beams can be determined
analytically by incorporating shear web assumption seleclively into the Timoshenko equations
so thal areas active in inertia, bending deformation and shear deformation are carefully
identified. This will accountfor both shearflexibility and rotary inertia,foctors that are omitted
in classical Euler- Bernoulli beam descriptions. Frequencies from these modified Timoshenko

type equations qre calculated for three types of end conditions namely simply supported,
clamped-free and clamped-clamped. However, no single analytical treatment is possible to

accountfor the shear lag effects in the cover sheets of the box beam. Here, thefinite element

method allows a computational treatment of the problem. Frequencies are therefore obtained

from finite element models of wing type box beam structures. The finite element models can

now include the shear lag effects, which are not sensed by the Timoshenla beam model.

Comparisons show how the box beam model can serve as a bench markfor evaluatingJinite
element dynamic modeling and the relativeinfluences ofshear lagand shearflexibility coupled
with rotatorv inertia can be identified.
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Nomenclature

: length of the beam
: width of the beam
: height ofthe beam
: Young's modulus of elasticity
: shear correction factor
: shear modulus ofcover sheet ofbox beam
: density
: strain enetgy
: kinetic energy
: bending moment of inertia of beam cross section
: circular frequency of natural mode of vibration,

radians per second
: frequency of nafural mode of vibration,

cycles per second
: mode number
: transverse deflection
: cross sectional rotation
: effective area in shear
: area for translatorv motion

Introduction

Wing type aircraft structures are essentially designed
as box bearhs based on stressed skin approaches using very
thin metal or even thinner composite laminate skins
(closely-spaced rib- spar-skin construction). These are

highly indeterminate and cannot be solved easily through
analytical approaches derived from mathematical models.

The finite element approach is one simple way to examine
the static and dynamic behavior of such structures [1]. It
will be useful to develop analytical benchmarks, even for
a single bay box beam, against which the finite element

results can be compared. In this present analysis, we
formulate the Timoshenko equations for a box beam based

on the shearweb assumption, that the top andbottom skins

are effective in compression and tension while the webs

act only in shear and solve for the free vibration dynamics

under various boundary conditions. The present analysis

carefully identifies the areas giving rise to shear and

bending deformation contributing to the translatory mo-
tion and the solution is obtained assuming the Timoshenko

theory where the shear deformation and rotatory inertia
effects are included. Classical Euler-Bemoulli beam theo-
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ries ignore both shear flexibility and rotatory inertia ef-
fects. Anallical frequencies for bending (torsion and

extensional modes are not investigated) are compared with
numerical frequencies obtained by finite element models.

These finite element models can be refined to include
shear lag effects as well, which are not easy to incorporate

in the present analytical model. The present study there-

fore highlights the relative influences of all these compli-
cating effects.

Shear Web Assumptions of Box Beam

The box beam analysed here is a structure with parallel

shear webs and top and bottom covers (Fig.la). The rec-

tangular sections are symmetrical about a vertical plane.

The top and bottom covers are influenced by bending

deformation and the webs are dominated by shear defor-
mation (Fig.lb). The finite element models of the box
beam are shown in Figs.2a and2b.It is assumed that the

shearing stress acting at the sides of the beam is uniformly
distributed over the web thickness l. In the case of
rectangular cross section \et b, h be the width and depth.

The effective area on which the shear stress acts is given

by Ar: 2ht (Fiqla) and the moment of inertia is given by
l : (bfi l-b2hi)/l 2 (Fig.lc), where b7 : b+t; bz : b-t;

h1 : h+t; hz : h-t. Under such assumptions, the Ti-
moshenko beam theory can be used to model the behav-

iour, where shear lag effects are not expected to be

significant.

Shear Lag Effects on Vibrations of Box Beam

In the elementary theory of beams, the influence of
shear strains on any cross section are small and have

negligible effect on stress distribution. In the case ofbox
beams with wide and thin covers, the shear strains signifi-
cantly influence the stress distribution in the top and

bottom skin covers (Fig. la, lb, lc), and the normal

stresses are now larger at the side webs and smaller near

the centre of the cover, i.e. stresses at the centre "lag
behind" that at the covers. This is called the shear lag

problem. For such beams in which the shear deformation
is significant, larger deflections than predicted by elemen-

tary beam theory are found, and these beams are less stiff
than those without shear lag. Therefore in shear lag prob-

lems the usual stiffness needs to be replaced by effective
stiffness, which takes account ofshearJag strains present

in the beam. Under the inertia loading conditions, this
effective stiffrress changes the vibration characteristics.

This phenomenon is known as the shear lag effect. Theo-

retical and experimental investigations to determine the

magnitude ofthis effect are available in literature [2-3] but
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are not simple to implement. Experimental studies and

Finite element analysis on shear lag effect are conducted

by Luo et al. f4f, for box girders with varying depth in
cross section and for box girders under simultaneous axial
and lateral loads to address the beam-column action and

the effect of varying depth upon the shear lag of box
girders. More recently, a systematic approach to the shear

lag analysis ofstructures that are subjected to simultane-

ous bending and axial forces is presented by Luo et al. [5].
Based on the principle of minimum potential energy the

shear lag effects in beam action and column action are

t
' side

t"*
side t
u/€b t

{-+-l-t-Ft-+-t'+-t-

Bottom cowr
Fig. Ib Rectangular section of a box beam

!.7
Dr

Fig. I c Effeclive area in shear As:2h! Elfeclive area for
translatory motion Arbrht - bzhz ; t=1tft1-bzh))/ 12 ;

brb + t i hrh + t ; b2=$ - t ; h2= 11 - 1

ht

Fig. I a Bending stress distribution in a cantilevered box beam

Tq cover

hz

b



262

considered separately in analogy to the stress calculation
of beam-columns, using box girder as an illustrating ex-
ample [5]. Kuhn and Chiarito [6] present the methods of
shearJag analysis suitable for practical use and describes
strain-gage tests to veriff the theory. Also the report [6]
gives numerical examples illustrating the methods of
analysis. Using the variational principle, Bernard et.al [7]
presented the analysis of transverse vibrations of hollow
thin-walled cylindrical beams. The combined influence of
the secondary effects of transverse shear deformation,
shear liag, and secondary effects of tmnsverse shear defor-
mation, shear lag and longitudinal inertia on the frequen-

cies of cantilever and free-free cylindrical beams of
arbitrary cross section but ofuniform thickness are shown
in t7l.

In the case of the airplane wings, the elements of the

wings are essentially a shallow box beam in which the

shear shains from shear lag have a significant influence
on the bending stifftress, which in tum affects bending
modes and the natural frequencies of the wings are signifi-
cantly reduced when the shear lag is present. It is clear that
the Timoshenko theory is not able to represent this effect.

In the present study, the effects of shear lag on bending
modes and frequencies of box beam are deterrnined using
FEM models (MSC/NASTRAN is used) and is compared
with those frequencies obtained using the Timoshenko
theory modified forbox beam. This is possible by using a

fine mesh (16x4 elements for top and bottom coveis, l6xl
at the side webs) as shown in Fig.2b, with gradations along
the x-direction. A model such as in Fig.2a, where only one

element ( l6x I elements for top, bottom covers and the side

webs) is used along the y-direction will fail to recover the

shear lag eflect.
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Frequencies from Analytical Approach

We derive the closed form expressions for frequencies
as follows:

The strain energy U and the kinetic energy T ofa box
beam are given by

LL
u=Lrlnrc',d.++[kcAs@-r,52 dx (l)

00
L1 L"

1? - ?,=;J plo,,dx+ l pArw,,dx (2)

00

Note that unlike the familiar Timoshenko equations for
solid section beams, here we make the distinction where
the area effective in shearl", is from the shear webs, and

the areas effective for the inertia of translatory motion A7
takes into accouatboth the shearwebs and top andbottom
skin areas. Iis the moment of inertia of the section and this

appear both in the bending strain energy and the rotalory
inertia term. It is assumed that the flange areas and top and
bottom skins as well as webs are effective in bending and
contribute to L The analysis is restricted to considering
only bending vibration and ignores torsional and exten-
sional effects.

On applying Hamilton's principle, we get the follow-
ing Euler -Lagrange equations of motion

pA rfi - kGA, (w 
, o- 0, 

") 
= 0

g6-me,o-kcAs(wr-o)=o
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Fig. 2a FE model of a box beam Fig. 2b FE model (refned) ofa box beam
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Uncoupling the above equations (3-4), we get the

fourth order partial differential equation as

EI w. oo+ pAr*. tt- pI (l + (E/ kG) (A r /A s)) 
w, w,

+ p'I/ kG (Ar /A ) . . iltt= 0 (5)

If we assume w(x,0 : W(x)sintuot, we get the function

W(x) with four constants whose values are determined

from the boundary conditions.

W(x) = trs.tr, + Bsinqx * C cosh qx + Dsinh qx (6)

The frequency q is obtained by applying the appropri-

ate boundary conditions and the frequency or is obtained

from the following fourth degree polynomial equation

) A 4 4.--
(p' L- / EkG) (A r /A s) a' + lpA, tL / EI

)77.4
+(pL'/E)(r +(E/kG) (Ar/As) q-la- - Q' =0 (7)

In the case of simply supported beam the frequencies

are obtained from

sin qL= 0 (8)

and hence q = nrt/L,where n is the mode number'

In the case ofclamped-free conditions the frequency

equation is ofthe form

'cosqLcoshqL=-1 (9)

In the case of clamped-clamped conditions the fre-

quency equation is given by

cosqLcoshqL= | (10)

The above equations (8- l0) are solved numerically for

the values of q andthe natural frequencies are obtained by
substituting the values of q in the fourth degree equation

(7) in o. The frequencies of the box beam for bending

modes thus obtained are used as a standard result for

comparison of the frequencies obtained computationally

from finite element models, where there is no shear lag

effect.
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Frequencies from Computational Approach

Natural frequencies of the box beam are calculated

usingNASTRAN finite element models. The geometry is

modelled using CQUAD4, isoparametric quadrilateral

plate element. Bending and transverse shear deformation

properties of this element are input through PSHELL

property entry. In one model (Fig. 2a) the webs, top and

bottom surfaces are discretised using 64 elements in all,

with each face represented by 16 elements along the length

of the beam with the element thickness of 2.0 mm. The

dimensions are L:900mm along x, D : 300mm along y
and h = 75mm along z (L/b : 3.0) with the material

property E/kG:2.0, where f : 7000 kg/mm2 is the

Young's modulus, k the shear correction factor and the

shear modulus G. The density of the material is given by

p :2.8E-6 Kglmmz.The natural frequencies are obtained

as the solutions ofeigen value problem by considering six

(three translational and three rotational) degrees offree-
dom at each unrestrained node. The frequencies for differ-
ent boundary conditions of the beam are obtained by
imposing the free or fixed conditions on the nodal degrees

of freedom. Note that this model will not allow for the

stress diffusion effects on the top and bottom skin covers,

which are indicative of the shear lag effects. To include

this factor, the computations are repeated with a refined

model (Fig. 2b), which will now sense shear lag eflects.

Results And Discussions from
Numerical ExPeriments

In the present investigation, the frequencies ofthe box

beam under three different boundary conditions namely

(i) simply-supported, (ii) clamped-clamped, (iii) clamped-

free conditions were calculated using FEM package NAS-
TRAN, for first few modes of vibrations where the length

to width ratio of the beam is L/b: 3 with E/kG = 2.0'

Frequencies obtained using finite element model (Fig. 2a)

were compared with those frequencies obtained from Ti-
moshenko beam theory modifred for box beam with ap-

propriate areas for shear deformation and translatory

motion in Tables l-3. It is observed that the frequencies

predicted from Timoshenko theory differ slightly from the

frequencies obtained using FEM. for all the three bound-

ary conditions when shear lag effects are ignored. The

mode shapes corresponding to ltrst four modes were cal-

culated both from Timoshenko theory and finite element

model andpresented in graphical forms. Figs. 3-6 give the

mode shapes of cantilever beam for mode number n : I to
n : 4. Figs.7- 10 give the mode shapes of simply-supported
beam for n: I to n:4
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Uncoupling the above equations (3-4), we get the

fourth order partial differential equation as

EI w,oor pAr*,tt- pI (l + (E/kG) (Ar/Ar)) w,,*

1

+ p'I/kG (Ar/As)..rr= o (5)

If we assume w(x,0: W(x)sinot, we get the function

W(x) with four constants whose values are determined

from the boundary conditions.

W(x) = tr"otU* * Bsinqx + C cosh qx + Dsinh qx (6)

The frequency q is obtained by applying the appropri-

ate boundary conditions and the frequency ro is obtained

from the following fourth degree polynomial equation

)A44
(p' L' / EkG) (A r / A ) a' + IPA r tL / EI

)))4
+(pL'/E)(r +(E/kG)(Ar/A) q-l@- - Q' =0 (7)

In the case of simply supported beam the frequencies

are obtained from

sinql=O (8)

and hence q = nn/L,where n is the mode number'

In the case of clamped-free conditions the frequency

equation is ofthe form

'cosqLcoshqL=- | (9)

In the case of clamped-clamped conditions the fre-

quency equation is given by

cosqLcoshqL= 1 (10)

The above equations (8- l0) are solved numerically for

the values ofq and the natural frequencies are obtained by
substituting the values of q in the fourth degree equation

(7) in co. The frequencies of the box beam for bending

modes thus obtained are used as a standard result for
comparison of the frequencies obtained computationally
from finite element models, where there is no shear lag

effect.
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F requencies from Computational Approach

Natural frequencies of the box beam are calculated

using NASTRAN finite element models. The geometry is

modelled using CQUAD4, isoparametric quadrilateral

plate element. Bending and transverse shear deformation

properties of this element are input through PSHELL
property entry. In one model (Fig.2a) the webs, top and

bottom surfaces are discretised using 64 elements in all,

with each face representedby 16 elements along the length

of the beam with the element thickness of 2.0 mm. The

dimensions arc L:900mm along x, b: 300mm along y
and h : 75mm along z (L/b : 3.0) with the material

property E/kG2.O, where E : 7000 kglmm2 is the

Young's modulus, f the shear correction factor and the

shear modulus G. The density of the material is given by

p -- 2.8E - 6 K/ mmz . The natural frequencies are obtained

as the solutions ofeigen value problem by considering six
(three translational and three rotational) degrees offree-
dom at each unrestrained node. The frequencies for differ-
ent boundary conditions of the beam are obtained by
imposing the free or fixed conditions on the nodal degrees

of freedom. Note that this model will not allow for the

stress diffusion effects on the top and bottom skin covers,

which are indicative of the shear lag effects. To include

this factor, the computations are repeated with a refined

model (Fig. 2b), which will now sense shear lag effects.

Results And Discussions from
Numerical Experiments

In the present investigation, the frequencies ofthe box
beam under three different boundary conditions namely
(i) simply-supported, (ii) clamped-clamped, (iii) clamped-

free conditions were calculated using FEM package NAS-
TRAN, for first few modes of vibrations where the length

to width ratio of the beam is L/b: 3 with E/kG = 2.0.

Frequencies obtained using finite element model (Fig. 2a)

were compared with those frequencies obtained from Ti-
moshenko beam theory modified for box beam with ap-

propriate areas for shear deformation and translatory

motion in Tables l-3. It is observed that the frequencies

predicted from Timoshenko theory differ slightly from the

frequencies obtained using FEM. for all the three bound-

ary conditions when shear lag effects are ignored. The

mode shapes corresponding to frrst four modes were cal-

culated both from Timoshenko theory and finite element

model andpresented in graphical forms. Figs. 3-6 give the

mode shapes of cantilever beam for mode number n : I to
n:4. Figs.7-10 give themode shapes of simply-supported
beamforn: I ton:4.



Table-l : Frequencies (Cycles/sec) for Simply-Sup-
ported Box Beam (no shear las)

ModeNo. NASTRAN Theory

I 7.6t7 7.199

2 28.019 26.505
a
J 56.3 53.279

4 93.07 83.684
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Table-2 : Frequencies (Cycles/sec) for Clamped-
clamned Box Beam (no shear las)

Mode No. NASTRAN Theorv

I 14.92 r5.73

2 36.6r 39.23

J 64.t4 68.204

4 95.49 99.s07

5 t29.84 131.63

6 r66.70 163.86

Fig. 4 Mode shape of cantilever beam, n:2

Table-3 : Frequencies (Cycles/sec) for Clamped-
free Box Beam (no shear las)

Mode No. NASTRAN Theory

I 2.62 2.62
nz t5.26 15.51

J 38.91 39.25

4 68.60 68.20
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Table4 : Frequencies (Cycles/sec) for Cantilever Box Deexq

ModeNo. Theory
(Timoshenko)

Euler Theorv NASTRAN
CBEAM Model

NASTRAN
Plate Model

(no shear las)

NASTRAN
Plate Model
(shear lae)

37.81 38.s 37.71 43.t33 41.64

2 216.7r 239.813 205.06 229.6r 163.73

J 523.269 662.929 489.169 539.10 228.67

4 873.695 1275.203 812.85 881.00 268.46
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Fig. I I Canliliver box beam

Shear lag effect on the frequencies of box beam is

calculated using the refined finite element model (Fig' 2b)

and these results are compared with Euler and Ti-
moshenko beam theories and that from the model, which

removes shear lag effect (Fig. 2a). The cantilevered box

beam as shown in Fig. I I has the dimensions l2l L: l9O5

mm, b : 457 .2mm, h : I 14.3 mm and thicknesses / : I 0. I 6

mm for the covers and t : 8.12 mm for the webs. In this

case the material properties are given by E:7239.5

Kglmmz, v : 0.3 125.lt is seen from Table-4, that the

frequencies are considerably lower when shear lag is
included in the model. The theoretical frequencies are

close to the finite element results for Case 2a (no shear lag)

as expected and decidedly greater than the finite element

computational frequencies for Case 2b, as shear lag effects

were not anticipated in the mathematical models. It is also

seen that the influences increase significantly at higher

mode numbers, and by the fourth mode the error between

a physically correct model and the Euler-Bemoulli classi-

cal beam model that neglects the various complicating

effects can be several hundredpercent (see Table-4). Ta-

ble-4 also gives results using the NASTRAN CBEAM
element with box cross section. It is seen that these results

are similar to the case when shear lag is neglected.

We next tum our attention to how the shear lag effects

are influenced by the ratio of the width of the beam and as

the depth ofthe beam varies. For this purpose we keep the

length Z at 1905 mm and vary b and ft respectively.

Table-5 shows how the frequencies of the first fundamen-

tal mode change considerably as the shear lag effect in-

creases as the width of the beam is increased' This is to be

expected as now the stress diffusion in the cover sheets

will depart considerably from that where there is no

shear lag effect and the effective stiffness will change. In

Table-6, we see that at larger'mode numbers (here, n:
4), the shear lag influence is more critical and for widths

b which are of the order of magnitude of the lengthZ, the

frequencies can drop to a fifth ofthat produced using the

assumptions of shear deformation in the webs only (Ti-

rnoshenko theory).

Table-S : First Mode (n:1) Frequency (Cycles/sec)

for Constant Heisht. h:ll4.3mm

width,
b (mm)

Theory

iTimoshenko

NASTRAN
(no shear lag)

NASTRAN
(shear lag)

228.6 36.94 4t.'134 41.449

457.2 37.81 43.rr3 41.63'7

685.8 37.98 43.292 39.187

914.4 37.94 43.119 34.683

Tabte-6 : Fourth Mode (n:4) Frequency (Cy-

cles/sec) for Constant lleight, h:l14.1mm

width,
b (mm)

Theory
Timoshenko

NASTRAN
(no shear lag)

NASTRAN
(shear lag)

228.6 9',74.r2 999.804 685.348

457.2 873.69 881.003 268.461

68s.8 792.55 79r.27 160.t77

914.4 728.94 723.936 121.40

Table-7 : First Mode (n:1) Frequency (Cycles/sec)

for Constant Width, b:457.2mm

Height,
h (mm)

Theory

[Timoshenko

NASTRAN
(no shear lag)

NASTRAN
(shear lag)

38r 13.22 t5.42 15.026

'76.2 25.74 29.659 28.79

t14.3 37.81 43.1t3 4r.63',1

t52.4 49.44 55.81 l4 s3.497

Tabte-8 : Fourth Mode (n:4; Frequency (Cy-
cles/sec) for Constant Width. b-457.2mm

Height,
h (mm)

Theory
Timoshenko)

NASTRAN
(no shear lag)

NASTRAN
(shear lag)

38. r 385.33 421.548 233.488

'76.2 660.67 685.537 262.t09

114.3 873.69 881.0028 268.46t3

t52.4 1045.16 1034.227 272.3457
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We shall next investigate how the depth of the box
beam influences the shear lag effects on the frequencies.
In this case, the width b is kept constant at 457 .2 mm; the

length L at 1905 mm and the depth is varied. In Table-7,
we observe that the frequencies of the first mode increases

as the depth ofthe beam is increased in all the three cases

namely in modified Timoshenko theory, no shear lag and
shear lag. This is expected as the moment of inertia in-
creases wilh h" for a box beam. Correspondingly, the

shear deformation and rotatory inertia effects also become
prominent. For the first mode n:I, these effects are not
large but they become evi dent for example when the fourth
mode n4 is examined as shown in Table-8. The frequen-

cies can become as small as one fifth of that produced

using modified Timoshenko theory and the case where
there is no shear lag present.

Concluding Remarks

By modifring the Timoshenko beam model to account

separately for area effective in shear, bending and inertia,
it is possible to offer an analyical model for the dynamic
behavior of aircraft wing type box beams which do not

have significant shear lag effects. These can be used as

benchmarks againstwhich dynamics emerging from finite
element models ofbox beams can be validated. However,
it must be understood that where shear lag effects are

significant, it is diffrcult to obtain comprehensive analyti
cal models and finite element modelling is the most prac-

tical approach in such cases. It is also seen that shear

flexibility, rotatory inertia and shear lag effects signifi-
cantly influence the flexural dynamics of box beams, and

these increase as mode number increases.


